Recap:

Idele norm is $\left|\left\{x_{v}\right\}\right|=\prod_{v \leq \infty}\left|x_{v}\right|_{v}$ and $\mathbb{J}^{1}=\{x \in \mathbb{J}:|x|=1\}$
Fujisaki's lemma: $\mathbb{J}^{1} / k^{\times}$is compact. (via a measure-theory pigeon-hole principle)
Corollary: Ideal class groups are finite.
Let $k \otimes_{\mathbb{Q}} \mathbb{R} \approx \mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}}$. That is, k has r_{1} real archimedean completions, and r_{2} complex archimedean completions. The global degree is the sum of the local degrees: $[k: \mathbb{Q}]=r_{1}+2 r_{2}$.
Corollary: (Dirichlet's Units Theorem) The unit group \mathfrak{o}^{\times}, modulo roots of unity, is a free \mathbb{Z}-module of rank $r_{1}+r_{2}-1$. Generally, S-units $\mathfrak{o}_{S}^{\times} \bmod$ roots of unity are rank $|S|-1$.

Generalized ideal class groups: The class number above is the absolute class number. The narrow class number is ideals modulo principal ideals generated by totally positive elements.

For non-zero ideal \mathfrak{a}, the narrow ray class group $\bmod \mathfrak{a}$ is fractional ideals prime to \mathfrak{a} modulo principal ideals $\alpha \mathfrak{o}$ generated by totally positive $\alpha=1 \bmod \mathfrak{a}$.

Lemma: Generalized ideal class groups are idele class groups, quotients of the compact group $\mathbb{J}^{1} / k^{\times}$by open subgroups. ///

Corollary: Generalized ideal class groups are finite.

Generalized units: Let S be a finite collection of places of k, including all archimedean places. The S-integers \mathfrak{o}_{S} in k are

$$
\mathfrak{o}_{S}=k \cap\left(\prod_{v \in S} k_{v} \times \prod_{v \notin S} \mathfrak{o}_{v}\right)=\{\alpha \in k: \alpha \text { is } v \text {-integral for } v \notin S\}
$$

The group of S-units is $\mathfrak{o}_{S}^{\times}=k^{\times} \cap\left(\prod_{v \in S} k_{v}^{\times} \times \prod_{v \notin S} \mathfrak{o}_{v}^{\times}\right)$
Theorem: (Units) $\mathfrak{o}_{S}^{\times} \bmod$ roots of unity is free $\operatorname{rank}|S|-1$. ///
Theorem: (Kronecker) For $\alpha \in \mathfrak{o}$, if $|\alpha|_{v}=1$ for all $v \mid \infty$ then α is a root of unity.

Closed subgroups of \mathbb{R}^{n} : The closed subgroups H of \mathbb{R}^{n} are: for a vector subspace W of \mathbb{R}^{n}, and discrete subgroup Γ of \mathbb{R}^{n} / W, $H=q^{-1}(\Gamma) \quad\left(\right.$ with $q: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} / W$ the quotient map)
The discrete subgroups Γ of \mathbb{R}^{n} are free \mathbb{Z}-modules $\mathbb{Z} v_{1}+\ldots+\mathbb{Z} v_{m}$ on \mathbb{R}-linearly-independent vectors $v_{j} \in V$.

Measure-theory pigeon-hole principle: [recap] Again, the adelic version is the obvious extension of...

Proposition: $E \subset \mathbb{R}$ with measure >1 contains $x \neq y$ such that $x-y \in \mathbb{Z}$.
Proof: [again] With f the characteristic function of E, if no two points of E differ by an integer, $0 \leq \sum_{n \in \mathbb{Z}} f(x+n) \leq 1$. Thus,

$$
1<\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{1} \sum_{n \in \mathbb{Z}} f(x+n) d x \leq 1
$$

Impossible. Thus, there are $x \neq y \in E$ with $x-y \in \mathbb{Z}$.
Remark: We exploited the convenient obvious fundamental domain for the action of \mathbb{Z} on \mathbb{R}, that is, the subset $[0,1]$ of \mathbb{R} whose translates by \mathbb{Z} fill out \mathbb{R} with overlaps of measure 0 . This was unnecessary and misleading. This is rectified below.

Numerous remaining supporting details:

Integration on quotients: Quotients $\Gamma \backslash G$ such as \mathbb{R} / \mathbb{Z} have a reasonable integration theory without finding/constructing/using a so-called fundamental domain. Intrinsic integration on quotients is essential for situations $\Gamma \backslash G$ where determination of a fundamental domain is complicated or impossible.

Example: We want a continuous linear map (integral!) $F \rightarrow \int_{\mathbb{R} / \mathbb{Z}} F(x) d x$ on $C_{c}^{o}(\mathbb{R} / \mathbb{Z})$ (think of the Riesz representation theorem), translation-invariant, non-negative for non-negative F, and with the essential compatibility

$$
\int_{\mathbb{R} / \mathbb{Z}}\left(\sum_{n \in \mathbb{Z}} f(x+n)\right) d x=\int_{\mathbb{R}} f(x) d x \quad\left(\text { for } f \in C_{c}^{o}(\mathbb{R})\right)
$$

Try to define the integral on \mathbb{R} / \mathbb{Z} by this relation...!?!

Well-definedness is an issue, since the same $F(x)=\sum_{n} f(x+n)$ in $C_{c}^{o}(\mathbb{R} / \mathbb{Z})$ can arise by periodicizing two functions f in $C_{c}^{o}(\mathbb{R})$.
The complementary question is whether every $F \in C_{c}^{o}(\mathbb{R} / \mathbb{Z})$ is obtained by periodicizing some $f \in C_{c}^{o}(\mathbb{R})$.

We prove that this succeeds even in very general circumstances.
Let $\alpha: C_{c}^{o}(\mathbb{R}) \rightarrow C_{c}^{o}(\mathbb{R} / \mathbb{Z})$ be the averaging map

$$
\alpha f(x)=\sum_{n \in \mathbb{Z}} f(x+n)
$$

Lemma: The averaging map is surjective.
Proof: Let q be the quotient $\operatorname{map} q: \mathbb{R} \rightarrow \mathbb{R} / \mathbb{Z}$.

Given $F \in C_{c}^{o}(\mathbb{R} / \mathbb{Z})$, let C^{\prime} be a compact subset of \mathbb{R} such that $q\left(C^{\prime}\right) \supset \operatorname{spt}(F)$. [Here, this is trivial.] Let φ be in $C_{c}^{o}(\mathbb{R})$ identically 1 on a neighborhood of C^{\prime}. [Urysohn, in general.] Let

$$
g(x)=\varphi(x) \cdot F(x) \in C_{c}^{o}(\mathbb{R})
$$

Since F is already left \mathbb{Z}-invariant

$$
\alpha(g)=\alpha(\varphi \cdot F)=\alpha \varphi \cdot F
$$

Since $\alpha(\varphi) \equiv 1$ on an open containing the support of F,

$$
\alpha(g / \alpha \varphi)=\alpha \varphi \cdot F / \alpha \varphi=F
$$

and the quotient $g / \alpha(\varphi)$ is continuous. This gives surjectivity.

For well-definedness, it suffices to prove that $\alpha f=0$ implies $\int_{\mathbb{R}} f(x) d x=0$. Suppose $\alpha f=0$. For all $F \in C_{c}^{o}(\mathbb{R})$, the integral of F against αf is certainly 0 , and we rearrange

$$
\begin{gathered}
0=\int_{\mathbb{R}} F(x) \alpha f(x) d x=\int_{\mathbb{R}} \sum_{n \in \mathbb{Z}} F(x) f(x+n) d x \\
=\sum_{n \in \mathbb{Z}} \int_{\mathbb{R}} F(x) f(x+n) d x=\int_{\mathbb{R}} \sum_{n \in \mathbb{Z}} F(x-n) f(x) d x
\end{gathered}
$$

Replace n by $-n$, giving

$$
0=\int_{\mathbb{R}} \alpha F(x) f(x) d x
$$

By surjectivity of α, there is F with $\alpha F=1$ on the support of f. Then the integral of f is 0 , proving the well-definedness.

More generally, replace \mathbb{R} by a topological group G, and \mathbb{Z} by a closed subgroup H. Given right-translation-invariant measures on G and H, we want a unique measure $d \dot{g}$ on $H \backslash G$ such that

$$
\int_{H \backslash G} \int_{H} f(h \dot{g}) d h d \dot{g}=\int_{G} f(g) d g
$$

The same proof almost works.
However, when H and G are non-abelian and non-compact, a technical issue can arise: left translation produces another right translation-invariant measure. By uniqueness of Haar measure, this translated measure differs by a constant from the given Haar measure.

In general, left translation does change the right translationinvariant measure by a constant, called the modular function

$$
d(x g)=\Delta_{G}(x) \cdot d g \quad d(y h)=\Delta_{H}(y) \cdot d h
$$

For straightforward reasons, the condition for existence of a right G-invariant measure on $H \backslash G$ is that

$$
\Delta_{G} \text { restricted to } H=\Delta_{H}
$$

This modular function condition is obtained from

$$
\int_{H \backslash G} \int_{H} f(h g) d h d g=\int_{G} f(g) d g
$$

by change of variables: replace h by $h x$ for $x \in H$, and g by $x^{-1} g$.

Having non-trivial modular function is not a pathology, but very reasonable in certain circumstances. Nevertheless, it is convenient that $\Delta_{G} \equiv 1$ for many G. Such G are called unimodular.
$\Delta_{G} \equiv 1$ for abelian G, because $d(x g)=d(g x)$.
Below, we show that Δ_{G} is a continuous group homomorphism to $(0,+\infty)$ with multiplication.

Since $(0,+\infty)$ has no proper compact subgroups, $\Delta_{G} \equiv 1$ for compact G.

Since $(0,+\infty)$ is abelian, Δ_{G} is 1 on the commutator subgroup $[G, G]$ of G, generated by all $[g, h]=g h g^{-1} h^{-1}$. Thus, G is unimodular when $G=[G, G]$ or even when $G /[G, G]$ is compact.

Examples:

$G=S L_{2}(\mathbb{R})$, the group of two-by-two real matrices with determinant 1 , has $[G, G]=G(!)$, so is unimodular.

A non-pathological not-unimodular example is

$$
G=\left\{\left(\begin{array}{ll}
y & x \\
0 & 1
\end{array}\right): y>0, x \in \mathbb{R}\right\}
$$

In those coordinates, right Haar measure is (!) $d g=d x \frac{d y}{y}$ with Lebesgue measures on \mathbb{R}. Left multiplication by $\left(\begin{array}{cc}t & 0 \\ 0 & 1\end{array}\right)$ changes the measure by t, so $\Delta_{G}\left(\begin{array}{cc}t & 0 \\ 0 & 1\end{array}\right)=t$.

