Recap:

Idele norm is $|\{x_v\}| = \prod_{v \le \infty} |x_v|_v$ and $\mathbb{J}^1 = \{x \in \mathbb{J} : |x| = 1\}$

Fujisaki's lemma: \mathbb{J}^1/k^{\times} is *compact*. (via a measure-theory *pigeon-hole* principle)

Corollary: Ideal class groups are finite.

Let $k \otimes_{\mathbb{Q}} \mathbb{R} \approx \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$. That is, k has r_1 real archimedean completions, and r_2 complex archimedean completions. The global degree is the sum of the local degrees: $[k : \mathbb{Q}] = r_1 + 2r_2$.

Corollary: (Dirichlet's Units Theorem) The unit group \mathfrak{o}^{\times} , modulo roots of unity, is a free \mathbb{Z} -module of rank $r_1 + r_2 - 1$. Generally, S-units \mathfrak{o}_S^{\times} mod roots of unity are rank |S| - 1.

Generalized ideal class groups: The class number above is the *absolute* class number. The *narrow* class number is ideals modulo principal ideals generated by *totally positive* elements.

For non-zero ideal \mathfrak{a} , the *narrow ray class group* mod \mathfrak{a} is fractional ideals *prime to* \mathfrak{a} modulo principal ideals $\alpha \mathfrak{o}$ generated by *totally positive* $\alpha = 1 \mod \mathfrak{a}$.

Lemma: Generalized ideal class groups are *idele* class groups, quotients of the compact group \mathbb{J}^1/k^{\times} by *open* subgroups. ///

Corollary: Generalized ideal class groups are *finite*. ///

Generalized units: Let S be a finite collection of places of k, including all archimedean places. The S-integers \mathfrak{o}_S in k are

$$\mathfrak{o}_S = k \cap \left(\prod_{v \in S} k_v \times \prod_{v \notin S} \mathfrak{o}_v\right) = \{\alpha \in k : \alpha \text{ is } v \text{-integral for } v \notin S\}$$

The group of S-units is $\mathfrak{o}_S^{\times} = k^{\times} \cap \left(\prod_{v \in S} k_v^{\times} \times \prod_{v \notin S} \mathfrak{o}_v^{\times}\right)$

Theorem: (Units) \mathfrak{o}_S^{\times} mod roots of unity is free rank |S| - 1. ///

Theorem: (*Kronecker*) For $\alpha \in \mathfrak{o}$, if $|\alpha|_v = 1$ for all $v | \infty$ then α is a root of unity. ///

Closed subgroups of \mathbb{R}^n : The closed subgroups H of \mathbb{R}^n are: for a vector subspace W of \mathbb{R}^n , and discrete subgroup Γ of \mathbb{R}^n/W ,

 $H = q^{-1}(\Gamma)$ (with $q : \mathbb{R}^n \to \mathbb{R}^n/W$ the quotient map)

The discrete subgroups Γ of \mathbb{R}^n are free \mathbb{Z} -modules $\mathbb{Z}v_1 + \ldots + \mathbb{Z}v_m$ on \mathbb{R} -linearly-independent vectors $v_j \in V$. Measure-theory pigeon-hole principle: [recap] Again, the adelic version is the obvious extension of...

Proposition: $E \subset \mathbb{R}$ with measure > 1 contains $x \neq y$ such that $x - y \in \mathbb{Z}$.

Proof: [again] With f the characteristic function of E, if no two points of E differ by an integer, $0 \leq \sum_{n \in \mathbb{Z}} f(x+n) \leq 1$. Thus,

$$1 < \int_{-\infty}^{\infty} f(x) dx = \int_{0}^{1} \sum_{n \in \mathbb{Z}} f(x+n) dx \le 1$$

Impossible. Thus, there are $x \neq y \in E$ with $x - y \in \mathbb{Z}$. ///

Remark: We exploited the convenient obvious *fundamental* domain for the action of \mathbb{Z} on \mathbb{R} , that is, the subset [0,1] of \mathbb{R} whose translates by \mathbb{Z} fill out \mathbb{R} with overlaps of measure 0. This was unnecessary and misleading. This is rectified below.

Numerous remaining supporting details:

Integration on quotients: Quotients $\Gamma \setminus G$ such as \mathbb{R}/\mathbb{Z} have a reasonable integration theory *without* finding/constructing/using a so-called *fundamental domain*. Intrinsic integration on quotients is essential for situations $\Gamma \setminus G$ where determination of a fundamental domain is complicated or impossible.

Example: We want a continuous linear map (integral!) $F \to \int_{\mathbb{R}/\mathbb{Z}} F(x) dx$ on $C_c^o(\mathbb{R}/\mathbb{Z})$ (think of the Riesz representation theorem), translation-invariant, non-negative for non-negative F, and with the essential compatibility

$$\int_{\mathbb{R}/\mathbb{Z}} \left(\sum_{n \in \mathbb{Z}} f(x+n) \right) dx = \int_{\mathbb{R}} f(x) dx \quad \text{(for } f \in C_c^o(\mathbb{R}))$$

Try to define the integral on \mathbb{R}/\mathbb{Z} by this relation...!?!

Well-definedness is an issue, since the same $F(x) = \sum_n f(x+n)$ in $C_c^o(\mathbb{R}/\mathbb{Z})$ can arise by *periodicizing* two functions f in $C_c^o(\mathbb{R})$.

The complementary question is whether every $F \in C_c^o(\mathbb{R}/\mathbb{Z})$ is obtained by periodicizing some $f \in C_c^o(\mathbb{R})$.

We prove that this succeeds even in very general circumstances.

Let $\alpha: C_c^o(\mathbb{R}) \to C_c^o(\mathbb{R}/\mathbb{Z})$ be the averaging map

$$\alpha f(x) = \sum_{n \in \mathbb{Z}} f(x+n)$$

Lemma: The averaging map is *surjective*.

Proof: Let q be the quotient map $q : \mathbb{R} \to \mathbb{R}/\mathbb{Z}$.

Given $F \in C_c^o(\mathbb{R}/\mathbb{Z})$, let C' be a compact subset of \mathbb{R} such that $q(C') \supset \operatorname{spt}(F)$. [Here, this is trivial.] Let φ be in $C_c^o(\mathbb{R})$ identically 1 on a neighborhood of C'. [Urysohn, in general.] Let

$$g(x) = \varphi(x) \cdot F(x) \in C_c^o(\mathbb{R})$$

Since F is already left \mathbb{Z} -invariant

$$\alpha(g) = \alpha(\varphi \cdot F) = \alpha \varphi \cdot F$$

Since $\alpha(\varphi) \equiv 1$ on an open containing the support of F,

$$\alpha(g/\alpha\varphi)=\alpha\varphi\cdot F/\alpha\varphi=F$$

and the quotient $g/\alpha(\varphi)$ is continuous. This gives surjectivity.

///

For well-definedness, it suffices to prove that $\alpha f = 0$ implies $\int_{\mathbb{R}} f(x) dx = 0$. Suppose $\alpha f = 0$. For all $F \in C_c^o(\mathbb{R})$, the integral of F against αf is certainly 0, and we rearrange

$$0 = \int_{\mathbb{R}} F(x) \alpha f(x) dx = \int_{\mathbb{R}} \sum_{n \in \mathbb{Z}} F(x) f(x+n) dx$$
$$= \sum_{n \in \mathbb{Z}} \int_{\mathbb{R}} F(x) f(x+n) dx = \int_{\mathbb{R}} \sum_{n \in \mathbb{Z}} F(x-n) f(x) dx$$

Replace n by -n, giving

$$0 = \int_{\mathbb{R}} \alpha F(x) f(x) \, dx$$

By surjectivity of α , there is F with $\alpha F = 1$ on the support of f. Then the integral of f is 0, proving the well-definedness. /// More generally, replace \mathbb{R} by a topological group G, and \mathbb{Z} by a closed subgroup H. Given right-translation-invariant measures on G and H, we want a unique measure $d\dot{g}$ on $H \setminus G$ such that

$$\int_{H \setminus G} \int_{H} f(h\dot{g}) \ dh \ d\dot{g} \ = \ \int_{G} f(g) \ dg$$

The same proof almost works.

However, when H and G are non-abelian and non-compact, a technical issue can arise: *left* translation produces another *right* translation-invariant measure. By uniqueness of Haar measure, this translated measure differs by a constant from the given Haar measure.

In general, left translation *does* change the right translationinvariant measure by a constant, called the *modular function*

$$d(xg) = \Delta_G(x) \cdot dg$$
 $d(yh) = \Delta_H(y) \cdot dh$

For straightforward reasons, the condition for existence of a right G-invariant measure on $H \backslash G$ is that

 Δ_G restricted to $H = \Delta_H$

This modular function condition is obtained from

$$\int_{H \setminus G} \int_H f(hg) \ dh \ dg \ = \ \int_G f(g) \ dg$$

by change of variables: replace h by hx for $x \in H$, and g by $x^{-1}g$.

Having non-trivial modular function is not a pathology, but very reasonable in certain circumstances. Nevertheless, it is convenient that $\Delta_G \equiv 1$ for many G. Such G are called *unimodular*.

 $\Delta_G \equiv 1$ for abelian G, because d(xg) = d(gx).

Below, we show that Δ_G is a *continuous group homomorphism* to $(0, +\infty)$ with multiplication.

Since $(0, +\infty)$ has no proper compact subgroups, $\Delta_G \equiv 1$ for *compact* G.

Since $(0, +\infty)$ is *abelian*, Δ_G is 1 on the commutator subgroup [G, G] of G, generated by all $[g, h] = ghg^{-1}h^{-1}$. Thus, G is unimodular when G = [G, G] or even when G/[G, G] is *compact*.

Examples:

 $G = SL_2(\mathbb{R})$, the group of two-by-two real matrices with determinant 1, has [G, G] = G (!), so is unimodular.

A non-pathological *not*-unimodular example is

$$G = \left\{ \begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix} : y > 0, x \in \mathbb{R} \right\}$$

In those coordinates, *right* Haar measure is (!) $dg = dx \frac{dy}{y}$ with Lebesgue measures on \mathbb{R} . Left multiplication by $\begin{pmatrix} t & 0 \\ 0 & 1 \end{pmatrix}$ changes the measure by t, so $\Delta_G \begin{pmatrix} t & 0 \\ 0 & 1 \end{pmatrix} = t$.