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As of January 2000 or so, the largest prime known was apparently the 38th Mersenne prime, which is the
6, 972, 593th Mersenne number

26972593 − 1

(Yes, 6, 972, 593 is prime.)

[1.1.1] Theorem: (Lucas-Lehmer) Define the Lucas-Lehmer sequence Li by Lo = 4 and for n > 1
Ln = L2

n−1 − 2. Let p be an odd prime p. The Mersenne number Mp = 2p − 1 is prime if and only
if

Lp−2 = 0 mod Mp

A related result much easier to prove is

[1.1.2] Theorem: (Pepin) Let n be a positive integer. The Fermat number Fn = 22n

+ 1 is prime if and
only if

3
Fn−1

2 = −1 mod Fn

Proof: Suppose that Fn is not prime, and let p < Fn be a prime dividing Fn. The assumed congruence
modulo Fn implies that also

3
Fn−1

2 = −1 mod p

from which certainly
3Fn−1 = +1 mod p

By Lagrange’s theorem, when gN = e in a group G, the order of g in G is a divisor of N . Here, the group
is (Z/p)×, g is 3 mod p, and N = Fn − 1. Since N = 2n, either the order of 3 in (Z/p)× is Fn − 1, or is
(Fn − 1)/2. But, by the assumed congruence, it is not the latter. Thus, the order of 3 in (Z/p)× is exactly
Fn − 1. Since the order of the group (Z/p)× is p− 1, Fn − 1 divides p− 1, impossible for p < Fn. Thus, the
congruence implies the primality of the Fermat number.

For the converse, suppose Fn is prime. Since (Z/Fn)× is cyclic,

3
Fn−1

2 = −1 mod Fn

if and only if 3 is not a square modulo Fn. (This is Euler’s criterion.) By quadratic reciprocity, 3 is not a
square mod Fn: letting

(
a
p

)
2

be the quadratic symbol, for n ≥ 1,

(
3
Fn

)
2

=
(
Fn
3

)
2

(since Fn = 1 mod 4 for n ≥ 1)

=
(

(−1)2
n

+ 1
3

)
2

=
(

2
3

)
2

= −1

That is, 3 is a non-square mod Fn, so the congruence does hold. ///

[1.1.3] Remark: The groups (Z/p)× and (Z/Fn)× in the proof of Pepin’s criterion will be replaced by a
somewhat more complicated group in the proof of the Lucas-Lehmer criterion.
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Proof: (of Lucas-Lehmer) First note that (by induction)(
Ln 0
0 Ln

)
=

(
2 1
3 2

)2n

+
(

2 1
3 2

)−2n

This observation makes the discussion less surprising.

For a commutative ring R (with 1), let

G(R) = {
(
a b
3b a

)
: a, b ∈ R and a2 − 3b2 = 1}

Since the determinant is 1, G(R) has inverses:(
a b
3b a

)−1

=
(

a −b
−3b a

)
Thus, G(R) is a group.

Next, we determine the order of the group G(Z/q) for a prime q 6= 2, 3:

orderG(Z/q) = q −
(

3
p

)
2

To count the elements of G(Z/q) is to count the solutions (x, y) in Z/q to the equation

x2 − 3y2 = 1

since the latter is the condition for (
x y
3y x

)
to lie in G(Z/q). For 3 a (non-zero) square mod q, let β2 = 3 mod q. Then the equation above becomes

(x+ βy) (x− βy) = 1

Since q 6= 2, 3, the change of variables

u = x+ βy v = x− βy

is invertible, converting the equation to
u · v = 1

Thus, for each non-zero u there is a unique solution v, giving

q − 1 = q −
(

3
q

)
2

solutions in that case. On the other hand, for 3 not a square modulo q, let β be a square root of 3 in a
quadratic field extension K of Z/q. Then

x2 − 3y2 = N(x+ βy)

where N is the Galois norm from K to Z/q. This norm may be rewritten, using the Frobenius automorphism,
as

x2 − 3y2 = N(x+ βy) = (x+ βy) (x+ βy)q = (x+ βy)q+1
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In this case, the elements of G(Z/q) are exactly the elements x+ βy of K satisfying

(x+ βy)q+1 = 1

Since K× is cyclic of order q2 − 1, there are exactly q + 1 solutions. Thus, again in this case, we have

orderG(Z/q) = q −
(

3
p

)
2

For a proper prime divisor q of Mp = 2p − 1, the condition

Lp−2 = 0 mod Mp

certainly gives
Lp−2 = 0 mod q

which is equivalent to
g2p−2

= −g−2p−2
mod q

which gives

g2p−1
=

(
−1 0
0 −1

)
mod q

Thus, in the group G(Z/q),
g2p

= 1

Then the actual order of g, if not 2p itself, must be a proper divisor of 2p. We just showed that g2p−1
is not

the identity. Thus, in the group G(Z/q),

order g = 2p (if q divides Lp−2)

On the other hand, by Lagrange’s theorem, when q is a proper prime divisor of Mp = 2p − 1, the order of g
in G(Z/q) divides the order of G(Z/q). That is,

2p divides q +
(

3
q

)
2

Thus,

2p ≤ q +
(

3
q

)
2

≤ q + 1 < (2p − 1) + 1 = 2p

which is impossible. Thus, assuming that Lp−2 = 0 mod 2p − 1, the Mersenne number Mp = 2p − 1 has no
proper prime divisor.

Now the converse, that q = Mp prime implies that Mp divides Lp−2.

Suppose that q = Mp = 2p − 1 is prime. By quadratic reciprocity, again,(
3

2p − 1

)
2

= (−1)
(2p−2)(3−1)

4

(
2p − 1

3

)
2

= −
(

(−1)p − 1
3

)
2

= −
(
−2
3

)
2

= −1

so 3 is not a square modulo q. Let ρ be a square root of 3 in a quadratic field extension E of Q. Also write
ρ for a square root of 3 in an algebraic closure of a finite field Z/q. Identify

G(Z/q) ≈ {x+ yβ : N(x+ yρ) = 1}
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and thus view G(Z/q) as a subgroup of E×. In either case let σ be the field automorphism which sends ρ to
−ρ.

Note that q dividing Lp−2 is equivalent to

Lp−1 = −2 mod q

since generally Ln = L2
n−1 − 2. Also, with α = 2 +

√
3, in the quadratic extension E of Z/q

Ln = α2n

+ α−2n

so it suffices to show that (in E)
α

q+1
2 = −1

Since the norm of α = 2 + ρ from E to Q is 1, by Hilbert’s theorem 90 there is β ∈ E such that

α =
β

βσ

For example, β = 3 + ρ will do. Note that the norm (3 + ρ)(3− ρ) is 6.

We claim that for a+ bρ with a, b ∈ Z,

(a+ bρ)q = (a+ bρ)σ = a− bρ (in K)

To see this, note first that the image ρq of ρ under the Frobenius map γ → γq must be another root of the
equation x2 − 3 = 0, and is not equal to ρ (since ρ does not lie in Z/q), so must be −ρ. Then compute

(a+ bρ)q = aq + bqρq (in K)

since q divides all the inner binomial coefficients. Then in K

(a+ bρ)q = aq + bqρq = a− bρ = (a+ bρ)σ (in K)

as claimed. Thus, in particular,

(a+ bρ)1+q = (a+ bρ)(a− bρ) (in K)

Certainly 3 + ρ ∈ K is not 0, so has a multiplicative inverse in K. In K, compute

α =
β

βσ
=

β

βq
= β1−q = β−(1+q) · β2 = (β1+q)−1β2 = 6−1β2 (in K)

Taking the q+1
2

th
power gives

α
q+1
2 =

(
6−1β2

) q+1
2 = βq+1 6

q−1
2 6−1

since 6q−1 = 1 mod q, and this is

α
q+1
2 = 6

(
6
q

)
2

6−1 =
(

6
q

)
2

because the norm of β is 6 and because 6(q−1)/2 is equal to the quadratic symbol as indicated. Now(
6
q

)
2

=
(

2
q

)
2

·
(

3
q

)
2

= (+1) · (−1)

since q = 7 mod 8 and by the earlier computation that (3/q)2 = −1.
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That is, in K,
Lp−1 = α

q+1
2 + α−

q+1
2 = (−1) + (−1) = −2 mod q

which proves (as noted above) that the primality of q = 2p − 1 implies that q divides Lp−2. ///

[1.1.4] Remark: The precise choice of α, apart from the fact that αασ = 1, was irrelevant to the first half
of the theorem. Even in the converse, the precise choice of α and β with α = β/βσ (with integral β) played
no role until the end, where the fact that the norm of this particular β was 6 implied that

(
6

2p−1

)
2

= −1

for large odd p. A number-theoretic assessment of possible other choices of β with α = β/βσ shows that a
similar conclusion follows in any case.

[1.1.5] Remark: Likewise,
√

3 can be replaced by
√
D with square-free positive D, although this entails

complications.

[1.1.6] Remark: A smaller point: from a slightly more sophisticated viewpoint the fact that

βσ = βq mod q

follows immediately from the fact that the non-trivial automorphism of K/Q necessarily reduces modulo q
to the Frobenius automorphism of K/Z/q, because in general decomposition groups surject to galois groups
of residue fields.
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