Lucas-Lehmer criterion for primality of Mersenne numbers

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ ~garrett/

As of January 2000 or so, the largest prime known was apparently the $38^{t h}$ Mersenne prime, which is the $6,972,593^{\text {th }}$ Mersenne number

$$
2^{6972593}-1
$$

(Yes, $6,972,593$ is prime.)
[1.1.1] Theorem: (Lucas-Lehmer) Define the Lucas-Lehmer sequence L_{i} by $L_{o}=4$ and for $n>1$ $L_{n}=L_{n-1}^{2}-2$. Let p be an odd prime p. The Mersenne number $M_{p}=2^{p}-1$ is prime if and only if

$$
L_{p-2}=0 \bmod M_{p}
$$

A related result much easier to prove is
[1.1.2] Theorem: (Pepin) Let n be a positive integer. The Fermat number $F_{n}=2^{2^{n}}+1$ is prime if and only if

$$
3^{\frac{F_{n}-1}{2}}=-1 \bmod F_{n}
$$

Proof: Suppose that F_{n} is not prime, and let $p<F_{n}$ be a prime dividing F_{n}. The assumed congruence modulo F_{n} implies that also

$$
3^{\frac{F_{n}-1}{2}}=-1 \bmod p
$$

from which certainly

$$
3^{F_{n}-1}=+1 \bmod p
$$

By Lagrange's theorem, when $g^{N}=e$ in a group G, the order of g in G is a divisor of N. Here, the group is $(\mathbb{Z} / p)^{\times}, g$ is $3 \bmod p$, and $N=F_{n}-1$. Since $N=2^{n}$, either the order of 3 in $(\mathbb{Z} / p)^{\times}$is $F_{n}-1$, or is $\left(F_{n}-1\right) / 2$. But, by the assumed congruence, it is not the latter. Thus, the order of 3 in $(\mathbb{Z} / p)^{\times}$is exactly $F^{n}-1$. Since the order of the group $(\mathbb{Z} / p)^{\times}$is $p-1, F_{n}-1$ divides $p-1$, impossible for $p<F_{n}$. Thus, the congruence implies the primality of the Fermat number.

For the converse, suppose F_{n} is prime. Since $\left(\mathbb{Z} / F_{n}\right)^{\times}$is cyclic,

$$
3^{\frac{F_{n}-1}{2}}=-1 \bmod F_{n}
$$

if and only if 3 is not a square modulo F_{n}. (This is Euler's criterion.) By quadratic reciprocity, 3 is not a square $\bmod F_{n}:$ letting $\left(\frac{a}{p}\right)_{2}$ be the quadratic symbol, for $n \geq 1$,

$$
\begin{aligned}
\left(\frac{3}{F_{n}}\right)_{2}= & \left(\frac{F_{n}}{3}\right)_{2} \quad\left(\text { since } F_{n}=1 \bmod 4 \text { for } n \geq 1\right) \\
& =\left(\frac{(-1)^{2^{n}}+1}{3}\right)_{2}=\left(\frac{2}{3}\right)_{2}=-1
\end{aligned}
$$

That is, 3 is a non-square $\bmod F_{n}$, so the congruence does hold.
[1.1.3] Remark: The groups $(\mathbb{Z} / p)^{\times}$and $\left(\mathbb{Z} / F_{n}\right)^{\times}$in the proof of Pepin's criterion will be replaced by a somewhat more complicated group in the proof of the Lucas-Lehmer criterion.

Paul Garrett: Lucas-Lehmer criterion for primality of Mersenne numbers (February 6, 2010)
Proof: (of Lucas-Lehmer) First note that (by induction)

$$
\left(\begin{array}{cc}
L_{n} & 0 \\
0 & L_{n}
\end{array}\right)=\left(\begin{array}{cc}
2 & 1 \\
3 & 2
\end{array}\right)^{2^{n}}+\left(\begin{array}{cc}
2 & 1 \\
3 & 2
\end{array}\right)^{-2^{n}}
$$

This observation makes the discussion less surprising.
For a commutative ring R (with 1), let

$$
G(R)=\left\{\left(\begin{array}{cc}
a & b \\
3 b & a
\end{array}\right): a, b \in R \text { and } a^{2}-3 b^{2}=1\right\}
$$

Since the determinant is $1, G(R)$ has inverses:

$$
\left(\begin{array}{cc}
a & b \\
3 b & a
\end{array}\right)^{-1}=\left(\begin{array}{cc}
a & -b \\
-3 b & a
\end{array}\right)
$$

Thus, $G(R)$ is a group.
Next, we determine the order of the group $G(\mathbb{Z} / q)$ for a prime $q \neq 2,3$:

$$
\operatorname{order} G(\mathbb{Z} / q)=q-\left(\frac{3}{p}\right)_{2}
$$

To count the elements of $G(\mathbb{Z} / q)$ is to count the solutions (x, y) in \mathbb{Z} / q to the equation

$$
x^{2}-3 y^{2}=1
$$

since the latter is the condition for

$$
\left(\begin{array}{cc}
x & y \\
3 y & x
\end{array}\right)
$$

to lie in $G(\mathbb{Z} / q)$. For 3 a (non-zero) square $\bmod q$, let $\beta^{2}=3 \bmod q$. Then the equation above becomes

$$
(x+\beta y)(x-\beta y)=1
$$

Since $q \neq 2,3$, the change of variables

$$
u=x+\beta y \quad v=x-\beta y
$$

is invertible, converting the equation to

$$
u \cdot v=1
$$

Thus, for each non-zero u there is a unique solution v, giving

$$
q-1=q-\left(\frac{3}{q}\right)_{2}
$$

solutions in that case. On the other hand, for 3 not a square modulo q, let β be a square root of 3 in a quadratic field extension K of \mathbb{Z} / q. Then

$$
x^{2}-3 y^{2}=N(x+\beta y)
$$

where N is the Galois norm from K to \mathbb{Z} / q. This norm may be rewritten, using the Frobenius automorphism, as

$$
x^{2}-3 y^{2}=N(x+\beta y)=(x+\beta y)(x+\beta y)^{q}=(x+\beta y)^{q+1}
$$

Paul Garrett: Lucas-Lehmer criterion for primality of Mersenne numbers (February 6, 2010)
In this case, the elements of $G(\mathbb{Z} / q)$ are exactly the elements $x+\beta y$ of K satisfying

$$
(x+\beta y)^{q+1}=1
$$

Since K^{\times}is cyclic of order $q^{2}-1$, there are exactly $q+1$ solutions. Thus, again in this case, we have

$$
\text { order } G(\mathbb{Z} / q)=q-\left(\frac{3}{p}\right)_{2}
$$

For a proper prime divisor q of $M_{p}=2^{p}-1$, the condition

$$
L_{p-2}=0 \bmod M_{p}
$$

certainly gives

$$
L_{p-2}=0 \bmod q
$$

which is equivalent to

$$
g^{2^{p-2}}=-g^{-2^{p-2}} \bmod q
$$

which gives

$$
g^{2^{p-1}}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \bmod q
$$

Thus, in the group $G(\mathbb{Z} / q)$,

$$
g^{2^{p}}=1
$$

Then the actual order of g, if not 2^{p} itself, must be a proper divisor of 2^{p}. We just showed that $g^{2^{p-1}}$ is not the identity. Thus, in the group $G(\mathbb{Z} / q)$,

$$
\text { order } \left.g=2^{p} \quad \text { if } q \text { divides } L_{p-2}\right)
$$

On the other hand, by Lagrange's theorem, when q is a proper prime divisor of $M_{p}=2^{p}-1$, the order of g in $G(\mathbb{Z} / q)$ divides the order of $G(\mathbb{Z} / q)$. That is,

$$
2^{p} \quad \text { divides } \quad q+\left(\frac{3}{q}\right)_{2}
$$

Thus,

$$
2^{p} \leq q+\left(\frac{3}{q}\right)_{2} \leq q+1<\left(2^{p}-1\right)+1=2^{p}
$$

which is impossible. Thus, assuming that $L_{p-2}=0 \bmod 2^{p}-1$, the Mersenne number $M_{p}=2^{p}-1$ has no proper prime divisor.

Now the converse, that $q=M_{p}$ prime implies that M_{p} divides L_{p-2}.
Suppose that $q=M_{p}=2^{p}-1$ is prime. By quadratic reciprocity, again,

$$
\left(\frac{3}{2^{p}-1}\right)_{2}=(-1)^{\frac{\left(2^{p}-2\right)(3-1)}{4}}\left(\frac{2^{p}-1}{3}\right)_{2}=-\left(\frac{(-1)^{p}-1}{3}\right)_{2}=-\left(\frac{-2}{3}\right)_{2}=-1
$$

so 3 is not a square modulo q. Let ρ be a square root of 3 in a quadratic field extension E of \mathbb{Q}. Also write ρ for a square root of 3 in an algebraic closure of a finite field \mathbb{Z} / q. Identify

$$
G(\mathbb{Z} / q) \approx\{x+y \beta: N(x+y \rho)=1\}
$$

Paul Garrett: Lucas-Lehmer criterion for primality of Mersenne numbers (February 6, 2010)
and thus view $G(\mathbb{Z} / q)$ as a subgroup of E^{\times}. In either case let σ be the field automorphism which sends ρ to $-\rho$.

Note that q dividing L_{p-2} is equivalent to

$$
L_{p-1}=-2 \bmod q
$$

since generally $L_{n}=L_{n-1}^{2}-2$. Also, with $\alpha=2+\sqrt{3}$, in the quadratic extension E of \mathbb{Z} / q

$$
L_{n}=\alpha^{2^{n}}+\alpha^{-2^{n}}
$$

so it suffices to show that (in E)

$$
\alpha^{\frac{q+1}{2}}=-1
$$

Since the norm of $\alpha=2+\rho$ from E to \mathbb{Q} is 1 , by Hilbert's theorem 90 there is $\beta \in E$ such that

$$
\alpha=\frac{\beta}{\beta^{\sigma}}
$$

For example, $\beta=3+\rho$ will do. Note that the norm $(3+\rho)(3-\rho)$ is 6 .
We claim that for $a+b \rho$ with $a, b \in \mathbb{Z}$,

$$
(a+b \rho)^{q}=(a+b \rho)^{\sigma}=a-b \rho(\text { in } K)
$$

To see this, note first that the image ρ^{q} of ρ under the Frobenius map $\gamma \rightarrow \gamma^{q}$ must be another root of the equation $x^{2}-3=0$, and is not equal to ρ (since ρ does not lie in \mathbb{Z} / q), so must be $-\rho$. Then compute

$$
(a+b \rho)^{q}=a^{q}+b^{q} \rho^{q} \quad(\text { in } K)
$$

since q divides all the inner binomial coefficients. Then in K

$$
(a+b \rho)^{q}=a^{q}+b^{q} \rho^{q}=a-b \rho=(a+b \rho)^{\sigma} \quad(\text { in } K)
$$

as claimed. Thus, in particular,

$$
(a+b \rho)^{1+q}=(a+b \rho)(a-b \rho) \quad(\text { in } K)
$$

Certainly $3+\rho \in K$ is not 0 , so has a multiplicative inverse in K. In K, compute

$$
\begin{equation*}
\alpha=\frac{\beta}{\beta^{\sigma}}=\frac{\beta}{\beta^{q}}=\beta^{1-q}=\beta^{-(1+q)} \cdot \beta^{2}=\left(\beta^{1+q}\right)^{-1} \beta^{2}=6^{-1} \beta^{2} \tag{K}
\end{equation*}
$$

Taking the $\frac{q+1}{2}^{t h}$ power gives

$$
\alpha^{\frac{q+1}{2}}=\left(6^{-1} \beta^{2}\right)^{\frac{q+1}{2}}=\beta^{q+1} 6^{\frac{q-1}{2}} 6^{-1}
$$

since $6^{q-1}=1 \bmod q$, and this is

$$
\alpha^{\frac{q+1}{2}}=6\left(\frac{6}{q}\right)_{2} 6^{-1}=\left(\frac{6}{q}\right)_{2}
$$

because the norm of β is 6 and because $6^{(q-1) / 2}$ is equal to the quadratic symbol as indicated. Now

$$
\left(\frac{6}{q}\right)_{2}=\left(\frac{2}{q}\right)_{2} \cdot\left(\frac{3}{q}\right)_{2}=(+1) \cdot(-1)
$$

since $q=7 \bmod 8$ and by the earlier computation that $(3 / q)_{2}=-1$.

That is, in K,

$$
L_{p-1}=\alpha^{\frac{q+1}{2}}+\alpha^{-\frac{q+1}{2}}=(-1)+(-1)=-2 \bmod q
$$

which proves (as noted above) that the primality of $q=2^{p}-1$ implies that q divides L_{p-2}.
[1.1.4] Remark: The precise choice of α, apart from the fact that $\alpha \alpha^{\sigma}=1$, was irrelevant to the first half of the theorem. Even in the converse, the precise choice of α and β with $\alpha=\beta / \beta^{\sigma}$ (with integral β) played no role until the end, where the fact that the norm of this particular β was 6 implied that $\left(\frac{6}{2^{p}-1}\right)_{2}=-1$ for large odd p. A number-theoretic assessment of possible other choices of β with $\alpha=\beta / \beta^{\sigma}$ shows that a similar conclusion follows in any case.
[1.1.5] Remark: Likewise, $\sqrt{3}$ can be replaced by \sqrt{D} with square-free positive D, although this entails complications.
[1.1.6] Remark: A smaller point: from a slightly more sophisticated viewpoint the fact that

$$
\beta^{\sigma}=\beta^{q} \bmod q
$$

follows immediately from the fact that the non-trivial automorphism of K / \mathbb{Q} necessarily reduces modulo q to the Frobenius automorphism of $K / \mathbb{Z} / q$, because in general decomposition groups surject to galois groups of residue fields.

