Lucas-Lehmer criterion for primality of Mersenne numbers

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

As of January 2000 or so, the largest prime known was apparently the 38^{th} Mersenne prime, which is the $6,972,593^{th}$ Mersenne number

 $2^{6972593} - 1$

(Yes, 6, 972, 593 is prime.)

[1.1.1] Theorem: (Lucas-Lehmer) Define the Lucas-Lehmer sequence L_i by $L_o = 4$ and for n > 1 $L_n = L_{n-1}^2 - 2$. Let p be an odd prime p. The Mersenne number $M_p = 2^p - 1$ is prime if and only if

$$L_{p-2} = 0 \bmod M_p$$

A related result much easier to prove is

[1.1.2] Theorem: (*Pepin*) Let n be a positive integer. The Fermat number $F_n = 2^{2^n} + 1$ is prime if and only if

$$3^{\frac{F_n-1}{2}} = -1 \mod F_n$$

Proof: Suppose that F_n is not prime, and let $p < F_n$ be a prime dividing F_n . The assumed congruence modulo F_n implies that also

$$3^{\frac{r_n-1}{2}} = -1 \mod p$$

from which certainly

$$3^{F_n-1} = +1 \mod p$$

By Lagrange's theorem, when $g^N = e$ in a group G, the order of g in G is a divisor of N. Here, the group is $(\mathbb{Z}/p)^{\times}$, g is 3 mod p, and $N = F_n - 1$. Since $N = 2^n$, either the order of 3 in $(\mathbb{Z}/p)^{\times}$ is $F_n - 1$, or is $(F_n - 1)/2$. But, by the assumed congruence, it is not the latter. Thus, the order of 3 in $(\mathbb{Z}/p)^{\times}$ is exactly $F^n - 1$. Since the order of the group $(\mathbb{Z}/p)^{\times}$ is p - 1, $F_n - 1$ divides p - 1, impossible for $p < F_n$. Thus, the congruence implies the primality of the Fermat number.

For the converse, suppose F_n is prime. Since $(\mathbb{Z}/F_n)^{\times}$ is cyclic,

$$3^{\frac{F_n-1}{2}} = -1 \mod F_n$$

if and only if 3 is not a square modulo F_n . (This is *Euler's criterion*.) By quadratic reciprocity, 3 is not a square mod F_n : letting $\left(\frac{a}{p}\right)_2$ be the quadratic symbol, for $n \ge 1$,

$$\left(\frac{3}{F_n}\right)_2 = \left(\frac{F_n}{3}\right)_2 \quad (\text{since } F_n = 1 \mod 4 \text{ for } n \ge 1)$$
$$= \left(\frac{(-1)^{2^n} + 1}{3}\right)_2 = \left(\frac{2}{3}\right)_2 = -1$$

That is, 3 is a non-square mod F_n , so the congruence does hold.

[1.1.3] Remark: The groups $(\mathbb{Z}/p)^{\times}$ and $(\mathbb{Z}/F_n)^{\times}$ in the proof of Pepin's criterion will be replaced by a somewhat more complicated group in the proof of the Lucas-Lehmer criterion.

|||

Proof: (of Lucas-Lehmer) First note that (by induction)

$$\begin{pmatrix} L_n & 0\\ 0 & L_n \end{pmatrix} = \begin{pmatrix} 2 & 1\\ 3 & 2 \end{pmatrix}^{2^n} + \begin{pmatrix} 2 & 1\\ 3 & 2 \end{pmatrix}^{-2^n}$$

This observation makes the discussion less surprising.

For a commutative ring R (with 1), let

$$G(R) = \{ \begin{pmatrix} a & b \\ 3b & a \end{pmatrix} : a, b \in R \text{ and } a^2 - 3b^2 = 1 \}$$

Since the determinant is 1, G(R) has inverses:

$$\begin{pmatrix} a & b \\ 3b & a \end{pmatrix}^{-1} = \begin{pmatrix} a & -b \\ -3b & a \end{pmatrix}$$

Thus, G(R) is a group.

Next, we determine the order of the group $G(\mathbb{Z}/q)$ for a prime $q \neq 2, 3$:

$$\operatorname{order} G(\mathbb{Z}/q) = q - \left(\frac{3}{p}\right)_2$$

To count the elements of $G(\mathbb{Z}/q)$ is to count the solutions (x, y) in \mathbb{Z}/q to the equation

$$x^2 - 3y^2 = 1$$

since the latter is the condition for

$$\begin{pmatrix} x & y \\ 3y & x \end{pmatrix}$$

to lie in $G(\mathbb{Z}/q)$. For 3 a (non-zero) square mod q, let $\beta^2 = 3 \mod q$. Then the equation above becomes

$$(x + \beta y) (x - \beta y) = 1$$

Since $q \neq 2, 3$, the change of variables

$$u = x + \beta y \quad v = x - \beta y$$

is invertible, converting the equation to

$$u \cdot v = 1$$

Thus, for each non-zero u there is a unique solution v, giving

$$q-1 = q - \left(\frac{3}{q}\right)_2$$

solutions in that case. On the other hand, for 3 not a square modulo q, let β be a square root of 3 in a quadratic field extension K of \mathbb{Z}/q . Then

$$x^2 - 3y^2 = N(x + \beta y)$$

where N is the Galois norm from K to \mathbb{Z}/q . This norm may be rewritten, using the Frobenius automorphism, as

$$x^{2} - 3y^{2} = N(x + \beta y) = (x + \beta y)(x + \beta y)^{q} = (x + \beta y)^{q+1}$$

In this case, the elements of $G(\mathbb{Z}/q)$ are exactly the elements $x + \beta y$ of K satisfying

$$(x + \beta y)^{q+1} = 1$$

Since K^{\times} is cyclic of order $q^2 - 1$, there are exactly q + 1 solutions. Thus, again in this case, we have

order
$$G(\mathbb{Z}/q) = q - \left(\frac{3}{p}\right)_2$$

For a *proper* prime divisor q of $M_p = 2^p - 1$, the condition

$$L_{p-2} = 0 \bmod M_p$$

certainly gives

 $L_{p-2} = 0 \bmod q$

which is equivalent to

$$g^{2^{p-2}} = -g^{-2^{p-2}} \bmod q$$

which gives

$$g^{2^{p-1}} = \begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix} \mod q$$

Thus, in the group $G(\mathbb{Z}/q)$,

Then the actual order of g, if not 2^p itself, must be a proper divisor of 2^p . We just showed that $g^{2^{p-1}}$ is not the identity. Thus, in the group $G(\mathbb{Z}/q)$,

 $q^{2^p} = 1$

order
$$g = 2^p$$
 (if q divides L_{p-2})

On the other hand, by Lagrange's theorem, when q is a proper prime divisor of $M_p = 2^p - 1$, the order of g in $G(\mathbb{Z}/q)$ divides the order of $G(\mathbb{Z}/q)$. That is,

$$2^p$$
 divides $q + \left(\frac{3}{q}\right)_2$

Thus,

$$2^{p} \le q + \left(\frac{3}{q}\right)_{2} \le q + 1 < (2^{p} - 1) + 1 = 2^{p}$$

which is impossible. Thus, assuming that $L_{p-2} = 0 \mod 2^p - 1$, the Mersenne number $M_p = 2^p - 1$ has no proper prime divisor.

Now the converse, that $q = M_p$ prime implies that M_p divides L_{p-2} .

Suppose that $q = M_p = 2^p - 1$ is prime. By quadratic reciprocity, again,

$$\left(\frac{3}{2^p - 1}\right)_2 = (-1)^{\frac{(2^p - 2)(3-1)}{4}} \left(\frac{2^p - 1}{3}\right)_2 = -\left(\frac{(-1)^p - 1}{3}\right)_2 = -\left(\frac{-2}{3}\right)_2 = -1$$

so 3 is not a square modulo q. Let ρ be a square root of 3 in a quadratic field extension E of \mathbb{Q} . Also write ρ for a square root of 3 in an algebraic closure of a finite field \mathbb{Z}/q . Identify

$$G(\mathbb{Z}/q) \approx \{x + y\beta : N(x + y\rho) = 1\}$$

and thus view $G(\mathbb{Z}/q)$ as a subgroup of E^{\times} . In either case let σ be the field automorphism which sends ρ to $-\rho$.

Note that q dividing L_{p-2} is equivalent to

$$L_{p-1} = -2 \bmod q$$

since generally $L_n = L_{n-1}^2 - 2$. Also, with $\alpha = 2 + \sqrt{3}$, in the quadratic extension E of \mathbb{Z}/q

$$L_n = \alpha^{2^n} + \alpha^{-2^n}$$

so it suffices to show that (in E)

$$\alpha^{\frac{q+1}{2}} = -1$$

Since the norm of $\alpha = 2 + \rho$ from E to \mathbb{Q} is 1, by Hilbert's theorem 90 there is $\beta \in E$ such that

$$\alpha = \frac{\beta}{\beta^{\sigma}}$$

For example, $\beta = 3 + \rho$ will do. Note that the norm $(3 + \rho)(3 - \rho)$ is 6.

We claim that for $a + b\rho$ with $a, b \in \mathbb{Z}$,

$$(a+b\rho)^q = (a+b\rho)^\sigma = a-b\rho \quad (\text{in } K)$$

To see this, note first that the image ρ^q of ρ under the Frobenius map $\gamma \to \gamma^q$ must be another root of the equation $x^2 - 3 = 0$, and is not equal to ρ (since ρ does not lie in \mathbb{Z}/q), so must be $-\rho$. Then compute

$$(a+b\rho)^q = a^q + b^q \rho^q \quad (\text{in } K)$$

since q divides all the inner binomial coefficients. Then in K

$$(a+b\rho)^{q} = a^{q} + b^{q}\rho^{q} = a - b\rho = (a+b\rho)^{\sigma}$$
 (in K)

as claimed. Thus, in particular,

$$(a+b\rho)^{1+q} = (a+b\rho)(a-b\rho)$$
 (in K)

Certainly $3 + \rho \in K$ is not 0, so has a multiplicative inverse in K. In K, compute

$$\alpha = \frac{\beta}{\beta^{\sigma}} = \frac{\beta}{\beta^{q}} = \beta^{1-q} = \beta^{-(1+q)} \cdot \beta^{2} = (\beta^{1+q})^{-1} \beta^{2} = 6^{-1} \beta^{2}$$
(in K)

Taking the $\frac{q+1}{2}^{th}$ power gives

$$\alpha^{\frac{q+1}{2}} = \left(6^{-1}\beta^2\right)^{\frac{q+1}{2}} = \beta^{q+1} \, 6^{\frac{q-1}{2}} \, 6^{-1}$$

since $6^{q-1} = 1 \mod q$, and this is

$$\alpha^{\frac{q+1}{2}} = 6 \,\left(\frac{6}{q}\right)_2 \, 6^{-1} = \left(\frac{6}{q}\right)_2$$

because the norm of β is 6 and because $6^{(q-1)/2}$ is equal to the quadratic symbol as indicated. Now

$$\left(\frac{6}{q}\right)_2 = \left(\frac{2}{q}\right)_2 \cdot \left(\frac{3}{q}\right)_2 = (+1) \cdot (-1)$$

since $q = 7 \mod 8$ and by the earlier computation that $(3/q)_2 = -1$.

Paul Garrett: Lucas-Lehmer criterion for primality of Mersenne numbers (February 6, 2010)

That is, in K,

$$L_{p-1} = \alpha^{\frac{q+1}{2}} + \alpha^{-\frac{q+1}{2}} = (-1) + (-1) = -2 \mod q$$

which proves (as noted above) that the primality of $q = 2^p - 1$ implies that q divides L_{p-2} . ///

[1.1.4] Remark: The precise choice of α , apart from the fact that $\alpha \alpha^{\sigma} = 1$, was irrelevant to the first half of the theorem. Even in the converse, the precise choice of α and β with $\alpha = \beta/\beta^{\sigma}$ (with *integral* β) played no role until the end, where the fact that the norm of this particular β was 6 implied that $\left(\frac{6}{2^{p}-1}\right)_{2} = -1$ for large odd p. A number-theoretic assessment of possible *other* choices of β with $\alpha = \beta/\beta^{\sigma}$ shows that a similar conclusion follows in *any* case.

[1.1.5] Remark: Likewise, $\sqrt{3}$ can be replaced by \sqrt{D} with square-free positive D, although this entails complications.

[1.1.6] Remark: A smaller point: from a slightly more sophisticated viewpoint the fact that

$$\beta^{\sigma} = \beta^q \mod q$$

follows immediately from the fact that the non-trivial automorphism of K/\mathbb{Q} necessarily reduces modulo q to the Frobenius automorphism of $K/\mathbb{Z}/q$, because in general *decomposition groups* surject to galois groups of residue fields.