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As of January 2000 or so, the largest prime known was apparently the 38" Mersenne prime, which is the

6,972, 593" Mersenne number
96972503 _ |

(Yes, 6,972,593 is prime.)

[1.1.1] Theorem: (Lucas-Lehmer) Define the Lucas-Lehmer sequence L; by L, = 4 and for n > 1
L, = L?_; — 2. Let p be an odd prime p. The Mersenne number M, = 2P — 1 is prime if and only
if

L, =0mod M,

A related result much easier to prove is

[1.1.2] Theorem: (Pepin) Let n be a positive integer. The Fermat number F,, = 22" + 1 is prime if and
only if

Fn—1

372 =—1modF,

Proof: Suppose that F), is not prime, and let p < F,, be a prime dividing F,,. The assumed congruence

modulo F, implies that also
Fp—1

372 =—1modp

from which certainly
31 = 41 mod p

By Lagrange’s theorem, when g% = e in a group G, the order of ¢ in G is a divisor of N. Here, the group
is (Z/p)*, g is 3mod p, and N = F,, — 1. Since N = 2", either the order of 3 in (Z/p)* is F,, — 1, or is
(F,, — 1)/2. But, by the assumed congruence, it is not the latter. Thus, the order of 3 in (Z/p)* is exactly
F™ — 1. Since the order of the group (Z/p)* is p — 1, F,, — 1 divides p — 1, impossible for p < F,,. Thus, the
congruence implies the primality of the Fermat number.

For the converse, suppose F,, is prime. Since (Z/F,)* is cyclic,

Fp—1

372 =-—1modF,

if and only if 3 is not a square modulo F,. (This is Euler’s criterion.) By quadratic reciprocity, 3 is not a

square mod F),: letting <%) be the quadratic symbol, for n > 1,
2

F, .
<3> = () (since F;, = 1 mod 4 for n > 1)
Fn )y 3 /s

(2529,-(0),

That is, 3 is a non-square mod F},, so the congruence does hold. ///

[1.1.3] Remark: The groups (Z/p)* and (Z/F,)* in the proof of Pepin’s criterion will be replaced by a
somewhat more complicated group in the proof of the Lucas-Lehmer criterion.
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Proof: (of Lucas-Lehmer) First note that (by induction)

Lo 0\ (2 1\% (21 -
0 L,/ \3 2 3 2
This observation makes the discussion less surprising.

For a commutative ring R (with 1), let
G(R)={ a b ca,b € R and a® —3b? =1}
3b a)

Since the determinant is 1, G(R) has inverses:
a bD\' [ a —b
3b a S\ =3 a

Next, we determine the order of the group G(Z/q) for a prime q # 2, 3:

Thus, G(R) is a group.

onderG(2/a) = - 2

2

To count the elements of G(Z/q) is to count the solutions (x,y) in Z/q to the equation

2 -3yt =1

(5 %)

to lie in G(Z/q). For 3 a (non-zero) square mod ¢, let 3% = 3 mod ¢g. Then the equation above becomes

since the latter is the condition for

(z + By) (z — By) =1
Since q # 2,3, the change of variables
u=z+8y v=1-fy

is invertible, converting the equation to
u-v=1

Thus, for each non-zero u there is a unique solution v, giving

3
i)
qa/ 9

solutions in that case. On the other hand, for 3 not a square modulo ¢, let 8 be a square root of 3 in a
quadratic field extension K of Z/q. Then

a? —3y® = N(z + fy)
where N is the Galois norm from K to Z/q. This norm may be rewritten, using the Frobenius automorphism,
as

2® —3y> = N(z + By) = (z + By) (z + By)? = (z + By) "™
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In this case, the elements of G(Z/q) are exactly the elements x + By of K satisfying
(x+ By =1

Since K is cyclic of order ¢? — 1, there are exactly g + 1 solutions. Thus, again in this case, we have

order G(Z/q) = ¢ — (2)

2

For a proper prime divisor ¢ of M,, = 2P — 1, the condition
L, > =0mod M,

certainly gives
L,_o =0mod ¢

which is equivalent to

7 =g " modq
which gives
op—1 _ -1 O
g = ( 0 1 mod ¢
Thus, in the group G(Z/q),
2P
g =1

Then the actual order of g, if not 2P itself, must be a proper divisor of 2P. We just showed that gzp_l is not
the identity. Thus, in the group G(Z/q),

order g = 2P (if ¢ divides L,_2)

On the other hand, by Lagrange’s theorem, when ¢ is a proper prime divisor of M, = 2P — 1, the order of g
in G(Z/q) divides the order of G(Z/q). That is,

3
2P divides ¢+ ()
4/

Thus,

2P§q+<3> <g+1<(2P-1)+1=27
q/ 4

which is impossible. Thus, assuming that L, > = 0 mod 2 — 1, the Mersenne number M, = 2P — 1 has no
proper prime divisor.

Now the converse, that ¢ = M), prime implies that M, divides L,_s.

Suppose that ¢ = M, = 2P — 1 is prime. By quadratic reciprocity, again,

()~ (59,252, (),

so 3 is not a square modulo q. Let p be a square root of 3 in a quadratic field extension FE of Q. Also write
p for a square root of 3 in an algebraic closure of a finite field Z/q. Identify

G(Z/q) =~{x+yp: N(x+yp) =1}
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and thus view G(Z/q) as a subgroup of E*. In either case let o be the field automorphism which sends p to
—p.

Note that ¢ dividing L, is equivalent to
L,_1 =-2modq
since generally L, = L2 | — 2. Also, with a = 2 ++/3, in the quadratic extension F of Z/q

2 2"

Ln:an—l—of

so it suffices to show that (in E)

Since the norm of a = 2 + p from E to Q is 1, by Hilbert’s theorem 90 there is 8 € E such that

_ 8
60

For example, 8 = 3 + p will do. Note that the norm (3 + p)(3 — p) is 6.

«

We claim that for a 4 bp with a,b € Z,
(a+bp)?=(a+bp)” =a—bp (in K)

To see this, note first that the image p? of p under the Frobenius map v — % must be another root of the
equation 22 — 3 = 0, and is not equal to p (since p does not lie in Z/q), so must be —p. Then compute

(a+bp)? =a?+b9p? (in K)
since ¢ divides all the inner binomial coefficients. Then in K
(a+bp)!=al+bip!=a—bp=(a+bp)° (in K)
as claimed. Thus, in particular,

(a+bp)' " = (a+bp)(a—bp) (inK)

Certainly 3 + p € K is not 0, so has a multiplicative inverse in K. In K, compute

R B A N A CROR R (in K)

th
Taking the %1 power gives
1

aqT _ (671,6’2)

) (9
q/)9 q/)9

because the norm of 3 is 6 and because 6(2=1)/2 is equal to the quadratic symbol as indicated. Now

(00, )

since ¢ = 7 mod 8 and by the earlier computation that (3/q)2 = —1.

g+1
2

— ﬂQ+1 GQT_l 671

since 697! = 1 mod ¢, and this is
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That is, in K,
g+l _atl

Lyi=a7 +a = =(-1)4+(-1) =—2mod ¢
which proves (as noted above) that the primality of ¢ = 2P — 1 implies that ¢ divides L,_s. ///

[1.1.4] Remark: The precise choice of ¢, apart from the fact that aa® = 1, was irrelevant to the first half
of the theorem. Even in the converse, the precise choice of a and 3 with @ = 8/37 (with integral 3) played

6 _
wo1), = 1
for large odd p. A number-theoretic assessment of possible other choices of 8 with o = 3/37 shows that a
similar conclusion follows in any case.

no role until the end, where the fact that the norm of this particular § was 6 implied that (

[1.1.5] Remark: Likewise, v/3 can be replaced by v/D with square-free positive D, although this entails
complications.

[1.1.6] Remark: A smaller point: from a slightly more sophisticated viewpoint the fact that
p7 = p? mod ¢
follows immediately from the fact that the non-trivial automorphism of K/Q necessarily reduces modulo ¢

to the Frobenius automorphism of K/Z/q, because in general decomposition groups surject to galois groups
of residue fields.



