Number theory exercises 05

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

Due Wed, 16 Nov 2011, preferably as PDF emailed to me
[number theory 05.1] Let \mathfrak{o} be integrally closed in its quotient field k. Let K be a finite Galois extension of k, and \mathcal{O} the integral closure of \mathfrak{o} in K. For an intermediate field $k \subset E \subset K$, show that $E \cap \mathcal{O}$ is the integral closure of \mathfrak{o} in E.
[number theory 05.2] Let p, q, r be distinct primes in \mathbb{Z}. Show that the ring $\mathfrak{o}=Z / p q r$ has exactly three prime ideals, generated by (the images of) p, q, r. Let $S=\mathfrak{o}-p \mathfrak{o}$, and compute the localization $S^{-1} \mathfrak{o}$.
[number theory 05.3] Let Φ_{15} be the $15^{t h}$ cyclotomic polynomial

$$
\Phi_{15}(x)=\frac{\left(x^{15}-1\right)(x-1)}{\left(x^{3}-1\right)\left(x^{5}-1\right)}
$$

Show that, although Φ_{15} is irreducible in $\mathbb{Q}[x]$, it is reducible in $\mathbb{F}_{p}[x]$ for every prime p.

