Number theory exercises 04

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

Due Wed, 26 Oct 2011, preferably as PDF emailed to me.

[number theory 04.1] Localization. Let S be a multiplicative subset of a commutative ring R, that is, S is closed under multiplication. To avoid silliness, assume $0 \notin S$, and that R has a unit 1. The localization $S^{-1}R$ of R at S can be characterized as a ring S^{-1} with a ring hom $j: R \to S^{-1}R$ such that $j(S) \subset (R')^{\times}$, such that for any ring hom $f: R \to X$ with $f(S) \subset X^{\times}$, there is a unique ring hom $F: S^{-1}R \to X$ so that $f = F \circ j$:

$$S^{-1}R$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

The usual categorical argument proves uniqueness up to unique isomorphism. Show that the following construction yields $j: R \to S^{-1}R$. Put an equivalence relation \sim on ordered pairs (r,s) with $r \in R$ and $s \in S$ by $(r,s) \sim (r',s')$ if there is $s'' \in S$ such that s''(rs'-r's)=0. Let j(r)=(r,1).

When R is a domain, the simpler requirement rs' = r's suffices.

[number theory 04.2] For a non-zero prime ideal \mathfrak{p} of R, the localization with respect to the multiplicative subset $S = R - \mathfrak{p}$ is often denoted $R_{(\mathfrak{p})}$. (Or even $R_{\mathfrak{p}}$, but the latter might better be reserved for a *completion*.) Show that $R_{(\mathfrak{p})}$ has a *unique maximal ideal*, consisting of (equivalence classes of) (r, s) with $r \in \mathfrak{p}$ and $s \in S$.

[number theory 04.3] Show that the set of proper ideals of $S^{-1}R$ injects to the set of ideals of R not meeting S.

[number theory 04.4] Show that $T^5 - XT + X$ factors into linear factors in $\mathbb{C}[[X^{1/5}]][T]$, while $T^5 - XT^2 + X^2$ factors into linear factors in $\mathbb{C}[[X^{1/6}]][T]$.

[number theory 04.5] Show that the Galois group of $\mathbb{C}(X^{1/n})$ over $\mathbb{C}(X)$ is naturally isomorphic to \mathbb{Z}/n with addition.

[number theory 04.6] Show that the Galois group of $\mathbb{C}((X^{1/n}))$ over $\mathbb{C}((X))$ is naturally isomorphic to \mathbb{Z}/n with addition.

[number theory 04.7] * (Starred problems are optional.) Show that the Galois group of an algebraic closure $\overline{\mathbb{C}((X))}$ of $\mathbb{C}((X))$, over $\mathbb{C}((X))$, is naturally isomorphic to

$$\widehat{\mathbb{Z}} = \lim_{n} \mathbb{Z}/n \approx \prod_{p} \mathbb{Z}_{p}$$