(September 29, 2011)

Number theory exercises 03

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

Due Mon, 10 Oct 2011, preferably as PDF emailed to me.

[number theory 03.1] Prove that $\sqrt{-1}$ exists in \mathbb{Q}_5 .

[number theory 03.2] Prove that a primitive 11^{th} root of unity exists in \mathbb{Q}_{23} .

[number theory 03.3] Prove that addition, multiplication, and inversion (away from 0) are *continuous* on \mathbb{Q}_p .

[number theory 03.4] Show that the usual power series $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots$ converges in \mathbb{Q}_p for $|x| < \frac{1}{p-1}$. (*Hint:* First show that the power p^{ℓ} of p dividing n! is bounded by

$$\ell \leq \frac{n}{p} + \frac{n}{p^2} + \frac{n}{p^3} + \dots$$

That is, there are at most n/p integers less than n and divisible by p, there are at most n/p^2 numbers less than n and divisible by p^2 , ...)

[number theory 03.5] * (Starred problems are optional.) Show that there are only finitely-many quadratic extensions of \mathbb{Q}_p . In fact, for p odd, there are exactly *three*, while there are exactly 7 quadratic extensions of \mathbb{Q}_2 .