Number theory exercises 03

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

Due Mon, 10 Oct 2011, preferably as PDF emailed to me.
[number theory 03.1] Prove that $\sqrt{-1}$ exists in \mathbb{Q}_{5}.
[number theory 03.2] Prove that a primitive $11^{\text {th }}$ root of unity exists in \mathbb{Q}_{23}.
[number theory 03.3] Prove that addition, multiplication, and inversion (away from 0) are continuous on \mathbb{Q}_{p}.
[number theory 03.4] Show that the usual power series $e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\ldots$ converges in \mathbb{Q}_{p} for $|x|<\frac{1}{p-1}$. (Hint: First show that the power p^{ℓ} of p dividing n ! is bounded by

$$
\ell \leq \frac{n}{p}+\frac{n}{p^{2}}+\frac{n}{p^{3}}+\ldots
$$

That is, there are at most n / p integers less than n and divisible by p, there are at most n / p^{2} numbers less than n and divisible by p^{2}, \ldots)
[number theory 03.5] * (Starred problems are optional.) Show that there are only finitely-many quadratic extensions of \mathbb{Q}_{p}. In fact, for p odd, there are exactly three, while there are exactly 7 quadratic extensions of \mathbb{Q}_{2}.

