(September 22, 2011)

Number theory exercises 02

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

Due Fri, 30 Sept 2011, preferably as PDF emailed to me.

[number theory 02.1] Show that the *ideal* norm and *Galois* norm agree on $\mathbb{Z}[i]$. That is, show that for $0 \neq \alpha \in \mathbb{Z}[i]$,

 $\operatorname{card} \mathbb{Z}[i] / (\alpha \cdot \mathbb{Z}[i]) = \alpha \cdot \overline{\alpha}$

[number theory 02.2] Show that in a PID every non-zero prime ideal is maximal.

[number theory 02.3] Carefully show that for a, b in a commutative ring R, with \overline{a} the image of a in $R/\langle b \rangle$ and \overline{b} the image of b in $R/\langle a \rangle$, there is a natural isomorphism

$$(R/\langle a \rangle)/\langle \overline{b} \rangle = (R/\langle b \rangle)/\langle \overline{a} \rangle$$

[number theory 02.4] For rational p > 2 splitting in $\mathbb{Z}[i]$, and for ρ any representative in \mathbb{Z} for a square root of $-1 \mod p$, show that the pairs $p, \rho - i$ and $p, \rho + i$ generate the two prime ideals into which $p \cdot \mathbb{Z}[i]$ factors.

[number theory 02.5] Show that $\mathbb{Z}[\sqrt{2}]$ is Euclidean.