Algebraic Number Theory Exercises 01

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

Due Wed, 21 Sept 2011, preferably as PDF emailed to me.
[number theory 01.1] Prove the Euler product expansion of the zeta function, namely, for $\operatorname{Re}(s)>1$

$$
\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p \text { prime }} \frac{1}{1-p^{-s}}
$$

A useful point is that

$$
\frac{1}{1-p^{-s}}=1+p^{-s}+\left(p^{2}\right)^{-s}+\left(p^{3}\right)^{-s}+\ldots
$$

Often this Euler product expansion is interpreted as a slightly analytic manifestation of the unique factorization in \mathbb{Z}.

Proper care for convergence is a non-trivial task, but worth doing once in one's life.
Part of the burden is merely notational, but the risks of bad notation are considerable.
[number theory 01.2] Prove that a prime p is expressible as $p=a^{2}+a b+b^{2}$ for integers a, b if and only if $p=1 \bmod 3($ or $p=3)$.
[number theory 01.3] Let ω be a primitive $7^{\text {th }}$ root of unity, and let $\xi=\omega+\omega^{-1}$. Observe that $\xi^{3}+\xi^{2}-2 \xi-1=0$. Find the precise congruence relation on primes p for there to be a solution of $x^{3}+x^{2}-2 x-1=0$ in \mathbb{Z} / p.

