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[number theory 10.1] Show that the Euclidean Laplacian is rotation-invariant.

[number theory 10.2] Show that the rotation group SO(n,R) is transitive on the (n− 1)-sphere.

[number theory 10.3] Show that the z and z calculus works as claimed, that is, for example, for a rational
function f in two variables,
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f(z, z) = f1(z, z)

where f1 is the partial derivative of f with respect to its first argument.

[number theory 10.4] Up to essentially irrelevant normalization constants, the nth Hermite polynomial is
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Show that the degree of hn is n. Show that h0, h1, h2, . . . are orthogonal with respect to the inner product

〈f, g〉 =

∫ ∞
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f(x) g(x) e−x
2

dx

[number theory 10.5] * [Starred problems are optional] Show that the Euler product for the Dedekind zeta
function ζk(s) of a number field k of degree n over Q is absolutely convergent in Re(s) > 1, by comparing
it prime-wise to ζQ(s)n, by grouping together all primes of ok lying over a prime p in Z. That is, show that
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(for σ > 0, primes p in ok)
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