Number theory exercises 10

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

Due Friday, 06 April 2012, preferably as PDF emailed to me.
[number theory 10.1] Show that the Euclidean Laplacian is rotation-invariant.
[number theory 10.2] Show that the rotation group $S O(n, \mathbb{R})$ is transitive on the ($n-1$)-sphere.
[number theory 10.3] Show that the z and \bar{z} calculus works as claimed, that is, for example, for a rational function f in two variables,

$$
\frac{\partial}{\partial z} f(z, \bar{z})=f_{1}(z, \bar{z})
$$

where f_{1} is the partial derivative of f with respect to its first argument.
[number theory 10.4] Up to essentially irrelevant normalization constants, the $n^{\text {th }}$ Hermite polynomial is

$$
h_{n}(x)=e^{x^{2}} \cdot\left(\frac{d^{n}}{d x^{n}} e^{-x^{2}}\right)
$$

Show that the degree of h_{n} is n. Show that $h_{0}, h_{1}, h_{2}, \ldots$ are orthogonal with respect to the inner product

$$
\langle f, g\rangle=\int_{-\infty}^{\infty} f(x) \bar{g}(x) e^{-x^{2}} d x
$$

[number theory 10.5] * [Starred problems are optional] Show that the Euler product for the Dedekind zeta function $\zeta_{k}(s)$ of a number field k of degree n over \mathbb{Q} is absolutely convergent in $\operatorname{Re}(s)>1$, by comparing it prime-wise to $\zeta_{\mathbb{Q}}(s)^{n}$, by grouping together all primes of \mathfrak{o}_{k} lying over a prime p in \mathbb{Z}. That is, show that

$$
\prod_{\mathfrak{p} \mid p} \frac{1}{1-N \mathfrak{p}^{-\sigma}} \leq\left(\frac{1}{1-p^{-\sigma}}\right)^{n} \quad\left(\text { for } \sigma>0, \text { primes } \mathfrak{p} \text { in } \mathfrak{o}_{k}\right)
$$

