(March 24, 2012)

Number theory exercises 10

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

Due Friday, 06 April 2012, preferably as PDF emailed to me.

[number theory 10.1] Show that the Euclidean Laplacian is rotation-invariant.

[number theory 10.2] Show that the rotation group $SO(n, \mathbb{R})$ is *transitive* on the (n-1)-sphere.

[number theory 10.3] Show that the z and \overline{z} calculus works as claimed, that is, for example, for a *rational* function f in two variables,

$$\frac{\partial}{\partial z}f(z,\overline{z}) = f_1(z,\overline{z})$$

where f_1 is the partial derivative of f with respect to its first argument.

[number theory 10.4] Up to essentially irrelevant normalization constants, the n^{th} Hermite polynomial is

$$h_n(x) = e^{x^2} \cdot \left(\frac{d^n}{dx^n} e^{-x^2}\right)$$

Show that the degree of h_n is n. Show that h_0, h_1, h_2, \ldots are orthogonal with respect to the inner product

$$\langle f,g\rangle = \int_{-\infty}^{\infty} f(x)\,\overline{g}(x)\,e^{-x^2}\,dx$$

[number theory 10.5] * [Starred problems are optional] Show that the Euler product for the Dedekind zeta function $\zeta_k(s)$ of a number field k of degree n over \mathbb{Q} is absolutely convergent in $\operatorname{Re}(s) > 1$, by comparing it prime-wise to $\zeta_{\mathbb{Q}}(s)^n$, by grouping together all primes of \mathfrak{o}_k lying over a prime p in \mathbb{Z} . That is, show that

$$\prod_{\mathfrak{p}|p} \frac{1}{1 - N\mathfrak{p}^{-\sigma}} \leq \left(\frac{1}{1 - p^{-\sigma}}\right)^n \qquad \text{(for } \sigma > 0, \text{ primes } \mathfrak{p} \text{ in } \mathfrak{o}_k)$$