Number theory exercises 08

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

Due Mon, 27 Feb 2012, preferably as PDF emailed to me.

[number theory 08.1] (Sample application of basic ideas from Minkowski) Let ω be an abstract square root of D for $0 < D \in \mathbb{Z}$, and map $\mathbb{Z}[\omega]$ to a lattice L in \mathbb{R}^2 by $a + b\omega \to (a + b\sqrt{D}, a - b\sqrt{D})$, where \sqrt{D} is the positive real square root of D. Show that the rectangle $R_{T,\delta} = \{(x,y) : |x| \leq T, |y| \leq \delta\}$ contains a point of L other than (0,0) when $T \cdot \delta > 8\sqrt{D}$.

Thus, obtain a corollary about *Diophantine approximation*: given $\varepsilon > 0$, there are integers a, b with $|b| < \frac{4\sqrt{D}}{\sqrt{2}\varepsilon} + \frac{\varepsilon}{2\sqrt{D}}$ such that $|a - b\sqrt{D}| < \varepsilon$. (Of course, rational numbers approximate real irrationals. The point is about how large the denominators must be.)

[number theory 08.2] * [Starred problems are optional] Contrive an interesting application of Minkowski's geometry of numbers similar to the previous example about \sqrt{D} , but for cube roots.

[number theory 08.3] Use Poisson summation to show that

$$\sum_{n\in\mathbb{Z}} \frac{1}{t^2 + n^2} = \sum_{n\in\mathbb{Z}} \frac{\pi}{t} e^{-2\pi|n|t}$$
 (for $t \notin i\mathbb{R}$)

Rearrange and let $t \to 0$ to show $\zeta(2) = \pi^2/6$.

[number theory 08.4] Show that $d^+x/|x|_p$ is a \mathbb{Q}_p^{\times} -invariant measure on \mathbb{Q}_p^{\times} , where d^+x refers to the additive Haar measure. Determine the measure of the local units \mathbb{Z}_p^{\times} . Observe that the infinite product over all primes p of the measure of the local units diverges.

[number theory 08.5] * [Starred problems are optional] Construct a \mathbb{Q}_p^{\times} -invariant integral on $C_c^o(\mathbb{Q}_p^{\times})$ directly.

Hint: (a) Normalize the measure of \mathbb{Z}_p^{\times} to be 1.

- (b) Show that the compact-and-open $U_k = 1 + p^k \mathbb{Z}_p$ is of index $(p-1)p^{k-1}$ in \mathbb{Z}_p^{\times} for k > 0, so the measure of U_k is $1/(p-1)p^{k-1}$.
- (c) Show that the special simple functions consisting of linear combinations of characteristic functions of sets $y \cdot (1 + p^k \mathbb{Z}_p)$ with $0 < k \in \mathbb{Z}$ are dense in $C_c^o(\mathbb{Q}_p^{\times})$, in the topology which gives $C_c^o(K)$ the sup-norm topology, where K is compact in \mathbb{Q}_p^{\times} .
- (d) Define the integral of special simple functions directly, and extend by continuity.

[number theory 08.6] * [Starred problems are optional] Show that \mathbb{Z}_p^{\times} is the unique maximal compact subgroup of \mathbb{Q}_p^{\times} .

In contrast, \mathbb{Q}_p (with addition) has no maximal compact subgroup at all. In fact, the non-compact is the ascending union of compact subgroups $p^{-k}\mathbb{Z}_p!$ Very different from the multiplicative group!