Number theory exercises 07

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

Due Fri, 27 Jan 2012, preferably as PDF emailed to me.
[number theory 07.1] Verify that $d g=d x \frac{d y}{y}$ in coordinates $g=\left(\begin{array}{ll}y & x \\ 0 & 1\end{array}\right)$ is a right Haar measure on the group

$$
G=\left\{\left(\begin{array}{ll}
y & x \\
0 & 1
\end{array}\right): 0<y \in \mathbb{R}, x \in \mathbb{R}\right\}
$$

[number theory 07.2] Verify that $d g=d x d y d z$ in coordinates $g=\left(\begin{array}{lll}1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1\end{array}\right)$ is a right Haar measure on the group

$$
G=\left\{\left(\begin{array}{ccc}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right): x, y, z \in \mathbb{R}\right\}
$$

[number theory 07.3] Verify that $G=S L_{2}(k)$, the two-by-two matrices with entries in a field k with more than 2 elements, with determinant 1 , has the property $G=[G, G]$.

Hint: To get started, note that

$$
\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right)\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & a^{2} x \\
0 & 1
\end{array}\right)
$$

Thus,

$$
\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right)\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right)^{-1}\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & x\left(a^{2}-1\right) \\
0 & 1
\end{array}\right)
$$

This shows that all unipotent upper-triangular matrices are commutators. Similarly for lower-triangular unipotent.

