Number theory exercises/discussion 03

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/
(Were due Mon, 10 Oct 2011.)
[number theory 03.1] A $\sqrt{-1}$ exists in \mathbb{Q}_{5}.
Since $\mathbb{Z} / 5^{\times}$is cyclic of order 5 , the (fourth cyclotomic) polynomial $f(x)=x^{2}+1$ has a zero $\bmod 5$, for example, 2 , and $f^{\prime}(2)=4 \neq 0 \bmod 5$. Thus, Hensel's lemma produces a Cauchy sequence $2, \ldots$ converging to a zero of $f(x)$ in $\mathbb{Z}_{5} \subset \mathbb{Q}_{5}$.
[number theory 03.2] A primitive $11^{\text {th }}$ root of unity exists in \mathbb{Q}_{23}.
The polynomial $f(x)=\left(x^{11}-1\right) /(x-1)$ has a zero $x_{1} \bmod 5$, with $x_{1} \neq 1 \bmod 5$. Without determining x_{1} explicitly, apart from it's not being 1 or $0 \bmod 23$, computing mod 23 ,

$$
f^{\prime}\left(x_{1}\right)=\frac{11 x_{1}^{10}}{x_{1}-1}-\frac{x_{1}^{11}-1}{\left(x_{1}-1\right)^{2}}=\frac{11 x_{1}^{10}}{x_{1}-1}=\frac{11 x_{1}^{11}}{x_{1}\left(x_{1}-1\right)}=\frac{11}{x_{1}\left(x_{1}-1\right)} \neq 0 \bmod 23
$$

Thus, Hensel's lemma produces a Cauchy sequence x_{1}, \ldots converging to a zero of $f(x)$ in $\mathbb{Z}_{23} \subset \mathbb{Q}_{23}$.
[number theory 03.3] Addition, multiplication, and inversion (away from 0) are continuous on \mathbb{Q}_{p}.
The arguments simplify somewhat if the discreteness of the norm is exploited, but the underlying reason for this continuity resides in some algebraic identities and the triangle inequality. Fix $x, y \in \mathbb{Q}_{p}$. Continuity of addition is immediate: for $\left|x-x^{\prime}\right|_{p}$ and $\left|y-y^{\prime}\right|_{p}$ small,

$$
\left|(x+y)-\left(x^{\prime}+y^{\prime}\right)\right|_{p} \leq\left|x-x^{\prime}\right|_{p}+\left|y-y^{\prime}\right|_{p}
$$

can be made as small as we want. Slightly more complicatedly,

$$
x y-x^{\prime} y^{\prime}=\left(x-x^{\prime}\right) y+\left(y-y^{\prime}\right) x^{\prime}=\left(x-x^{\prime}\right) y+\left(y-y^{\prime}\right)\left(x^{\prime}-x\right)+\left(y-y^{\prime}\right) x
$$

which can be made as small as we want. Finally, for $x, x^{\prime} \neq 0$,

$$
\frac{1}{x}-\frac{1}{x^{\prime}}=\frac{x^{\prime}-x}{x x^{\prime}}=\frac{x^{\prime}-x}{x\left(x^{\prime}-x\right)+x^{2}}=\frac{x^{\prime}-x}{x^{2}} \frac{1}{1-\frac{x-x^{\prime}}{x}}=\frac{x^{\prime}-x}{x^{2}}\left(1+\frac{x-x^{\prime}}{x}+\left(\frac{x-x^{\prime}}{x}\right)^{2}+\ldots\right)
$$

For $\left|x-x^{\prime}\right|_{p}$ small enough so that $\left|\left(x-x^{\prime}\right) / x\right|_{p}<1$, the geometric series converges. Thus, with x fixed, making the leading $x^{\prime}-x$ smaller makes $1 / x-1 / x^{\prime}$ smaller.
[number theory 03.4] Determine p-adic convergence of the usual power series $e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\ldots$.
First, observe that the power p^{ℓ} of p dividing n ! is bounded by

$$
\ell \leq \frac{n}{p}+\frac{n}{p^{2}}+\frac{n}{p^{3}}+\ldots
$$

because there are at most n / p integers less than n and divisible by p, at most n / p^{2} numbers less than n and divisible by p^{2}, etc. Thus,

$$
\operatorname{ord}_{p} n!\leq \frac{n \cdot \frac{1}{p}}{1-\frac{1}{p}}=\frac{n}{p-1}
$$

Since Cauchy's criterion is necessary and sufficient p-adically, the sum converges when the terms go to 0 . The $n^{\text {th }}$ term has p-adic size

$$
\left|\frac{x^{n}}{n!}\right|_{p} \leq \frac{|x|_{p}^{n}}{p^{-n /(p-1)}}=\left(|x|_{p} \cdot p^{1 /(p-1)}\right)^{n}
$$

This goes to 0 if and only if

$$
|x|_{p}<p^{-1 /(p-1)}
$$

For odd rational p, requiring $|x|_{p}<1$ already implies $|x|_{p} \leq p^{-1}<p^{-1 /(p-1)}$. For $p=2$, we need the stronger $|x|_{p}<p^{-1}$.
[number theory 03.5] * (Starred problems are optional.) Show that there are only finitely-many quadratic extensions of \mathbb{Q}_{p}. In fact, for p odd, there are exactly three, while there are exactly 7 quadratic extensions of \mathbb{Q}_{2}.

This uses p-adic exponential and log. Observe that

$$
\log (1-x)=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\ldots
$$

converges p-adically for $|x|_{p}<1$. For p odd and $|x|_{p}<1$, also $\left|e^{x}-1\right|_{p}<1$. Then it makes sense to claim that exp and log invert each other:

$$
x=\log \left(e^{x}\right) \quad 1-x=e^{\log (1-x)} \quad\left(p \text {-adically }, \text { odd } p, \text { for }|x|_{p}<1\right)
$$

For $p=2$, arguments to exp and log must be slightly more constrained.
The quadratic field extensions K of a field k not of characteristic 2 are in bijection with $k^{\times} /\left(k^{\times}\right)^{2}$, by $k(\sqrt{D}) \leftrightarrow D \bmod \left(k^{\times}\right)^{2}$.

For rational p, given $\alpha \in \mathbb{Q}_{p}^{\times}$, multiplication by a suitable power of p makes $\left|p^{\ell} \alpha\right|_{p}$ either 1 or $1 / p$.
For odd rational p, we claim that units $\eta \in \mathbb{Z}_{p}^{\times}$with $\eta=1 \bmod p$ are squares. Indeed, using exp and log,

$$
\sqrt{1+x}=e^{\frac{1}{2} \cdot \log (1+x)} \quad\left(p \text {-adically, odd } p, \text { for }|x|_{p}<1\right)
$$

For two units η, η^{\prime}, if $\eta=\eta^{\prime} \bmod p$ then $\eta^{-1} \cdot \eta^{\prime} \in 1+p \mathbb{Z}_{p}$, so η and η^{\prime} differ multiplicatively by a square. Thus, the question of $\mathbb{Z}_{p}^{\times} \bmod$ squares reduces to $\left(\mathbb{Z}_{p} / p \mathbb{Z}_{p}\right)^{\times}=\mathbb{Z} / p^{\times} \bmod$ squares, which has exactly two elements, since \mathbb{Z} / p^{\times}is cyclic of even order.

Thus, for odd rational p, letting η_{o} be a non-square p-adic unit, irredundant representatives for $\mathbb{Q}_{p}^{\times} \bmod$ squares are $1, \eta_{o}, p$, and $\eta_{o} p$.

For $p=2$, the greater fragility of \exp and \log, and role of $1 / 2$ in square-root taking, give the more-constrained

$$
\sqrt{1+8 x}=e^{\frac{1}{2} \cdot \log (1+8 x)} \quad\left(2 \text {-adically, for }|x|_{2} \leq 1\right)
$$

This reduces to $\mathbb{Z} / 8^{\times}$modulo squares, which has 4 representatives, since $\mathbb{Z} / 8^{\times}$is a 2,2 -group. Thus, \mathbb{Q}_{2}^{\times} mod squares has 8 representatives.

