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[number theory 03.1] A
√
−1 exists in Q5.

Since Z/5× is cyclic of order 5, the (fourth cyclotomic) polynomial f(x) = x2 + 1 has a zero mod 5, for
example, 2, and f ′(2) = 4 6= 0 mod 5. Thus, Hensel’s lemma produces a Cauchy sequence 2, . . . converging
to a zero of f(x) in Z5 ⊂ Q5.

[number theory 03.2] A primitive 11th root of unity exists in Q23.

The polynomial f(x) = (x11 − 1)/(x− 1) has a zero x1 mod 5, with x1 6= 1 mod 5. Without determining x1
explicitly, apart from it’s not being 1 or 0 mod 23, computing mod 23,

f ′(x1) =
11x101
x1 − 1

− x111 − 1

(x1 − 1)2
=

11x101
x1 − 1

=
11x111

x1(x1 − 1)
=

11

x1(x1 − 1)
6= 0 mod 23

Thus, Hensel’s lemma produces a Cauchy sequence x1, . . . converging to a zero of f(x) in Z23 ⊂ Q23.

[number theory 03.3] Addition, multiplication, and inversion (away from 0) are continuous on Qp.

The arguments simplify somewhat if the discreteness of the norm is exploited, but the underlying reason for
this continuity resides in some algebraic identities and the triangle inequality. Fix x, y ∈ Qp. Continuity of
addition is immediate: for |x− x′|p and |y − y′|p small,

|(x+ y)− (x′ + y′)|p ≤ |x− x′|p + |y − y′|p

can be made as small as we want. Slightly more complicatedly,

xy − x′y′ = (x− x′)y + (y − y′)x′ = (x− x′)y + (y − y′)(x′ − x) + (y − y′)x

which can be made as small as we want. Finally, for x, x′ 6= 0,

1

x
− 1

x′
=

x′ − x
xx′

=
x′ − x

x(x′ − x) + x2
=

x′ − x
x2

1

1− x−x′

x

=
x′ − x
x2

(
1 +

x− x′

x
+
(x− x′

x

)2
+ . . .

)
For |x − x′|p small enough so that |(x − x′)/x|p < 1, the geometric series converges. Thus, with x fixed,
making the leading x′ − x smaller makes 1/x− 1/x′ smaller. ///

[number theory 03.4] Determine p-adic convergence of the usual power series ex = 1 + x
1! + x2

2! + . . ..

First, observe that the power p` of p dividing n! is bounded by

` ≤ n

p
+
n

p2
+
n

p3
+ . . .

because there are at most n/p integers less than n and divisible by p, at most n/p2 numbers less than n and
divisible by p2, etc. Thus,

ordp n! ≤
n · 1p
1− 1

p

=
n

p− 1

1
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Since Cauchy’s criterion is necessary and sufficient p-adically, the sum converges when the terms go to 0.
The nth term has p-adic size ∣∣∣xn

n!

∣∣∣
p
≤

|x|np
p−n/(p−1)

= (|x|p · p1/(p−1))n

This goes to 0 if and only if
|x|p < p−1/(p−1)

For odd rational p, requiring |x|p < 1 already implies |x|p ≤ p−1 < p−1/(p−1). For p = 2, we need the stronger
|x|p < p−1. ///

[number theory 03.5] * (Starred problems are optional.) Show that there are only finitely-many quadratic
extensions of Qp. In fact, for p odd, there are exactly three, while there are exactly 7 quadratic extensions
of Q2.

This uses p-adic exponential and log. Observe that

log(1− x) = x+
x2

2
+
x3

3
+
x4

4
+ . . .

converges p-adically for |x|p < 1. For p odd and |x|p < 1, also |ex − 1|p < 1. Then it makes sense to claim
that exp and log invert each other:

x = log(ex) 1− x = elog(1−x) (p-adically, odd p, for |x|p < 1)

For p = 2, arguments to exp and log must be slightly more constrained.

The quadratic field extensions K of a field k not of characteristic 2 are in bijection with k×/(k×)2, by
k(
√
D)↔ D mod (k×)2.

For rational p, given α ∈ Q×p , multiplication by a suitable power of p makes |p`α|p either 1 or 1/p.

For odd rational p, we claim that units η ∈ Z×p with η = 1 mod p are squares. Indeed, using exp and log,

√
1 + x = e

1
2 ·log(1+x) (p-adically, odd p, for |x|p < 1)

For two units η, η′, if η = η′ mod p then η−1 · η′ ∈ 1 + pZp, so η and η′ differ multiplicatively by a square.
Thus, the question of Z×p mod squares reduces to (Zp/pZp)× = Z/p× mod squares, which has exactly two
elements, since Z/p× is cyclic of even order.

Thus, for odd rational p, letting ηo be a non-square p-adic unit, irredundant representatives for Q×p mod
squares are 1, ηo, p, and ηop.

For p = 2, the greater fragility of exp and log, and role of 1/2 in square-root taking, give the more-constrained

√
1 + 8x = e

1
2 ·log(1+8x) (2-adically, for |x|2 ≤ 1)

This reduces to Z/8× modulo squares, which has 4 representatives, since Z/8× is a 2, 2-group. Thus, Q×2
mod squares has 8 representatives. ///

2


