(October 15, 2011)

Number theory exercises/discussion 03

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

(Were due Mon, 10 Oct 2011.)

[number theory 03.1] A $\sqrt{-1}$ exists in \mathbb{Q}_5 .

Since $\mathbb{Z}/5^{\times}$ is cyclic of order 5, the (fourth cyclotomic) polynomial $f(x) = x^2 + 1$ has a zero mod 5, for example, 2, and $f'(2) = 4 \neq 0 \mod 5$. Thus, Hensel's lemma produces a Cauchy sequence 2,... converging to a zero of f(x) in $\mathbb{Z}_5 \subset \mathbb{Q}_5$.

[number theory 03.2] A primitive 11^{th} root of unity exists in \mathbb{Q}_{23} .

The polynomial $f(x) = (x^{11} - 1)/(x - 1)$ has a zero $x_1 \mod 5$, with $x_1 \neq 1 \mod 5$. Without determining x_1 explicitly, apart from it's not being 1 or 0 mod 23, computing mod 23,

$$f'(x_1) = \frac{11x_1^{10}}{x_1 - 1} - \frac{x_1^{11} - 1}{(x_1 - 1)^2} = \frac{11x_1^{10}}{x_1 - 1} = \frac{11x_1^{11}}{x_1(x_1 - 1)} = \frac{11}{x_1(x_1 - 1)} \neq 0 \mod 23$$

Thus, Hensel's lemma produces a Cauchy sequence x_1, \ldots converging to a zero of f(x) in $\mathbb{Z}_{23} \subset \mathbb{Q}_{23}$.

[number theory 03.3] Addition, multiplication, and inversion (away from 0) are *continuous* on \mathbb{Q}_p .

The arguments simplify somewhat if the discreteness of the norm is exploited, but the underlying reason for this continuity resides in some algebraic identities and the triangle inequality. Fix $x, y \in \mathbb{Q}_p$. Continuity of addition is immediate: for $|x - x'|_p$ and $|y - y'|_p$ small,

$$|(x+y) - (x'+y')|_p \leq |x-x'|_p + |y-y'|_p$$

can be made as small as we want. Slightly more complicatedly,

$$xy - x'y' = (x - x')y + (y - y')x' = (x - x')y + (y - y')(x' - x) + (y - y')x$$

which can be made as small as we want. Finally, for $x, x' \neq 0$,

$$\frac{1}{x} - \frac{1}{x'} = \frac{x' - x}{xx'} = \frac{x' - x}{x(x' - x) + x^2} = \frac{x' - x}{x^2} \frac{1}{1 - \frac{x - x'}{x}} = \frac{x' - x}{x^2} \left(1 + \frac{x - x'}{x} + \left(\frac{x - x'}{x}\right)^2 + \dots\right)$$

For $|x - x'|_p$ small enough so that $|(x - x')/x|_p < 1$, the geometric series converges. Thus, with x fixed, making the leading x' - x smaller makes 1/x - 1/x' smaller. ///

[number theory 03.4] Determine *p*-adic convergence of the usual power series $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots$ First, observe that the power p^{ℓ} of *p* dividing *n*! is bounded by

$$\ell \leq \frac{n}{p} + \frac{n}{p^2} + \frac{n}{p^3} + \dots$$

because there are at most n/p integers less than n and divisible by p, at most n/p^2 numbers less than n and divisible by p^2 , etc. Thus,

$$\operatorname{ord}_p n! \leq \frac{n \cdot \frac{1}{p}}{1 - \frac{1}{p}} = \frac{n}{p - 1}$$

Since Cauchy's criterion is necessary and sufficient p-adically, the sum converges when the terms go to 0. The n^{th} term has p-adic size

$$\left|\frac{x^n}{n!}\right|_p \leq \frac{|x|_p^n}{p^{-n/(p-1)}} = (|x|_p \cdot p^{1/(p-1)})^n$$

This goes to 0 if and only if

$$|x|_p < p^{-1/(p-1)}$$

For odd rational p, requiring $|x|_p < 1$ already implies $|x|_p \le p^{-1} < p^{-1/(p-1)}$. For p = 2, we need the stronger $|x|_p < p^{-1}$.

[number theory 03.5] * (Starred problems are optional.) Show that there are only finitely-many quadratic extensions of \mathbb{Q}_p . In fact, for p odd, there are exactly *three*, while there are exactly 7 quadratic extensions of \mathbb{Q}_2 .

This uses p-adic exponential and log. Observe that

$$\log(1-x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots$$

converges p-adically for $|x|_p < 1$. For p odd and $|x|_p < 1$, also $|e^x - 1|_p < 1$. Then it makes sense to claim that exp and log invert each other:

$$x = \log(e^x)$$
 $1 - x = e^{\log(1-x)}$ (*p*-adically, odd *p*, for $|x|_p < 1$)

For p = 2, arguments to exp and log must be slightly more constrained.

The quadratic field extensions K of a field k not of characteristic 2 are in bijection with $k^{\times}/(k^{\times})^2$, by $k(\sqrt{D}) \leftrightarrow D \mod (k^{\times})^2$.

For rational p, given $\alpha \in \mathbb{Q}_p^{\times}$, multiplication by a suitable power of p makes $|p^{\ell}\alpha|_p$ either 1 or 1/p.

For odd rational p, we claim that units $\eta \in \mathbb{Z}_p^{\times}$ with $\eta = 1 \mod p$ are squares. Indeed, using exp and log,

$$\sqrt{1+x} = e^{\frac{1}{2} \cdot \log(1+x)}$$
 (*p*-adically, odd *p*, for $|x|_p < 1$)

For two units η, η' , if $\eta = \eta' \mod p$ then $\eta^{-1} \cdot \eta' \in 1 + p\mathbb{Z}_p$, so η and η' differ multiplicatively by a square. Thus, the question of \mathbb{Z}_p^{\times} mod squares reduces to $(\mathbb{Z}_p/p\mathbb{Z}_p)^{\times} = \mathbb{Z}/p^{\times}$ mod squares, which has exactly two elements, since \mathbb{Z}/p^{\times} is cyclic of even order.

Thus, for odd rational p, letting η_o be a non-square p-adic unit, irredundant representatives for \mathbb{Q}_p^{\times} mod squares are $1, \eta_o, p$, and $\eta_o p$.

For p = 2, the greater fragility of exp and log, and role of 1/2 in square-root taking, give the more-constrained

$$\sqrt{1+8x} = e^{\frac{1}{2} \cdot \log(1+8x)}$$
 (2-adically, for $|x|_2 < 1$)

This reduces to $\mathbb{Z}/8^{\times}$ modulo squares, which has 4 representatives, since $\mathbb{Z}/8^{\times}$ is a 2,2-group. Thus, \mathbb{Q}_2^{\times} mod squares has 8 representatives. ///