Number theory exercises-discussion 02

> Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

Due Fri, 30 Sept 2011, preferably as PDF emailed to me.
[number theory 02.1] Show that the ideal norm and Galois norm agree on $\mathbb{Z}[i]$. That is, show that for $0 \neq \alpha \in \mathbb{Z}[i]$,

$$
\operatorname{card} \mathbb{Z}[i] /(\alpha \cdot \mathbb{Z}[i])=\alpha \cdot \bar{\alpha}
$$

[I'll write a solution in a style that may suggest how this would work in other situations, as well. In particular, it is easily possible to give less-fancy arguments.]

It will become apparent that everything reduces to the case that α is prime in $\mathbb{Z}[i]$, so we treat this case first. Let σ be the non-trivial Galois automorphism of $\mathbb{Q}(i)$ over \mathbb{Q}.

When the Galois norm of α is a rational prime p, that is, when $\alpha \cdot \alpha^{\sigma}=p$, neither α nor α^{σ} can be a unit, so p is split or else $p=2$. For split p,

$$
\mathbb{Z}[i] / \alpha \oplus \mathbb{Z}[i] / \alpha^{\sigma} \approx \mathbb{Z}[i] / p \approx \mathbb{F}_{p}[x] / x^{2}+1 \approx \mathbb{F}_{p}[x] / x-\rho \oplus \mathbb{F}_{p}[x] / x+\rho
$$

where ρ is a square root of -1 in \mathbb{F}_{p}. Both the last two summands are \mathbb{F}_{p} again, because in those quotients x is mapped to $\pm \rho \in \mathbb{F}_{p}$. Thus, the cardinality of $\mathbb{Z}[i] / p$ is p^{2}. The Galois automorphism maps cosets $\beta+\mathbb{Z}[i] \cdot \alpha$ to cosets $\beta^{\sigma}+\mathbb{Z}[i] \cdot \alpha^{\sigma}$, so the two quotients $\mathbb{Z}[i] / \alpha$ and $\mathbb{Z}[i] / \alpha^{\sigma}$ have the same cardinality, necessarily p, as desired.

The case that the ideal norm of α is $p=2$ can be brute-forced, if wished, or can be treated similarly to the general prime-power case, below.

In the case that $\alpha=\eta \cdot p$ where η is a unit and p is a rational prime, then p has stayed prime, so $\mathbb{Z}[i] / p$ is a quadratic field extension of \mathbb{Z} / p, so has p^{2} elements, as desired.

Thus, Galois norm and ideal norm agree on Gaussian primes.
Sun-Ze's theorem gives $\mathbb{Z}[i] / a b \approx \mathbb{Z} /[i] / a \oplus \mathbb{Z}[i] / b$ for relatively prime Gaussian integers a, b, so the ideal norm N is multiplicative in the usual sense that $N(I \cdot J)=N I \cdot N J$ at least for relatively prime ideals I, J. The Galois norm is multiplicative (because it is a product of field isomorphisms, each of which is multiplicative). Thus, it suffices to compare Galois and ideal norms of prime powers $\alpha=\pi^{\ell}$, and show that

$$
\text { ideal norm }\left(\pi^{\ell}\right)=(\text { ideal norm } \pi)^{\ell}
$$

We have a chain of submodules

$$
\mathbb{Z}[i] \cdot \pi^{\ell} \subset \mathbb{Z}[i] \cdot \pi^{\ell-1} \subset \mathbb{Z}[i] \cdot \pi^{\ell-2} \subset \ldots \subset \mathbb{Z}[i] \cdot \pi \subset \mathbb{Z}[i]
$$

Every quotient $\mathbb{Z}[i] \pi^{j-1} / \mathbb{Z}[i] \pi^{j}$ is isomorphic to $\mathbb{Z}[i] / \pi$, by

$$
\alpha \pi^{j-1}+\mathbb{Z}[i] \pi^{j} \quad \longrightarrow \alpha+\mathbb{Z}[i] \pi
$$

Thus, all the indices $\left[\mathbb{Z}[i] \pi^{j-1}: \mathbb{Z}[i] \pi^{j}\right]$ are $[\mathbb{Z}[i]: \mathbb{Z}[i] \pi]=N \pi$, and (by multiplicativity of indices) the whole ideal index is $\left[\mathbb{Z}[i]: \mathbb{Z}[i] \pi^{\ell}\right]=[\mathbb{Z}[i]: \mathbb{Z}[i] \pi]^{\ell}=(N \pi)^{\ell}$. This gives the equality of ideal norm and Galois norm on prime powers, and we're done.
[number theory 02.2] Show that in a PID every non-zero prime ideal is maximal.
Let $I=R \cdot p$ be a non-zero prime ideal in a PID R, with $p \in R$. A quick review of the implications of prime-ness: since I is prime, for $a b=p \in I$, either $a \in I$ or $b \in I$, that is, either a or b is divisible by p. For $p \mid a$, write $a=p a^{\prime}$. Then $p=a b=p a^{\prime} b$, so a^{\prime} and b are units, since R is a domain. Let $M=R \cdot m$ be an ideal containing I. Then $p=r m$ for some $r \in R$. By the first part of the discussion, p divides one of r, m, and the other is a unit. Thus, either m is a unit, and $M=R$, or $p \mid m$, and necessarily $M=I$, so I is maximal.
(A stylistic note: there was no need to argue that there was a maximal proper ideal M containing I.)
[number theory 02.3] Carefully show that for a, b in a commutative ring R, with \bar{a} the image of a in $R /\langle b\rangle$ and \bar{b} the image of b in $R /\langle a\rangle$, there is a natural isomorphism

$$
(R /\langle a\rangle) /\langle\bar{b}\rangle \approx(R /\langle b\rangle) /\langle\bar{a}\rangle
$$

Naturally, we claim that this isomorphism is given by a natural isomorphism of both to $R /\langle a, b\rangle$. By symmetry in a, b, it suffices to show

$$
(R /\langle a\rangle) /\langle\bar{b}\rangle \approx R /\langle a, b\rangle
$$

and we anticipate that the identity map $R \rightarrow R$ induces this isomorphism on the quotients. Indeed, in the usual construction of quotients, elements $\bar{r} \in R /\langle a\rangle$ are cosets $r+R a$, and elements of the double quotient are cosets

$$
(r+R a)+R \bar{b}=(r+R a)+R(b+R a)=r+R a+R b
$$

The cosets $r+R a+R b$ are also elements of $R /\langle a, b\rangle$. Thus, the map $(r+R a)+R \bar{b} \rightarrow r+R a+R b$ is a well-defined bijection, which is the essential point.

We could also use the mapping-property characterization of quotients: a quotient R / I is characterized by the property that any ring hom $R \rightarrow R^{\prime}$ with kernel containing I factors through the quotient map $R \rightarrow R / I$, and uniquely so. Since $R \rightarrow(R / a) / \bar{b}$ kill off a and b, it factors through $R /\langle a, b\rangle$. On the other hand, $R \rightarrow R /\langle a, b\rangle$ kills off a, first, so factors through R / a; the resulting map $R / a \rightarrow R /\langle a, b\rangle$ kills off \bar{b}, so further factors through $(R / a) / \bar{b}$. Uniquely. Thus, there are unique maps (ring homs!) both ways, which therefore must be mutual inverses, so isomorphisms.

How clear should it be that this bijection is a ring homomorphism? We could explicitly verify it from the coset description, which wouldn't be hard, but the mapping-property version makes it obviously inevitable, so we don't have to do it. Good.
[number theory 02.4] For rational $p>2$ splitting in $\mathbb{Z}[i]$, and for ρ any representative in \mathbb{Z} for a square root of $-1 \bmod p$, show that the pairs $p, \rho-i$ and $p, \rho+i$ generate the two prime ideals into which $p \cdot \mathbb{Z}[i]$ factors.

Let $I=\langle\rho-i, p\rangle$ and $J=\langle\rho+i, p\rangle$. Let σ be the non-trivial Galois automorphism. Note that $I^{\sigma}=J$. Certainly both I, J contain $p \cdot \mathbb{Z}[i]$.

If $\rho-i=\alpha \cdot p$ for some $\alpha \in \mathbb{Z}[i]$, then application of σ gives $\rho+i=\alpha^{\sigma} \cdot p$, and p would divide the difference $(\rho-i)-(\rho+i)=-2 i$, which is not the case. Thus, both I, J are strictly larger ideals than $p \cdot \mathbb{Z}[i]$.

On the other hand, writing $p=\pi_{1} \pi_{2}$ with Gaussian primes π_{1} and π_{2}, we claim that the only proper ideals in $\mathbb{Z}[i]$ strictly containing $\mathbb{Z}[i] \cdot p$ are $\mathbb{Z}[i] \cdot \pi_{1}$ and $\mathbb{Z}[i] \cdot \pi_{2}$. Indeed, for $\mathbb{Z}[i] \cdot \alpha$ to strictly contain $\mathbb{Z}[i] \cdot p$, entails that α divides p but not vice-versa. That is, α is a proper factor of $p=\pi_{1} \pi_{2}$. Up to Gaussian units, the only possibilities are π_{1} and π_{2}.

Thus, since there are just the two proper ideals strictly containing $\mathbb{Z}[i] \cdot p$, they must be the ideals $\langle\rho \pm i, p\rangle$.
[number theory 02.5] Show that $\mathbb{Z}[\sqrt{2}]$ is Euclidean.
Even though the norm $N(a+b \sqrt{2})=a^{2}-2 b^{2}$ is not positive-definite, we can still use it to execute a Euclidean algorithm, since on $\mathbb{Z}[\sqrt{2}]$ it is integer-valued.

We must prove that, given $\alpha \in \mathbb{Z}[\sqrt{2}]$ and given $0 \neq \delta \in \mathbb{Z}[\sqrt{2}]$, there is $q \in \mathbb{Z}[\sqrt{2}]$ such that the remainder $\alpha-q \cdot \delta$ is smaller than the divisor δ, that is,

$$
|N(\alpha-q \cdot \delta)|<|N \delta|
$$

Dividing through by δ, we must show that, given $\alpha=a+b \sqrt{2} \in \mathbb{Q}(\sqrt{2})$, there is $q=u+v \sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ such that $|N(\alpha-q)|<1$. Indeed, let u, v be rational integers nearest a, b, so $|a-u| \leq \frac{1}{2}$ and $|b-v| \leq \frac{1}{2}$. Then

$$
|N(\alpha-q)|=\left|(a-u)^{2}-2(b-v)^{2}\right| \leq(a-u)^{2}+2(b-v)^{2} \leq\left(\frac{1}{2}\right)^{2}+2 \cdot\left(\frac{1}{2}\right)^{2} \leq \frac{3}{4}<1
$$

