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[number theory 02.1] Show that the ideal norm and Galois norm agree on Z[i]. That is, show that for
0 6= α ∈ Z[i],

cardZ[i]/
(
α · Z[i]

)
= α · α

[I’ll write a solution in a style that may suggest how this would work in other situations, as well. In particular,
it is easily possible to give less-fancy arguments.]

It will become apparent that everything reduces to the case that α is prime in Z[i], so we treat this case
first. Let σ be the non-trivial Galois automorphism of Q(i) over Q.

When the Galois norm of α is a rational prime p, that is, when α · ασ = p, neither α nor ασ can be a unit,
so p is split or else p = 2. For split p,

Z[i]/α⊕ Z[i]/ασ ≈ Z[i]/p ≈ Fp[x]/x2 + 1 ≈ Fp[x]/x− ρ ⊕ Fp[x]/x+ ρ

where ρ is a square root of −1 in Fp. Both the last two summands are Fp again, because in those quotients x
is mapped to ±ρ ∈ Fp. Thus, the cardinality of Z[i]/p is p2. The Galois automorphism maps cosets β+Z[i]·α
to cosets βσ + Z[i] · ασ, so the two quotients Z[i]/α and Z[i]/ασ have the same cardinality, necessarily p, as
desired.

The case that the ideal norm of α is p = 2 can be brute-forced, if wished, or can be treated similarly to the
general prime-power case, below.

In the case that α = η · p where η is a unit and p is a rational prime, then p has stayed prime, so Z[i]/p is a
quadratic field extension of Z/p, so has p2 elements, as desired.

Thus, Galois norm and ideal norm agree on Gaussian primes.

Sun-Ze’s theorem gives Z[i]/ab ≈ Z/[i]/a⊕Z[i]/b for relatively prime Gaussian integers a, b, so the ideal norm
N is multiplicative in the usual sense that N(I · J) = NI ·NJ at least for relatively prime ideals I, J . The
Galois norm is multiplicative (because it is a product of field isomorphisms, each of which is multiplicative).
Thus, it suffices to compare Galois and ideal norms of prime powers α = π`, and show that

ideal norm(π`) = (ideal normπ)`

We have a chain of submodules

Z[i] · π` ⊂ Z[i] · π`−1 ⊂ Z[i] · π`−2 ⊂ . . . ⊂ Z[i] · π ⊂ Z[i]

Every quotient Z[i]πj−1/Z[i]πj is isomorphic to Z[i]/π, by

απj−1 + Z[i]πj −→ α+ Z[i]π

Thus, all the indices [Z[i]πj−1 : Z[i]πj ] are [Z[i] : Z[i]π] = Nπ, and (by multiplicativity of indices) the whole
ideal index is [Z[i] : Z[i]π`] = [Z[i] : Z[i]π]` = (Nπ)`. This gives the equality of ideal norm and Galois norm
on prime powers, and we’re done.
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[number theory 02.2] Show that in a PID every non-zero prime ideal is maximal.

Let I = R · p be a non-zero prime ideal in a PID R, with p ∈ R. A quick review of the implications of
prime-ness: since I is prime, for ab = p ∈ I, either a ∈ I or b ∈ I, that is, either a or b is divisible by p. For
p|a, write a = pa′. Then p = ab = pa′b, so a′ and b are units, since R is a domain. Let M = R ·m be an ideal
containing I. Then p = rm for some r ∈ R. By the first part of the discussion, p divides one of r,m, and
the other is a unit. Thus, either m is a unit, and M = R, or p|m, and necessarily M = I, so I is maximal.

(A stylistic note: there was no need to argue that there was a maximal proper ideal M containing I.)

[number theory 02.3] Carefully show that for a, b in a commutative ring R, with a the image of a in R/〈b〉
and b the image of b in R/〈a〉, there is a natural isomorphism

(R/〈a〉)/〈b〉 ≈ (R/〈b〉)/〈a〉

Naturally, we claim that this isomorphism is given by a natural isomorphism of both to R/〈a, b〉. By symmetry
in a, b, it suffices to show

(R/〈a〉)/〈b〉 ≈ R/〈a, b〉

and we anticipate that the identity map R → R induces this isomorphism on the quotients. Indeed, in the
usual construction of quotients, elements r ∈ R/〈a〉 are cosets r + Ra, and elements of the double quotient
are cosets

(r +Ra) +Rb = (r +Ra) +R(b+Ra) = r +Ra+Rb

The cosets r + Ra + Rb are also elements of R/〈a, b〉. Thus, the map (r + Ra) + Rb → r + Ra + Rb is a
well-defined bijection, which is the essential point.

We could also use the mapping-property characterization of quotients: a quotient R/I is characterized by the
property that any ring hom R → R′ with kernel containing I factors through the quotient map R → R/I,
and uniquely so. Since R → (R/a)/b kill off a and b, it factors through R/〈a, b〉. On the other hand,
R→ R/〈a, b〉 kills off a, first, so factors through R/a; the resulting map R/a→ R/〈a, b〉 kills off b, so further
factors through (R/a)/b. Uniquely. Thus, there are unique maps (ring homs!) both ways, which therefore
must be mutual inverses, so isomorphisms.

How clear should it be that this bijection is a ring homomorphism? We could explicitly verify it from the
coset description, which wouldn’t be hard, but the mapping-property version makes it obviously inevitable,
so we don’t have to do it. Good.

[number theory 02.4] For rational p > 2 splitting in Z[i], and for ρ any representative in Z for a square
root of −1 mod p, show that the pairs p, ρ− i and p, ρ+ i generate the two prime ideals into which p · Z[i]
factors.

Let I = 〈ρ − i, p〉 and J = 〈ρ + i, p〉. Let σ be the non-trivial Galois automorphism. Note that Iσ = J .
Certainly both I, J contain p · Z[i].

If ρ− i = α · p for some α ∈ Z[i], then application of σ gives ρ+ i = ασ · p, and p would divide the difference
(ρ− i)− (ρ+ i) = −2i, which is not the case. Thus, both I, J are strictly larger ideals than p · Z[i].

On the other hand, writing p = π1π2 with Gaussian primes π1 and π2, we claim that the only proper ideals
in Z[i] strictly containing Z[i] ·p are Z[i] ·π1 and Z[i] ·π2. Indeed, for Z[i] ·α to strictly contain Z[i] ·p, entails
that α divides p but not vice-versa. That is, α is a proper factor of p = π1π2. Up to Gaussian units, the
only possibilities are π1 and π2.

Thus, since there are just the two proper ideals strictly containing Z[i] · p, they must be the ideals 〈ρ± i, p〉.
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[number theory 02.5] Show that Z[
√

2] is Euclidean.

Even though the norm N(a+b
√

2) = a2−2b2 is not positive-definite, we can still use it to execute a Euclidean
algorithm, since on Z[

√
2] it is integer-valued.

We must prove that, given α ∈ Z[
√

2] and given 0 6= δ ∈ Z[
√

2], there is q ∈ Z[
√

2] such that the remainder
α− q · δ is smaller than the divisor δ, that is,

|N(α− q · δ)| < |Nδ|

Dividing through by δ, we must show that, given α = a+ b
√

2 ∈ Q(
√

2), there is q = u+ v
√

2 ∈ Z[
√

2] such
that |N(α− q)| < 1. Indeed, let u, v be rational integers nearest a, b, so |a− u| ≤ 1

2 and |b− v| ≤ 1
2 . Then

|N(α− q)| = |(a− u)2 − 2(b− v)2| ≤ (a− u)2 + 2(b− v)2 ≤
(
1
2

)2
+ 2 ·

(
1
2 )2 ≤ 3

4
< 1
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