(September 29, 2011)

Number theory exercises-discussion 02

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

Due Fri, 30 Sept 2011, preferably as PDF emailed to me.

[number theory 02.1] Show that the *ideal* norm and *Galois* norm agree on $\mathbb{Z}[i]$. That is, show that for $0 \neq \alpha \in \mathbb{Z}[i]$,

$$\operatorname{card} \mathbb{Z}[i]/(\alpha \cdot \mathbb{Z}[i]) = \alpha \cdot \overline{\alpha}$$

[I'll write a solution in a style that may suggest how this would work in other situations, as well. In particular, it is easily possible to give less-fancy arguments.]

It will become apparent that everything reduces to the case that α is *prime* in $\mathbb{Z}[i]$, so we treat this case first. Let σ be the non-trivial Galois automorphism of $\mathbb{Q}(i)$ over \mathbb{Q} .

When the Galois norm of α is a rational prime p, that is, when $\alpha \cdot \alpha^{\sigma} = p$, neither α nor α^{σ} can be a *unit*, so p is *split* or else p = 2. For split p,

$$\mathbb{Z}[i]/\alpha \oplus \mathbb{Z}[i]/\alpha^{\sigma} \approx \mathbb{Z}[i]/p \approx \mathbb{F}_p[x]/x^2 + 1 \approx \mathbb{F}_p[x]/x - \rho \oplus \mathbb{F}_p[x]/x + \rho$$

where ρ is a square root of -1 in \mathbb{F}_p . Both the last two summands are \mathbb{F}_p again, because in those quotients x is mapped to $\pm \rho \in \mathbb{F}_p$. Thus, the cardinality of $\mathbb{Z}[i]/p$ is p^2 . The Galois automorphism maps cosets $\beta + \mathbb{Z}[i] \cdot \alpha$ to cosets $\beta^{\sigma} + \mathbb{Z}[i] \cdot \alpha^{\sigma}$, so the two quotients $\mathbb{Z}[i]/\alpha$ and $\mathbb{Z}[i]/\alpha^{\sigma}$ have the same cardinality, necessarily p, as desired.

The case that the ideal norm of α is p = 2 can be brute-forced, if wished, or can be treated similarly to the general prime-power case, below.

In the case that $\alpha = \eta \cdot p$ where η is a unit and p is a *rational* prime, then p has *stayed prime*, so $\mathbb{Z}[i]/p$ is a quadratic field extension of \mathbb{Z}/p , so has p^2 elements, as desired.

Thus, Galois norm and ideal norm agree on Gaussian primes.

Sun-Ze's theorem gives $\mathbb{Z}[i]/ab \approx \mathbb{Z}/[i]/a \oplus \mathbb{Z}[i]/b$ for relatively prime Gaussian integers a, b, so the ideal norm N is *multiplicative* in the usual sense that $N(I \cdot J) = NI \cdot NJ$ at least for relatively prime ideals I, J. The Galois norm is multiplicative (because it is a product of field isomorphisms, each of which is multiplicative). Thus, it suffices to compare Galois and ideal norms of prime powers $\alpha = \pi^{\ell}$, and show that

ideal norm $(\pi^{\ell}) = (\text{ideal norm } \pi)^{\ell}$

We have a chain of submodules

$$\mathbb{Z}[i] \cdot \pi^{\ell} \subset \mathbb{Z}[i] \cdot \pi^{\ell-1} \subset \mathbb{Z}[i] \cdot \pi^{\ell-2} \subset \ldots \subset \mathbb{Z}[i] \cdot \pi \subset \mathbb{Z}[i]$$

Every quotient $\mathbb{Z}[i]\pi^{j-1}/\mathbb{Z}[i]\pi^j$ is isomorphic to $\mathbb{Z}[i]/\pi$, by

$$\alpha \pi^{j-1} + \mathbb{Z}[i]\pi^j \longrightarrow \alpha + \mathbb{Z}[i]\pi$$

Thus, all the indices $[\mathbb{Z}[i]\pi^{j-1}:\mathbb{Z}[i]\pi^j]$ are $[\mathbb{Z}[i]:\mathbb{Z}[i]\pi] = N\pi$, and (by multiplicativity of indices) the whole ideal index is $[\mathbb{Z}[i]:\mathbb{Z}[i]\pi^\ell] = [\mathbb{Z}[i]:\mathbb{Z}[i]\pi]^\ell = (N\pi)^\ell$. This gives the equality of ideal norm and Galois norm on prime powers, and we're done.

[number theory 02.2] Show that in a PID every non-zero prime ideal is maximal.

Let $I = R \cdot p$ be a non-zero prime ideal in a PID R, with $p \in R$. A quick review of the implications of prime-ness: since I is prime, for $ab = p \in I$, either $a \in I$ or $b \in I$, that is, either a or b is divisible by p. For p|a, write a = pa'. Then p = ab = pa'b, so a' and b are *units*, since R is a domain. Let $M = R \cdot m$ be an ideal containing I. Then p = rm for some $r \in R$. By the first part of the discussion, p divides one of r, m, and the other is a unit. Thus, either m is a unit, and M = R, or p|m, and necessarily M = I, so I is maximal.

(A stylistic note: there was no need to argue that there was a maximal proper ideal M containing I.)

[number theory 02.3] Carefully show that for a, b in a commutative ring R, with \overline{a} the image of a in $R/\langle b \rangle$ and \overline{b} the image of b in $R/\langle a \rangle$, there is a natural isomorphism

$$(R/\langle a \rangle)/\langle \overline{b} \rangle \approx (R/\langle b \rangle)/\langle \overline{a} \rangle$$

Naturally, we claim that this isomorphism is given by a natural isomorphism of both to $R/\langle a, b \rangle$. By symmetry in a, b, it suffices to show

$$(R/\langle a \rangle)/\langle \overline{b} \rangle \approx R/\langle a, b \rangle$$

and we anticipate that the identity map $R \to R$ induces this isomorphism on the quotients. Indeed, in the usual construction of quotients, elements $\overline{r} \in R/\langle a \rangle$ are cosets r + Ra, and elements of the double quotient are cosets

$$(r+Ra)+R\overline{b} = (r+Ra)+R(b+Ra) = r+Ra+Rb$$

The cosets r + Ra + Rb are also elements of $R/\langle a, b \rangle$. Thus, the map $(r + Ra) + R\bar{b} \rightarrow r + Ra + Rb$ is a well-defined bijection, which is the essential point.

We could also use the mapping-property characterization of quotients: a quotient R/I is characterized by the property that any ring hom $R \to R'$ with kernel containing I factors through the quotient map $R \to R/I$, and uniquely so. Since $R \to (R/a)/\overline{b}$ kill off a and b, it factors through $R/\langle a, b \rangle$. On the other hand, $R \to R/\langle a, b \rangle$ kills off a, first, so factors through R/a; the resulting map $R/a \to R/\langle a, b \rangle$ kills off \overline{b} , so further factors through $(R/a)/\overline{b}$. Uniquely. Thus, there are unique maps (ring homs!) both ways, which therefore must be mutual inverses, so isomorphisms.

How clear *should* it be that this bijection is a ring homomorphism? We could explicitly verify it from the coset description, which wouldn't be hard, but the mapping-property version makes it obviously inevitable, so we don't have to do it. Good.

[number theory 02.4] For rational p > 2 splitting in $\mathbb{Z}[i]$, and for ρ any representative in \mathbb{Z} for a square root of $-1 \mod p$, show that the pairs $p, \rho - i$ and $p, \rho + i$ generate the two prime ideals into which $p \cdot \mathbb{Z}[i]$ factors.

Let $I = \langle \rho - i, p \rangle$ and $J = \langle \rho + i, p \rangle$. Let σ be the non-trivial Galois automorphism. Note that $I^{\sigma} = J$. Certainly both I, J contain $p \cdot \mathbb{Z}[i]$.

If $\rho - i = \alpha \cdot p$ for some $\alpha \in \mathbb{Z}[i]$, then application of σ gives $\rho + i = \alpha^{\sigma} \cdot p$, and p would divide the difference $(\rho - i) - (\rho + i) = -2i$, which is not the case. Thus, both I, J are strictly larger ideals than $p \cdot \mathbb{Z}[i]$.

On the other hand, writing $p = \pi_1 \pi_2$ with Gaussian primes π_1 and π_2 , we claim that the only proper ideals in $\mathbb{Z}[i]$ strictly containing $\mathbb{Z}[i] \cdot p$ are $\mathbb{Z}[i] \cdot \pi_1$ and $\mathbb{Z}[i] \cdot \pi_2$. Indeed, for $\mathbb{Z}[i] \cdot \alpha$ to strictly contain $\mathbb{Z}[i] \cdot p$, entails that α divides p but not vice-versa. That is, α is a proper factor of $p = \pi_1 \pi_2$. Up to Gaussian units, the only possibilities are π_1 and π_2 .

Thus, since there are just the two proper ideals strictly containing $\mathbb{Z}[i] \cdot p$, they must be the ideals $\langle \rho \pm i, p \rangle$.

[number theory 02.5] Show that $\mathbb{Z}[\sqrt{2}]$ is Euclidean.

Even though the norm $N(a+b\sqrt{2}) = a^2 - 2b^2$ is not *positive-definite*, we can still use it to execute a Euclidean algorithm, since on $\mathbb{Z}[\sqrt{2}]$ it is integer-valued.

We must prove that, given $\alpha \in \mathbb{Z}[\sqrt{2}]$ and given $0 \neq \delta \in \mathbb{Z}[\sqrt{2}]$, there is $q \in \mathbb{Z}[\sqrt{2}]$ such that the remainder $\alpha - q \cdot \delta$ is smaller than the divisor δ , that is,

$$|N(\alpha - q \cdot \delta)| < |N\delta|$$

Dividing through by δ , we must show that, given $\alpha = a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$, there is $q = u + v\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ such that $|N(\alpha - q)| < 1$. Indeed, let u, v be rational integers nearest a, b, so $|a - u| \leq \frac{1}{2}$ and $|b - v| \leq \frac{1}{2}$. Then

$$|N(\alpha - q)| = |(a - u)^2 - 2(b - v)^2| \le (a - u)^2 + 2(b - v)^2 \le \left(\frac{1}{2}\right)^2 + 2 \cdot \left(\frac{1}{2}\right)^2 \le \frac{3}{4} < 1$$