Number theory discussion 07

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

Was collected approximately Fri, 27 Jan 2012.
[number theory 07.1] We first give a formulaic verification that $d g=d x \frac{d y}{y}$ in coordinates $g=\left(\begin{array}{ll}y & x \\ 0 & 1\end{array}\right)$ is a right Haar measure on the group

$$
G=\left\{\left(\begin{array}{ll}
y & x \\
0 & 1
\end{array}\right): 0<y \in \mathbb{R}, x \in \mathbb{R}\right\}
$$

First say what is intended by the notation:

$$
\int_{G} f(g) d g=\int_{0}^{\infty} \int_{-\infty}^{\infty} f\left(\begin{array}{cc}
y & x \\
0 & 1
\end{array}\right) d x \frac{d y}{y} \quad\left(\text { for } f \in C_{c}^{o}(G)\right)
$$

Let $h=\left(\begin{array}{ll}1 & \xi \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}\eta & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}\eta & \xi \\ 0 & 1\end{array}\right)$. Then

$$
\int_{G} f(g h) d g=\int_{0}^{\infty} \int_{-\infty}^{\infty} f\left(\begin{array}{cc}
y & x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\eta & \xi \\
0 & 1
\end{array}\right) d x \frac{d y}{y}=\int_{0}^{\infty} \int_{-\infty}^{\infty} f\left(\begin{array}{cc}
y \eta & x+y \xi \\
0 & 1
\end{array}\right) d x \frac{d y}{y}
$$

Replacing y by y / η leaves $d y / y$ invariant, stabilizes the set $(0,+i n f t y)$, and the integral becomes

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} f\left(\begin{array}{cc}
y & x+\frac{y \xi}{\eta} \\
0 & 1
\end{array}\right) d x \frac{d y}{y}
$$

Replacing x by $x-y \xi / \eta$ leaves $d x$ invariant, stabilizes $(-\infty,+\infty)$, and the integral becomes

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} f\left(\begin{array}{ll}
y & x \\
0 & 1
\end{array}\right) d x \frac{d y}{y}=\int_{G} f(g) d g
$$

This proves the invariance by computation.
[0.0.1] Remark: As discussed in the context of Siegel's computation of volumes of $S L_{n}(\mathbb{Z}) \backslash S L_{n}(\mathbb{R})$, when a group G is expressible as $G=P K$ the Haar measure on G is expressible in terms of those on P and K.

Indeed, G is a $P \times K$ space, with action $(p, k)(g)=p^{-1} g k$, with the inverse for associativity, as usual. The isotropy group of the point $1 \in G$ is $P \cap K$. Thus, as $P \times K$-spaces, $G \approx(P \cap K) \backslash(P \times K)$. As proven earlier, there is a (unique!) $P \times K$-invariant measure on that quotient if and only if the modular function condition is met, namely,

$$
\left.\Delta_{P \times K}\right|_{P \cap K}=\Delta_{P \cap K}
$$

When this condition is met, the right Haar measure on $P \times K$ gives rise to a (unique!) right $P \times K$-invariant measure on $(P \cap K) \backslash(P \times K)$.

At the same time, the right Haar measure on G is certainly right K-invariant. The left invariance by P requires $d\left(p^{-1} g\right)=d g$. For a right Haar measure $d g$, the modular function Δ_{G} is $d(h g)=\Delta(h) \cdot d g$. Thus, for the right Haar measure on G to give a right $P \times K$-invariant measure at all, we need $\left.\Delta_{G}\right|_{P}=1$.
In summary, when $\left.\Delta_{P \times K}\right|_{P \cap K}=\Delta_{P \cap K}$ and $\left.\Delta_{G}\right|_{P}=1$, the $P \times K$-invariant measure must be equal to (a constant multiple of) the Haar measure on G.

Paul Garrett: Number theory discussion 07 (February 14, 2012)
In particular, when G is a product $G=N \times A$, necessarily $N \cap A=\{1\}$, and the only condition is $\left.\Delta_{G}\right|_{N}=1$. When this is met,

$$
d g=d n d a \quad \text { (right Haar measures) }
$$

[number theory 07.2] Verify that $d g=d x d y d z$ in coordinates $g=\left(\begin{array}{lll}1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1\end{array}\right)$ is a right Haar measure on the group

$$
G=\left\{\left(\begin{array}{ccc}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right): x, y, z \in \mathbb{R}\right\}
$$

This means that the intended integral is

$$
\int_{G} f(g) d g=\int_{\mathbb{R}} \int_{\mathbb{R}} \int_{R} f\left(\begin{array}{ccc}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right) d x d y d z \quad\left(\text { for } f \in C_{c}^{o}(G)\right)
$$

For $h=\left(\begin{array}{ccc}1 & \xi & \eta \\ 0 & 1 & \zeta \\ 0 & 0 & 1\end{array}\right)$,

$$
\begin{gathered}
\int_{G} f(g h) d g=\int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} f\left(\begin{array}{ccc}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & \xi & \eta \\
0 & 1 & \zeta \\
0 & 0 & 1
\end{array}\right) d x d y d z \\
=\int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} f\left(\begin{array}{ccc}
1 & x+\xi & y+\eta+x \zeta \\
0 & 1 & z+\zeta \\
0 & 0 & 1
\end{array}\right) d x d y d z
\end{gathered}
$$

The additive Haar measures $d x, d y, d z$ are invariant under translations, as are the three copies of \mathbb{R}. First replacing y by $y-\eta-x \zeta$, then x by $x-\xi$ and z by $z-\zeta$ does not change the value of the integral, and puts it back in the form

$$
\int_{\mathbb{R}} \int_{\mathbb{R}} \int_{R} f\left(\begin{array}{ccc}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right) d x d y d z=\int_{G} f(g) d g
$$

This gives the invariance.
[0.0.2] Remark: The latter example illustrates another class wherein the Haar measure on a larger group is built up from smaller groups. That example presents the whole group G as fitting into a short exact sequence in which the outer groups are more elementary: with $Z=\left(\begin{array}{lll}1 & 0 & * \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \approx \mathbb{R}$ the center of $G, G / Z \approx \mathbb{R}^{2}$ by $\left(\begin{array}{lll}1 & u & * \\ 0 & 1 & v \\ 0 & 0 & 1\end{array}\right) \longrightarrow(u, v)$. That is, we have a short exact sequence

$$
1 \longrightarrow \mathbb{R} \longrightarrow G \longrightarrow \mathbb{R}^{2} \longrightarrow 1
$$

Generally, consider $1 \longrightarrow N \longrightarrow G \longrightarrow G / N \longrightarrow 1$ where N is a closed normal subgroup. We claim that

$$
\int_{G} f(g) d g=\int_{N \backslash G}\left(\int_{N} f(n \dot{g}) d n\right) d \dot{g} \quad\left(\text { for } f \in C_{c}^{o}(\mathcal{G})\right)
$$

where $d \dot{g}$ is Haar measure on $N \backslash G$ and $d n$ is Haar measure on N. Indeed, we have already treated a more general version of this, in which N need not be normal. The condition for success is the usual $\left.\Delta_{G}\right|_{N}=\Delta_{N}$.
[number theory 07.3] Verify that $G=S L_{2}(k)$, the two-by-two matrices with entries in a field k with more than 2 elements, with determinant 1 , has the property $G=[G, G]$.

Hint: To get started, note that

$$
\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right)\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & a^{2} x \\
0 & 1
\end{array}\right)
$$

Thus,

$$
\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right)\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right)^{-1}\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & x\left(a^{2}-1\right) \\
0 & 1
\end{array}\right)
$$

This shows that all unipotent upper-triangular matrices are commutators. Similarly for lower-triangular unipotent.

Various further bits of fooling around suffice to express the general invertible matrix in terms of uppertriangular or lower-triangular unipotent matrices.

