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Factoring xn − 1: cyclotomic and Aurifeuillian polynomials
Paul Garrett <garrett@math.umn.edu>

Polynomials of the form x2 − 1, x3 − 1, x4 − 1 have at least one systematic factorization

xn − 1 = (x− 1)(xn−1 + xn−2 + . . . + x2 + x + 1)

Equivalently, polynomials like x2 − y2, x3 − y3, and x4 − y4 have factorizations

xn − yn = (x− y)(xn−1 + xn−2y + . . . + xyn−2 + yn−1)

For odd n, replacing y by −y gives a variant

xn + yn = (x + y)(xn−1 − xn−2y + . . .− xyn−2 + yn−1)

For composite exponent n one obtains several different factorizations

x30 − 1 = (x15)2 − 1 = (x15 − 1)(x15 + 1)

x30 − 1 = (x10)3 − 1 = (x10 − 1)(x20 + x10 + 1)

x30 − 1 = (x6)5 − 1 = (x6 − 1)((x6)4 + . . . + 1)

Such algebraic factorizations yield numerical partial factorizations of some special large numbers, such as

233 − 1 = (211)3 − 1 = (211 − 1)(222 + 211 + 1)

233 − 1 = (23)11 − 1 = (23 − 1)(230 + . . . + 1)

Thus, 233−1 has factors 23−1 = 7 and 211−1 = 23 ·89. It is then easier to complete the prime factorization

233 − 1 = 7 · 23 · 89 · 599479

But that largish number 599479 might be awkward to understand.

How do we verify that a number such as N = 599479 is prime? That is, how do we show that N is not
evenly divisible by any integer D in the range 1 < D < N?

One could divide N by all integers D between 1 and N , but this is needlessly slow, since if D evenly divides
N and D >

√
N then N/D is an integer and N/D <

√
N .

That is, we need only do trial divisions by D for D ≤
√

N .

And, after dividing by 2, we need only divide by odd numbers D thereafter.

Also, we need only divide by primes, if convenient.

For example, since N = 101 is not divisible by the primes D = 2, 3, 5, 7 no larger than
√

101 ∼ 10, we see
that 101 is prime.

Congruences: Recall that
a = b mod m
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means that m divides a− b evenly. Thus, for example,

6 = 1 mod 5

10 = −1 mod 11

35 = 1012 mod 977

One might worry that in the prime factorization

233 − 1 = 7 · 23 · 89 · 599479

the large number 599479 is left over after algebraic factoring. But Fermat and Euler proved that a prime
factor p of bn − 1 either divides bd − 1 for a divisor d < n of the exponent n, or else p = 1 mod n.

Since here the exponent 33 is odd, and since primes bigger than 2 are odd, in fact we can say that if a prime
p divides 233 − 1 and is not 7, 23, 89, then p = 1 mod 66.

Thus, in testing 599479 for divisibility by D ≤
√

599479 ∼ 774 we do not need to test all odd numbers, but
only 67, 133, 199, . . . and only need to do

599479/66 ∼ 11

trial divisions to see that 599479 is prime.

So 2n − 1 is not prime unless the exponent n is prime. For p prime, if 2p − 1 is prime, it is a Mersenne
prime.

Not every number of the form 2p − 1 is prime, even with p prime. For example,

211 − 1 = 23 · 89

223 − 1 = 47 · 178481

229 − 1 = 233 · 1103 · 2089

237 − 1 = 223 · 616318177

241 − 1 = 13367 · 164511353

Nevertheless, usually the largest known prime at any moment is a Mersenne prime, such as

26972593 − 1

Theorem (Lucas-Lehmer) Let Lo = 4, Ln = L2
n−1 − 2. For p an odd prime, 2p − 1 is prime if and only if

Lp−2 = 0 mod 2p − 1

We want the complete factorization of xn − 1 into irreducible polynomials with rational coefficients (which
cannot be factored further without going outside the rational numbers). The irreducible factors are
cyclotomic polynomials. For example,

x18 − 1 = (x− 1)(x + 1)(x2 + x + 1)(x2 − x + 1)(x6 + x3 + 1)(x6 − x3 + 1)

has familiar-looking factors, but

x15 − 1 = (x− 1)(x2 + x + 1)(x4 + x3 + x2 + x + 1)(x8 − x7 + x5 − x4 + x3 − x + 1)
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has an unfamiliar factor. How do we get all these?

For complex α the polynomial x− α is a factor of xn − 1 if and only if αn = 1. This happens if and only if

α = cos
2πk

n
+ i sin

2πk

n
= e2πik/n

for some k = 0, 1, 2, . . . , n − 1. These are nth roots of unity, and they account for the n complex roots of
xn − 1 = 0.

Among the nth roots of unity are dth roots of unity for divisors d of n. For example, among the 6th roots of
unity are square roots and cube roots of 1 also, not to mention 1 itself. An nth root of unity is primitive if
it is not a dth root of unity for any d < n dividing n.

The primitive complex nth roots of unity are

cos
2πk

n
+ i sin

2πk

n
= e2πik/n

with 0 < k < n and gcd(k, n) = 1. Indeed, if gcd(k, n) = d > 1, then

(e2πik/n)(n/d) = e2πik/d = 1

since d divides k evenly.

For example, the primitive complex 6th roots of 1 are

e2πi·1/6 e2πi·5/6

The primitive complex 10th roots of 1 are

e2πi·1/10 e2πi·3/10 e2πi·7/10 e2πi·9/10

One definition of the nth cyclotomic polynomial Φn(x) is

Φn(x) =
∏

α primitive nth root of 1

(x− α)

This does not make immediately clear that the coefficients are rational, which they are. It is also not
immediately clear how to compute the cyclotomic polynomials from this.

But this definition does give the important property

xn − 1 =
∏
d|n

Φd(x)

where d|n means that d divides n evenly.

A naive computational approach comes from the idea that roots α of Φn(x) = 0 should satisfy αn − 1 = 0
but not αd − 1 = 0 for smaller d. Thus, for prime p indeed

Φp(x) =
xp − 1
x− 1

= xp−1 + xp−2 + . . . + x2 + x + 1
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We might try

Φn(x) =
xn − 1

xd − 1 for d < n dividing n
(?)

But this is not quite right. For example,

Φ6(x) 6= x6 − 1
(x− 1)(x2 − 1)(x3 − 1)

shows that this attempted definition tries to remove more factors of x− 1 that there are in x6 − 1.

Correcting this,

Φ6(x) = (x6 − 1) · 1
(x6/2 − 1)(x6/3 − 1)

· (x6/6 − 1) =
(x6 − 1)(x− 1)
(x3 − 1)(x2 − 1)

= x2 − x + 1

That is, we include all 6th roots of unity, take away those which are cube roots or square roots, and put back
those we have counted twice, namely 1. Similarly,

Φ30(x) =

(x30 − 1) · 1
(x15 − 1)(x10 − 1)(x6 − 1)

· (x5 − 1)(x3 − 1)(x2 − 1) · 1
(x− 1)

=
(x30 − 1)(x5 − 1)(x3 − 1)(x2 − 1)
(x15 − 1)(x10 − 1)(x6 − 1)(x− 1)

= x8 + x7 − x5 − x4 − x3 + x + 1

That is, we include all 30th roots of unity, take away 15th, 10th, and 6th roots, put back those we have counted
twice, namely 5th, cube, and square roots, and then take away again those we’ve counted 3 times, namely 1.

Systematically incorporating the idea of compensating for over-counting we have the correct expression

Φn(x) = (xn−1)× 1∏
prime p|n(xn/p − 1)

×
∏

distinct primes p,q|n

(xn/pq−1)× 1∏
distinct primes p,q,r|n(xn/pqr − 1)

×. . .

Using the property
xn − 1 =

∏
d|n

Φd(x)

gives a more elegant approach, by rearranging:

Φn(x) =
xn − 1∏

d|n, d<n Φd(x)

By induction, if Φd(x) has rational coefficients for d < n, then so does Φn(x). Also, inductively, if we know
Φd(x) for d < n then we can compute Φn(x). Grouping helps. For example,

Φ15(x) =
x15 − 1

Φ1(x)Φ3(x)Φ5(x)
=

x15 − 1
Φ3(x)(x5 − 1)

=
x10 + x5 + 1

Φ3(x)
=

x10 + x5 + 1
x2 + x + 1

= x8−x7 +x5−x4 +x3−x+1

by direct division at the last step. We can be a little clever. For example,

Φ30(x) =
x30 − 1

Φ1(x)Φ2(x)Φ3(x)Φ5(x)Φ6(x)Φ10(x)Φ15(x)
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Use
x15 − 1 = Φ1(x)Φ3(x)Φ5(x)Φ15(x)

to simplify to

Φ30(x) =
x30 − 1

Φ2(x)Φ6(x)Φ10(x)(x15 − 1)
=

x15 + 1
Φ2(x)Φ6(x)Φ10(x)

Use
x10 − 1 = Φ1(x)Φ2(x)Φ5(x)Φ10(x)

to get

Φ30(x) =
x15 + 1

Φ2(x)Φ6(x)Φ10(x)
=

(x15 + 1)Φ1(x)Φ5(x)
Φ1(x)Φ2(x)Φ5(x)Φ10(x) · Φ6(x)

=
(x15 + 1)(x5 − 1)
Φ6(x)(x10 − 1)

=
(x15 + 1)

Φ6(x)(x5 + 1)
=

(x10 + x5 + 1)
x2 − x + 1

=
(x10 − x5 + 1)

x2 − x + 1
= x8 + x7 − x5 − x4 − x3 + x + 1

by direct division at the last step.

Based on fairly extensive hand calculations, one might suspect that all coefficients of all cyclotomic polyno-
mials are either +1, −1, or 0, but this is not true. It is true for n prime, and for n having at most 2 distinct
prime factors, but not generally. The smallest n where Φn(x) has an exotic coefficient is n = 105. It is no
coincidence that 105 = 3 · 5 · 7 is the product of the first 3 primes above 2.

Φ105(x) =
x105 − 1

Φ1(x)Φ3(x)Φ5(x)Φ7(x)Φ15(x)Φ21(x)Φ35(x)
=

x105 − 1
Φ3(x)Φ15(x)Φ21(x)(x35 − 1)

=
x70 + x35 + 1

Φ3(x)Φ15(x)Φ21(x)
=

(x70 + x35 + 1)(x7 − 1)
Φ15(x)(x21 − 1)

=
(x70 + x35 + 1)(x7 − 1)Φ1(x)Φ3(x)Φ5(x)

(x15 − 1)(x21 − 1)

=
(x70 + x35 + 1)(x7 − 1)(x5 − 1)Φ3(x)

(x15 − 1)(x21 − 1)

Instead of direct polynomial computations, we do power series computations, imagining that |x| < 1, for
example. Thus,

−1
x21 − 1

=
1

1− x21
= 1 + x21 + x42 + x63 + . . .

We anticipate that the degree of Φ105(x) is (3− 1)(5− 1)(7− 1) = 48 (why?). We also observe that the
coefficients of all cyclotomic polynomials are the same back-to-front as front-to-back (why?). Thus, we’ll use
power series in x and ignore terms of degree above 24.

Thus

Φ105(x) =
(x70 + x35 + 1)(x7 − 1)(x5 − 1)(x2 + x + 1)

(x15 − 1)(x21 − 1)
= (1 + x + x2)(1− x7)(1− x5)(1 + x15)(1 + x21)

= (1 + x + x2)× (1− x5 − x7 + x12 + x15 − x20 + x21 − x22) =

1+x+x2−x5−x6−x7−x7−x8−x9+x12+x13+x14+x15+x16+x17−x20−x21−x22+x21+x22+x23−x22−x23−x24

= 1 + x + x2 − x5 − x6 − 2x7 − x8 − x9 + x12 + x13 + x14 + x15 + x16 + x17 − x20 − x22 − x24

Looking closely, we have a −2x7.

In fact, Φn(x) cannot be factored further using only rational coefficients.

For prime p, this follows from Eisenstein’s criterion: for f(x) with integer coefficients, highest-degree
coefficient 1, all lower-degree coefficients divisible by p, and constant term not divisible by p, f(x) cannot be
factored (with rational coefficients).
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For example, Φ5(x) = x4 + x3 + x2 + x + 1 itself does not have the right kind of coefficients, but a variation
does:

Φ5(x + 1) =
(x + 1)5 − 1
(x + 1)− 1

= x4 + 5x3 + 10x2 + 10x + 5

And

Φ7(x + 1) =
(x + 1)7 − 1
(x + 1)− 1

= x6 + 7x5 + 21x4 + 35x3 + 35x2 + 21x + 7

Less well known are Lucas-Aurifeullian-LeLasseur factorizations such as

x4 + 4 = (x4 + 4x2 + 4)− (2x)2 = (x2 + 2x + 2)(x2 − 2x + 2)

More exotic are
x6 + 27
x2 + 3

= (x2 + 3x + 3)(x2 − 3x + 3)

x10 − 55

x2 − 5
= (x4 + 5x3 + 15x2 + 25x + 25)× (x4 − 5x3 + 15x2 − 25x + 25)

and
x12 + 66

x4 + 36
= (x4 + 6x3 + 18x + 36x + 36)× (x4 − 6x3 + 18x− 36x + 36)

and further

x14 + 77

x2 + 7
= (x6 + 7x5 + 21x4 + 49x3 + 147x2 + 343x + 343)× (x6 − 7x5 + 21x4 − 49x3 + 147x2 − 343x + 343)

These Aurifeuillian factorizations yield further factorizations of special large numbers, such as

222 + 1 = 4 · (25)4 + 1 = (2(25)2 + 2(25) + 1)(2(25)2 − 2(25) + 1) = 2113 · 1985 = 2113 · 5 · 397

and similarly

333 + 1
311 + 1

=
27 · (35)6 + 1
3 · (35)2 + 1

= (3(35)2 + 3(35) + 1)(3(35)2 + 3(35) + 1) = 7 · 25411 · 176419

Where do these come from? For an odd prime p

Φp(x2) =
(x2)p − 1
Φ1(x2)

=
(x2p − 1)Φp(x)

Φ1(x)Φ2(x)Φp(x)
= Φ2p(x)Φp(x)

Replacing x by
√

p · x in this equality gives

Φp(px2) = Φ2p(
√

p x)Φp(
√

p x)

The factors on the right-hand side no longer have rational coefficients. But their linear factors can be
regrouped into two batches of p−1 which do have rational coefficients, and these are the Aurifeuillian factors
of Φ2p(px2).

From Galois theory, using p = 1 mod 4, for ζ = e2πi/2p,
√

p is a Gauss sum

√
p =

p−1∑
k=1

(
k

p

)
2

ζ2k ∈ Q(ζ)
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with quadratic symbol
(

k
p

)
2

= ±1 depending whether k is a square mod p or not. The automorphisms of

Q(ζ) over Q are
σa : ζ → ζa

for a ∈ Z/p×, and

σa(
√

p) =
√

p ·
(

a

p

)
2

Then
Φp(px2) =

∏
( k

p )
2
=1

(
√

p x− ζk)×
∏

( k
p )

2
=−1

(
√

p x− ζk)

is the Aurifeuillian factorization into two factors with rational coefficients.

To compute the Aurifeuillian factors? From the Galois theory view, it turns out that there are polynomials
f(x) and g(x) with rational coefficients such that

Φp(x) = f(x)2 ± pxg(x)2

with +1 for p = 1 mod 4, −1 for p = 3 mod 4. Then replacing x by ∓px2 gives a difference of squares, which
factors

Φp(−px2) = f(−px2)2 − p2x2g(−px2)2 =
(
f(−px2)− pxg(−px2)

)
×

(
f(−px2) + pxg(−px2)

)
For example,

Φ3(x) = x2 + x + 1 = (x + 1)2 − 3x

Then
Φ3(3x2) = (3x2 + 1)2 − 9x2 = (3x2 + 3x + 1) (3x2 − 3x + 1)

And
Φ5(x) = x4 + x3 + x2 + x + 1 = (x2 + 3x + 1)2 + 5x(x + 1)2

The latter ingredients are not so hard to determine. If we know

x4 + x3 + x2 + x + 1 = f(x)2 + 5xg(x)2

it is reasonable to take f(x) = x2 + ax± 1 and try to find parameter a so that f(x)2 differs from Φ5(x) by
some 5xg(x)2.

(x2 + ax + 1)2 − Φ5(x)
x

= (2a− 1)x2 + (1 + a2)x + (2a− 1)

Trying a = 0, 1, 2, . . . yields a good result for a = 3:

5x2 + 10x + 5 = 5(x + 1)2
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