Gauss sums and harmonic analysis

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/
[This document is
http://www.math.umn.edu/~garrett/m/mfms/notes_2015-16/06e_Gauss_sums.pdf]
In the context of harmonic analysis on finite abelian groups, Gauss sums reflect the interaction of addition and multiplication on the finite ring \mathbb{Z} / N. We need a few basic facts.

Let ψ be an additive character $\psi: \mathbb{Z} / N \rightarrow \mathbb{C}^{\times}$on the additive group of \mathbb{Z} / N, and require that ψ not be well-defined modulo N^{\prime} for any proper divisor N^{\prime} of N.

Let χ be a multiplicative character $\chi:(\mathbb{Z} / N)^{\times} \rightarrow \mathbb{C}^{\times}$, extended by 0 to non-invertible elements of \mathbb{Z} / N. The corresponding Gauss sum is essentially an inner product in space of \mathbb{C}-valued functions on \mathbb{Z} / N :

$$
g(\chi, \psi)=\sum_{x \bmod N} \chi(x) \cdot \psi(x)
$$

The character χ is primitive $\bmod N$ if it is not well-defined on \mathbb{Z} / N^{\prime} for any proper divisor N^{\prime} of N. Then say that χ has conductor N. This distinction has immediate consequences:
[0.0.1] Claim: $g(\chi, \psi)=0$ for χ not primitive $\bmod N$.
Proof: Non-primitivity means that there is N^{\prime} a proper divisor of N such that χ is well-defined modulo N^{\prime}. This means that $\chi\left(1+k N^{\prime}\right)=\chi(1)=1$ for all $k \in \mathbb{Z}$. Then

$$
g(\chi, \psi)=\sum_{x \bmod N} \chi(x) \cdot \psi(x)=\sum_{x \bmod N} \chi\left(x\left(1+k N^{\prime}\right)^{-1}\right) \cdot \psi(x)
$$

where the inverse means in \mathbb{Z} / N. Replacing x by $x\left(1+k N^{\prime}\right)$ gives

$$
g(\chi, \psi)=\sum_{x \bmod N} \chi(x) \cdot \psi\left(x\left(1+k N^{\prime}\right)\right)=\sum_{x \bmod N} \chi(x) \cdot \psi(x) \cdot \psi\left(x \cdot k N^{\prime}\right)
$$

By the cancellation lemma, summing $\psi\left(x k N^{\prime}\right)$ over $k \bmod N / N^{\prime}$ produces either N / N^{\prime} or 0 depending whether $k \rightarrow \psi\left(x k N^{\prime}\right)$ is the trivial character or not. The character $k \rightarrow \psi\left(x k N^{\prime}\right)$ is trivial exactly when $N \mid x N^{\prime}$. Since N^{\prime} is a proper divisor of N, this can happen only when x has a non-trivial common factor with N. But then $\chi(x)=0$. Thus,

$$
\begin{gathered}
\frac{N}{N^{\prime}} \cdot g(\chi, \psi)=\sum_{k \bmod N / N^{\prime}} g(\chi, \psi)=\sum_{k \bmod N / N^{\prime}}\left(\sum_{x \bmod N} \chi(x) \cdot \psi(x) \cdot \psi\left(x \cdot k N^{\prime}\right)\right) \\
=\sum_{x \bmod N} \chi(x) \cdot \psi(x)\left(\sum_{k \bmod N / N^{\prime}} \psi\left(x \cdot k N^{\prime}\right)\right)=\sum_{x \bmod N} 0=0
\end{gathered}
$$

since in every summand either $\chi(x)=0$ or the inner sum over k is 0 .
[0.0.2] Claim: For primitive $\chi \bmod N$,

$$
|g(\chi, \psi)|^{2}=N
$$

Proof: Start the computation in the obvious fashion, writing $\psi(a)=e^{2 \pi i a / N}$. Let Σ^{\prime} denote sum over $(\mathbb{Z} / N)^{\times}$, and $\Sigma^{\prime \prime}$ denote sum over $\mathbb{Z} / N-(\mathbb{Z} / N)^{\times}$.

$$
\left|\sum_{a \bmod N} \chi(a) \psi(a)\right|^{2}=\sum_{a, b}^{\prime} \chi(a) \psi(a) \bar{\chi}(b) \psi(-b)
$$

Replacing a by $a b$, this becomes

$$
\sum_{a, b}^{\prime} \chi(a) \psi((a-1) \cdot b)
$$

We claim that, because χ has conductor N (and not smaller!)

$$
\sum_{a}^{\prime} \chi(a) \psi((a-1) \cdot b)=0 \quad(\text { for } \operatorname{gcd}(b, N)>1)
$$

To see this, let p be a prime dividing $\operatorname{gcd}(b, N)$. That N is the conductor of χ is to say that χ is primitive mod N, meaning that χ does not factor through any quotient $\mathbb{Z} /(N / p)$. That is, there is some $\eta=1 \bmod N / p$ such that $\chi(\eta) \neq 1$.

Since $p \mid b$, and $\eta=1 \bmod N / p$,

$$
(a \eta-1) \cdot b=(a-1) b+a(\eta-1) b=(a-1) b \bmod N
$$

Thus, replacing a by ηa,

$$
\sum_{a}^{\prime} \chi(a) \psi((a-1) \cdot b)=\sum_{a}^{\prime} \chi(a \eta) \psi((a \eta-1) \cdot b)=\chi(\eta) \sum_{a}^{\prime} \chi(a) \psi((a-1) \cdot b)
$$

Thus, the sum over a is 0 . Thus, we can drop the coprimality constraint:

$$
\sum_{a, b}^{\prime} \chi(a) \psi((a-1) \cdot b)=\sum_{a, b} \chi(a) \psi((a-1) \cdot b)
$$

For $a \neq 1$, the inner sum over b is 0 , because the sum of a non-trivial character over a finite group is 0 . For $a=1$ the sum over b gives N.

