Gauss sums and harmonic analysis

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is

http://www.math.umn.edu/~garrett/m/mfms/notes_2015-16/06e_Gauss_sums.pdf]

In the context of harmonic analysis on finite abelian groups, *Gauss sums* reflect the interaction of *addition* and *multiplication* on the finite ring \mathbb{Z}/N . We need a few basic facts.

Let ψ be an *additive character* $\psi : \mathbb{Z}/N \to \mathbb{C}^{\times}$ on the additive group of \mathbb{Z}/N , and require that ψ not be well-defined modulo N' for any proper divisor N' of N.

Let χ be a *multiplicative character* $\chi : (\mathbb{Z}/N)^{\times} \to \mathbb{C}^{\times}$, extended by 0 to non-invertible elements of \mathbb{Z}/N . The corresponding Gauss sum is essentially an inner product in space of \mathbb{C} -valued functions on \mathbb{Z}/N :

$$g(\chi,\psi) = \sum_{x \mod N} \chi(x) \cdot \psi(x)$$

The character χ is *primitive* mod N if it is *not* well-defined on \mathbb{Z}/N' for any proper divisor N' of N. Then say that χ has *conductor* N. This distinction has immediate consequences:

[0.0.1] Claim: $g(\chi, \psi) = 0$ for χ not primitive mod N.

Proof: Non-primitivity means that there is N' a proper divisor of N such that χ is well-defined modulo N'. This means that $\chi(1 + kN') = \chi(1) = 1$ for all $k \in \mathbb{Z}$. Then

$$g(\chi,\psi) = \sum_{x \mod N} \chi(x) \cdot \psi(x) = \sum_{x \mod N} \chi(x(1+kN')^{-1}) \cdot \psi(x)$$

where the inverse means in \mathbb{Z}/N . Replacing x by x(1 + kN') gives

$$g(\chi,\psi) = \sum_{x \bmod N} \chi(x) \cdot \psi(x(1+kN')) = \sum_{x \bmod N} \chi(x) \cdot \psi(x) \cdot \psi(x \cdot kN')$$

By the cancellation lemma, summing $\psi(xkN')$ over $k \mod N/N'$ produces either N/N' or 0 depending whether $k \to \psi(xkN')$ is the trivial character or not. The character $k \to \psi(xkN')$ is trivial exactly when N|xN'. Since N' is a proper divisor of N, this can happen only when x has a non-trivial common factor with N. But then $\chi(x) = 0$. Thus,

$$\frac{N}{N'} \cdot g(\chi, \psi) = \sum_{k \mod N/N'} g(\chi, \psi) = \sum_{k \mod N/N'} \left(\sum_{x \mod N} \chi(x) \cdot \psi(x) \cdot \psi(x \cdot kN') \right)$$
$$= \sum_{x \mod N} \chi(x) \cdot \psi(x) \left(\sum_{k \mod N/N'} \psi(x \cdot kN') \right) = \sum_{x \mod N} 0 = 0$$

since in every summand either $\chi(x) = 0$ or the inner sum over k is 0.

[0.0.2] Claim: For primitive $\chi \mod N$,

$$|g(\chi,\psi)|^2 = N$$

Proof: Start the computation in the obvious fashion, writing $\psi(a) = e^{2\pi i a/N}$. Let Σ' denote sum over $(\mathbb{Z}/N)^{\times}$, and Σ'' denote sum over $\mathbb{Z}/N - (\mathbb{Z}/N)^{\times}$.

$$\left|\sum_{a \mod N} \chi(a) \psi(a)\right|^2 = \sum_{a,b} \prime \chi(a) \psi(a) \overline{\chi}(b) \psi(-b)$$

///

Replacing a by ab, this becomes

$$\sum_{a,b}' \chi(a) \psi((a-1) \cdot b)$$

We claim that, because χ has conductor N (and not smaller!)

$$\sum_{a}' \chi(a) \psi((a-1) \cdot b) = 0 \qquad (\text{for } \gcd(b, N) > 1)$$

To see this, let p be a prime dividing gcd(b, N). That N is the conductor of χ is to say that χ is primitive mod N, meaning that χ does not factor through any quotient $\mathbb{Z}/(N/p)$. That is, there is some $\eta = 1 \mod N/p$ such that $\chi(\eta) \neq 1$.

Since p|b, and $\eta = 1 \mod N/p$,

$$(a\eta - 1) \cdot b = (a - 1)b + a(\eta - 1)b = (a - 1)b \mod N$$

Thus, replacing a by ηa ,

$$\sum_{a}{'} \chi(a) \psi((a-1) \cdot b) = \sum_{a}{'} \chi(a\eta) \psi((a\eta-1) \cdot b) = \chi(\eta) \sum_{a}{'} \chi(a) \psi((a-1) \cdot b)$$

Thus, the sum over a is 0. Thus, we can drop the coprimality constraint:

$$\sum_{a,b} {}' \chi(a) \psi \left((a-1) \cdot b \right) = \sum_{a,b} \chi(a) \psi \left((a-1) \cdot b \right)$$

For $a \neq 1$, the inner sum over b is 0, because the sum of a non-trivial character over a finite group is 0. For a = 1 the sum over b gives N. ///