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The Estermann phenomenon is that not every natural Dirichlet series has a meromorphic continuation. One
need not look far:

Claim: (Estermann) Let d(n) be the number of positive divisors of n. The Dirichlet series
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Proof: The cases with meromorphic continuations are treated along the way to examination of the example
lacking meromorphic continuation. By the multiplicativity d(mn) = d(m)d(n) for coprime m,n,
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The numerator is not a cyclotomic polynomial, so is not a finite product-and-ratio of polynomials 1 — z*, so
there is no obvious analogous expression in terms of ((s), ¢(2s), ¢(3s), etc.

The polynomial 1+ 4z 4 22 can be written as an arbitrarily large product-and-ratio of binomials 1 — 2, with
a leftover polynomial factor of the form 1+ cz®t! +.... Thus, ., d(n)?/n® can be written as an arbitrarily
large product-and-ratio of factors {(¢s) together with a leftover Euler product convergent in Re(s) > “%1.

To illustrate this, the first step would be to get rid of the 4z term by multiplying by (1 — z)*:
(1—2)* - (1+4x+2%) = (1 —4o+ 62> — 42> + 2 (1 + 4+ 2?) = 1 - 927 + 162> — 9z + 2

Thus,
[T +4p~ +p72) = ¢(o)* - JJ(1 = 9p7 + 16p~3* — 9p~** 4 p=*)
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Next, to get rid of the —922 term, multiply by (1 + 22)% = (1 — 2%)?/(1 — 2?)?, giving

[[a+4p™ +p72) = ((s)* . [[a+16p=3 +..)
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Since 1 + 4z + 22 is not a cyclotomic polynomial, this process does not terminate. Inductively, there is an
infinite increasing sequence of integers ¢; and non-zero integers e; such that

l+dz+2? = 1—2)(1—2?)2(1—2®) ... (1-29)% - (1+ 251 Pj(2))
with (non-zero) polynomials P;(x). Certainly
Di(s) = [[(+p@*VP(p~))
P
is absolutely convergent and non-vanishing for Re(s) > ﬁ. Thus, for every j, there is an expression
[[a+4p~+p72) = Di(s)- ] <~ s)* (for Re(s) > ¢v)
P 1<i<y

On one hand, this gives a meromorphic continuation to Re(s) > ﬁ On the other hand, since the exponents

e; are non-zero, the infinitely-many zeros of {(s) in the critical strip make the zeros of {(¢- s) bunch up just
to the right of Re(s) =0 as ¢ — oo. ///
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[0.0.1] Remarks: Continuing in this vein, [Kurokawa 1985a,b] showed that 3~ %2 has a natural boundary
for k > 3, where f(2) = 3. a, €2™"* is a modular form,
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