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The Estermann phenomenon is that not every natural Dirichlet series has a meromorphic continuation. One
need not look far:

Claim: (Estermann) Let d(n) be the number of positive divisors of n. The Dirichlet series

∑
n

d(n)3

ns
= ζ(s)4

∏
p

(
1 + 4p−s + p−2s

)
has a natural boundary along Re(s) = 0, in contrast to meromorphically continuable

∑
n

d(n)

ns
= ζ(s)2 and

∑
n

d(n)2

ns
=

ζ(s)4

ζ(2s)

Proof: The cases with meromorphic continuations are treated along the way to examination of the example
lacking meromorphic continuation. By the multiplicativity d(mn) = d(m)d(n) for coprime m,n,∑

n

d(n)

ns
=
∏
p

(
1 +

2

ps
+

3

p2
+ . . .

)
Recall

1 + 2x+ 3x2 + . . . =
d

dx

(
1 + x+ x2 + x3 + . . .

)
=

d

dx

1

1− x
=

1

(1− x)2

Thus, ∑
n

d(n)

ns
=
∏
p

1

(1− p−s)2
= ζ(s)2

Continuing, ∑
n

d(n)2

ns
=
∏
p

(
1 +

22

ps
+

32

p2
+ . . .

)
and

1 + 22x+ 32x2 + . . . =
d

dx

(
x
d

dx

(
1 + x+ x2 + x3 + . . .

))
=

d

dx

x

(1− x)2
=

1

(1− x)2
+

2x

(1− x)3
=

1 + x

(1− x)3
=

1− x2

(1− x)4

For ∑
n

d(n)3

ns
=
∏
p

(
1 +

23

ps
+

33

p2
+ . . .

)
similarly

1 + 23x+ 33x2 + . . . =
d

dx

(
x · 1 + x

(1− x)3

)
=

1 + x

(1− x)3
+ x · 1

(1− x)3
+ x · 3(1 + x)

(1− x)4

=
(1− x2) + x(1− x) + 3x(1 + x)

(1− x)4
=

1− x2 + x− x2 + 3x+ 3x2

(1− x)4
=

1 + 4x+ x2

(1− x)4

1
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The numerator is not a cyclotomic polynomial, so is not a finite product-and-ratio of polynomials 1− x`, so
there is no obvious analogous expression in terms of ζ(s), ζ(2s), ζ(3s), etc.

The polynomial 1+4x+x2 can be written as an arbitrarily large product-and-ratio of binomials 1−x`, with
a leftover polynomial factor of the form 1 + cx`+1 + . . .. Thus,

∑
n d(n)3/ns can be written as an arbitrarily

large product-and-ratio of factors ζ(`s) together with a leftover Euler product convergent in Re(s) > 1
`+1 .

To illustrate this, the first step would be to get rid of the 4x term by multiplying by (1− x)4:

(1− x)4 · (1 + 4x+ x2) = (1− 4x+ 6x2 − 4x3 + x4)(1 + 4x+ x2) = 1− 9x2 + 16x3 − 9x4 + x6

Thus, ∏
p

(1 + 4p−s + p−2s) = ζ(s)4 ·
∏
p

(1− 9p−2s + 16p−3s − 9p−4s + p−4s)

Next, to get rid of the −9x2 term, multiply by (1 + x2)9 = (1− x4)9/(1− x2)9, giving∏
p

(1 + 4p−s + p−2s) = ζ(s)4 · ζ(4s)9

ζ(2s)9
·
∏
p

(1 + 16p−3s + . . .)

Since 1 + 4x + x2 is not a cyclotomic polynomial, this process does not terminate. Inductively, there is an
infinite increasing sequence of integers `j and non-zero integers ej such that

1 + 4x+ x2 = (1− x)e1(1− x2)e2(1− x3)e3 . . . (1− x`j )e`j ·
(
1 + x`j+1Pj(x)

)
with (non-zero) polynomials Pj(x). Certainly

Dj(s) =
∏
p

(
1 + p−s(`j+1)Pj(p

−s)
)

is absolutely convergent and non-vanishing for Re(s) > 1
`j+1 . Thus, for every j, there is an expression∏

p

(1 + 4p−s + p−2s) = Dj(s) ·
∏

1≤i≤j

ζ(`i · s)ei (for Re(s) > 1
`j+1 )

On one hand, this gives a meromorphic continuation to Re(s) > 1
`j+1 . On the other hand, since the exponents

ei are non-zero, the infinitely-many zeros of ζ(s) in the critical strip make the zeros of ζ(` · s) bunch up just
to the right of Re(s) = 0 as `→∞. ///

[0.0.1] Remarks: Continuing in this vein, [Kurokawa 1985a,b] showed that
∑ akn

ns has a natural boundary
for k ≥ 3, where f(z) =

∑
an e

2πinz is a modular form,
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