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[07b.1] Let k be a field of characteristic 0. Let f be an irreducible polynomial in k[z]. Prove that f has
no repeated factors, even over an algebraic closure of k.

Discussion: If f has a factor P? where P is irreducible in k[x], then P divides ged(f, f’) € k[x]. Since f
was monic, and since the characteristic is 0, the derivative of the highest-degree term is of the form na™ !,
and the coefficient is non-zero. Since f’ is not 0, the degree of ged(f, f') is at most deg f’, which is strictly
less than deg f. Since f is irreducible, this ged in k[x] must be 1. Thus, there are polynomials a, b such that

af +bf’ = 1. The latter identity certainly persists in K[x] for any field extension K of k. ///

[07b.2] Let K be a finite extension of a field k of characteristic 0. Prove that K is separable over k.

Discussion: Since K is finite over k, there is a finite list of elements «1,...,a, in K such that
K = k(ai,...,ay). From the previous example, the minimal polynomial f of a; over £ has no repeated
roots in an algebraic closure k of k, so k(«aq) is separable over k.

We recall 1l the fact that we can map k(a1) — k by sending ay to any of the [k(c) : k] = deg f distinct
roots of f(x) = 0 in k. Thus, there are [k(ay) : k] = deg f distinct distinct imbeddings of k(«1) into k, so
k(o) is separable over k.

Next, observe that for any imbedding o : k(a1) — k of k(a;) into an algebraic closure k of k, by proven
properties of k we know that k is an algebraic closure of o(k(ay)). Further, if g(z) € k(a1)[z] is the minimal
polynomial of ay over k(ay), then o(g)(x) (applying o to the coefficients) is the minimal polynomial of aq
over o(k(cy)). Thus, by the same argument as in the previous paragraph we have [k(aq, ) : k(aq)] distinct
imbeddings of k(ay,az) into k for a given imbedding of k(). Then use induction. ///

[07b.3] Let k be a field of characteristic p > 0. Suppose that k is perfect, meaning that for any a € k
there exists b € k such that o” = a. Let f(z) = >, ;2" in k[z] be a polynomial such that its (algebraic)

derivative
() = Z ciig'™!
i

is the zero polynomial. Show that there is a unique polynomial g € k[z] such that f(x) = g(z)P.

Discussion: For the derivative to be the 0 polynomial it must be that the characteristic p divides the
exponent of every term (with non-zero coefficient). That is, we can rewrite

flz) = Z Cip P

Let b; € k such that b = ¢;,, using the perfect-ness. Since p divides all the inner binomial coefficients
| . .
p'/il(p — i),

P
(Z b; xl> = Z Cip xP

as desired. /]

[ Recall the proof: Let 3 be a root of f(x) =0 in k. Let ¢ : k[z] — k[B] by © — B. The kernel of ¢ is the principal
ideal generated by f(z) in k[z]. Thus, the map ¢ factors through k[x]/{f) =~ k[a1].



Paul Garrett: Discussion 07b (April 9, 2024)

[07b.4] Let k be a perfect field of characteristic p > 0, and f an irreducible polynomial in k[z]. Show that
f has no repeated factors (even over an algebraic closure of k).

Discussion: If f has a factor P2 where P is irreducible in k[z], then P divides ged(f, f') € k[x]. If
degged(f, f') < deg f then the irreducibility of f in k[z] implies that the ged is 1, so no such P exists.
If deggcd(f, f') = degf, then f' = 0, and (from above) there is a polynomial g(z) € k[z] such that
f(x) = g(2)?, contradicting the irreducibility in k[zx]. ///

[07b.5] Show that all finite fields F,» with p prime and 1 < n € Z are perfect.

Discussion: Again because the inner binomial coefficients p!/il(p — i)! are 0 in characteristic p, the
(Frobenius) map o — aP is not only (obviously) multiplicative, but also additive, so is a ring homomorphism
of Fpn to itself. Since I, is cyclic (of order p™), for any « € Fpn (including 0)

a®) — o

Thus, since the map o — o has the (two-sided) inverse o — apnfl, it is a bijection. That is, everything
has a p** root. /]

[07b.6] Let K be a finite extension of a finite field k. Prove that K is separable over k.

Discussion: That is, we want to prove that the number of distinct imbeddings ¢ of K into a fixed algebraic
closure k is [K : k]. Let a € K be a generator for the cyclic group K*. Then K = k(a) = k[a], since
powers of «a already give every element but 0 in K. Thus, from basic field theory, the degree of the minimal
polynomial f(x) of o over k is [K : k]. The previous example shows that k is perfect, and the example before
that showed that irreducible polynomials over a perfect field have no repeated factors. Thus, f(z) has no
repeated factors in any field extension of k.

We have also already seen that for algebraic « over k, we can map k() to k to send « to any root 3 of
f(z) = 01in k. Since f(z) has not repeated factors, there are [K : k] distinct roots 8, so [K : k] distinct
imbeddings. /]

[07b.7] Find all fields intermediate between @ and Q(¢) where ¢ is a primitive 17" root of unity.

Discussion: Since 17 is prime, Gal(Q(¢)/Q) ~ (Z/17)* is cyclic (of order 16), and we know that a cyclic
group has a unique subgroup of each order dividing the order of the whole. Thus, there are intermediate
fields corresponding to the proper divisors 2,4, 8 of 16. Let o, be the automorphism o,{ = (*.

By a little trial and error, 3 is a generator for the cyclic group (Z/17)*, so o3 is a generator for the
automorphism group. Thus, one reasonably considers

ag _ <+C32 +<34 +C36 +<_38 +C310 +<312 +<314

= C+¢ ¢+

ar = CH+ ¢ =+t
The «, is visibly invariant under the subgroup of (Z/17)* of order n. The linear independence of
¢,¢?,¢3,...,¢1% shows ay, is not by accident invariant under any larger subgroup of the Galois group. Thus,

Q(av,) is (by Galois theory) the unique intermediate field of degree 16/n over Q.
We can also give other characterizations of some of these intermediate fields. First, we have already seen (in
discussion of Gauss sums) that
> (i), =V
17
amod 17 2

where <1a7> is the quadratic symbol. Thus,
2
ag — o3y = 17

ag + ozag = 0

2
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so ag and osag are £4/17/2. Further computation can likewise express all the intermediate fields as being
obtained by adjoining square roots to the next smaller one. ///

[07b.8] Let f, g be relatively prime polynomials in n indeterminates t1,...,t,, with g not 0. Suppose that
the ratio f(t1,...,tn)/g(t1,...,t,) is invariant under all permutations of the ¢;. Show that both f and g are
polynomials in the elementary symmetric functions in the ¢;.

Discussion: Let s; be the i*" elementary symmetric function in the t;’s. Earlier we showed that k(t1,. .., t,)
has Galois group S,, (the symmetric group on n letters) over k(s1,...,sn). Thus, the given ratio lies in
k(s1,...,8n). Thus, it is expressible as a ratio

f(tla"'7tn) (517 -781'7,)

F
g(t1, .. tn)  G(S1,...,8n)
of polynomials F, G in the s;.

To prove the stronger result that the original f and g were themselves literally polynomials in the ¢;, we seem
to need the characteristic of k to be not 2, and we certainly must use the unique factorization in k[ty, ..., t,].

Write
f(tla s 7tn) = p(lil o 'pi;L’L

where the e; are positive integers and the p; are irreducibles. Similarly, write

g(tl,...,tn):qfl...qgf

where the f; are positive integers and the g; are irreducibles. The relative primeness says that none of the
q; are associate to any of the p;. The invariance gives, for any permutation 7 of

el Em €1 €m

o' dv ) ddh

Multiplying out,

Hﬂ(pfi) : Hq/ = Hp? : Hﬂ(qu*)

By the relative prime-ness, each p; divides some one of the m(p;). These ring automorphisms preserve
irreducibility, and ged(a,b) = 1 implies ged(ma, wb) = 1, so, symmetrically, the w(p;)’s divide the p;’s. And
similarly for the ¢;’s. That is, permuting the ¢;’s must permute the irreducible factors of f (up to units k*
in k[t1,...,t,]) among themselves, and likewise for the irreducible factors of g.

If all permutations literally permuted the irreducible factors of f (and of g), rather than merely up to units,
then f and g would be symmetric. However, at this point we can only be confident that they are permuted
up to constants.

What we have, then, is that for a permutation 7
7T(f) = Qr - f

for some o € k*. For another permutation 7, certainly 7(7(f)) = (rm)f. And 7(arf) = ax - 7(f), since
permutations of the indeterminates have no effect on elements of k. Thus, we have

Orp = Oy - O
That is, 7 — «, is a group homomorphism S,, — k*.

It is very useful to know that the alternating group A, is the commutator subgroup of S,. Thus, if f is not
actually invariant under S, in any case the group homomorphism S,, — k* factors through the quotient
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Sn/Ap, sois the sign function m — o () that is +1 for 7 € A,, and —1 otherwise. That is, f is equivariant
under S,, by the sign function, in the sense that 7f = o(n) - f.

Now we claim that if 7f = o(7) - f then the square root

§=vVA=T]t:i—t)

i<j

of the discriminant A divides f. To see this, let s;; be the 2-cycle which interchanges t; and ¢;, for i # j.
Then

siif=—f
Under any homomorphism which sends ¢; — ¢; to 0, since the characteristic is not 2, f is sent to 0. That is,
t; —t; divides f in k[t1,...,t,]. By unique factorization, since no two of the monomials ¢; — t; are associate

(for distinct pairs @ < j), we see that the square root ¢ of the discriminant must divide f.

That is, for f with 7f = o(7) - f we know that J|f. For f/g to be invariant under S,,, it must be that also
mg = o(n) - g. But then d|g also, contradicting the assumed relative primeness. Thus, in fact, it must have
been that both f and g were invariant under S,,, not merely equivariant by the sign function. ///




