
Brought to you by the  
UMN AMS Student Chapter and

at 12:15pm in Vin 313 
followed by Mesa Pizza  
in the first floor lounge

Did you know that Weierestrass 
was born on Halloween?  

Neither did we… 

Happy 
HalloWEIERSTRASS  

Monday, Oct 31 

Dmitriy Bilyk 
will be speaking on  
Lacunary Fourier series: 
from Weierstrass  
to our days



Karl Theodor Wilhelm Weierstrass
31 October 1815 – 19 February 1897

born in Ostenfelde, Westphalia, Prussia.

sent to University of Bonn to prepare for a
government position – dropped out.

studied mathematics at the Münster Academy.

University of Königsberg gave him an honorary
doctor’s degree March 31, 1854.

1856 a chair at Gewerbeinstitut (now TU Berlin)

professor at Friedrich-Wilhelms-Universität Berlin
(now Humboldt Universität)

died in Berlin of pneumonia

often cited as the father of modern analysis
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Doctoral students of Karl Weierstrass include

Georg Cantor

Georg Frobenius

Sofia Kovalevskaya

Carl Runge

Hans von Mangoldt

Hermann Schwarz

Magnus Gustaf (Gösta) Mittag-Leffler∗

Weierstrass’s doctoral advisor was Christoph Gudermann, a
student of Carl Gauss.



Things named after Weierstrass

Bolzano–Weierstrass theorem

Weierstrass M -test

Weierstrass approximation theorem/Stone–Weierstrass
theorem

Weierstrass–Casorati theorem

Hermite–Lindemann–Weierstrass theorem

Weierstrass elliptic functions (P -function)

Weierstrass P (typography): ℘

Weierstrass function (continuous, nowhere differentiable)

A lunar crater and an asteroid (14100 Weierstrass)

Weierstrass Institute for Applied Analysis and Stochastics
(Berlin)
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Continuous nowhere differentiable functions

... in the early 19th century were believed to not exist...

Ampère gave a “proof” (1806)

But then examples were constructed:

Karl Weierstrass 1872

presented before the Berlin Academy on July 18, 1872
published in 1875 by du Bois-Reymond

Bernard Bolzano ≈1830 (published in 1922)

Chares Cellérier ≈ 1860 (published posthumously in 1890)

Darboux (1873)

Peano (1890)

Koch “snowflake” (1904)

Sierpiński curve (1912) etc.

Charles Hermite wrote to Stieltjes (May 20, 1893):

trajectories of stochastic processes
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Chares Cellérier ≈ 1860 (published posthumously in 1890)

Darboux (1873)

Peano (1890)

Koch “snowflake” (1904)
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Chares Cellérier ≈ 1860 (published posthumously in 1890)

Darboux (1873)

Peano (1890)

Koch “snowflake” (1904)
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Brownian motion

Robert Brown (1827) discovered very irregular motion of
small particles in a liquid.

Albert Einstein (1905) and Marian Smoluchowski (1906):
mathematical theory

Jean Perrin: experiments to determine dimensions of atoms
and the Avogadro number.

“Les Atomes” (1912): “...this is the case where it is truly
natural to think of these continuous functions without
derivatives, which mathematicians have imagined, and
which were mistakenly regarded simply as mathematical
curiosities...”
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Albert Einstein (1905) and Marian Smoluchowski (1906):
mathematical theory

Jean Perrin: experiments to determine dimensions of atoms
and the Avogadro number.
“Les Atomes” (1912): “...c’est un cas oú il est vraiment
natural de penser à css functions continues sans dérivées,
que les mathématiciens not imaginées, et que l’ont regardait
à tort comme de simples cuirosités mathématiques...”

“...this is the case where it is truly natural to think of these
continuous functions without derivatives, which
mathematicians have imagined, and which were mistakenly
regarded simply as mathematical curiosities...”
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Pioneers of Gaussian processes

Paul Lévy

as a child was fascinated with the Koch snowflake.

Norbert Wiener

came to Cambridge in 1913 to study logic with Bertrand
Russel, but Russel told him to read Einstein’s papers on
Brownian motion instead;
often quoted Perrin in his work;
Mathematical theory:
proved that trajectories of Brownian motion are a.s.
continuous.
proved that trajectories are a.s. nowhere differentiable
(with Paley and Zygmund).
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Fourier series

ideas go back to Fourier (1807)

For f ∈ L1(T), i.e. integrable 1-periodic, its Fourier series is

∞∑
n=−∞

cn e
2πinx =

∞∑
n=0

an cos(2πnx) + bn sin(2πnx),

where

cn = f̂n = 〈f, e2πinx〉 =

∫ 1

0
f(t)e−2πintdt.

Plancherel:
‖f‖22 =

∑
|cn|2

smoothness of f “⇐⇒” decay of f̂n
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an cos(2πnx) + bn sin(2πnx),

where

cn = f̂n = 〈f, e2πinx〉 =

∫ 1

0
f(t)e−2πintdt.
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What does “lacunary” mean?

lacuna (noun, plural: lacunae, lacunas)

[luh-kyoo-nuh]
a gap or a missing part, as in a manuscript, series, or logical
argument.
from Latin lacuna: ditch, pit, hole, gap, akin to lacus:
lake.
cf. English lagoon, lake.

lacunary (adjective)

[lak-yoo-ner-ee, luh-kyoo-nuh-ree]
having lacunae.
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Lacunary sequences

A sequence (nk) ⊂ N is called (Hadamard) lacunary if for
some λ > 1 and for all k ∈ N:

nk+1

nk
≥ λ > 1.

e.g. (bn) for b > 1.

other lacunarities: e.g., (n2) or (n!)

Lacunary Fourier (trigonometric) series are series of
the form

∞∑
k=1

cke
2πinkx or

∞∑
k=1

ak sin(2πnkx+ φk),

where (nk) is a lacunary sequence.
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Riemann’s remark

Quote from Weierstrass:
Erst Riemann hat, wie ich von einigen seiner Zuhörer erfahren
habe, mit Bestimmtheit ausgesprochen (i.J. 1861, oder vielleicht
schon früher), dass jene Annahme unzulässig sei, und z.B. bei
der durch die unendliche Reihe

∞∑
n=1

sin(n2x)

n2

dargestellten Function sich nicht bewahrheite. Leider ist der
Beweis hierfür von Riemann nicht veröffentlicht worden, und
scheint sich auch nicht in seinen Papieren oder mündlich
Uberlieferung erhalten zu haben. Dieses ist um so mehr zu
bedauern, als ich nicht einmal mit Sicherheit habe erfahren
können, wie Riemann seinen Zuhörern gegenüber sich
ausgedrückt hat.



Weierstrass function

Theorem

Let 0 < a < 1, b > 1. The function

∞∑
n=1

an cos(bnx)

is continuous and nowhere differentiable

if ab > 1 + 3π
2 , b an odd integer (Weierstrass, 1872)

if ab > 1 (du Bois-Reymond, 1875)

if ab ≥ 1 (Hardy, 1916)



Weierstrass function with a = 0.5 and b = 5



Uniformity of behavior

Assume that f has lacunary Fourier series
∑

k ak cos(nkx+ φk)
with

nk+1

nk
> λ > 1,

∑
|ak| < 1.

If f is differentiable at one point, then

lim
k→∞

ak · nk = 0 (Hardy/G. Freud)

f is differentiable on a dense set (Zygmund).

For 0 < α < 1, the following conditions are equivalent
(Izumi):

(a)
∣∣f(t0 + h)− f(t0)

∣∣ ≤ C|h|α for some fixed t0

(b) ak = (n−αk )

(c) f satisfies (a) uniformly for all t0.
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What about Riemann’s function?

The question whether Riemann’s function

∞∑
n=1

sin(n2x)

n2

is nowhere differentiable stood open for ≈ 100 years.

Hardy (1916): not differentiable at points rπ if r is

irrational;
2p+1
2q , p, q ∈ Z.
2p

4q+1 , p, q ∈ Z.

Gerver (1970): not differentiable at points rπ if r is
2p

2q+1 , p, q ∈ Z.

Gerver (1970): differentiable (!!!) at points rπ if r is
2p+1
2q+1 , p, q ∈ Z.

with derivative −1
2 .
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Hadamard: analytic continuation

Theorem (Hadamard, 1892)

If (nk) is lacunary, i.e.
nk+1

nk
≥ q > 1, and

lim supk→∞ |ak|1/nk = 1, then the Taylor series

∞∑
k=1

akz
nk

has the circle {|z| = 1} as a natural boundary, i.e. cannot be
extended analytically beyond it.

The sharp condition for this theorem is

lim
k→∞

nk
k

=∞.

Fabry 1898 (sufficiency)

Pólya 1942 (sharpness)
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Rademacher functions

Rademacher functions:

rn(t) = sign sin(2nπt), t ∈ [0, 1], n ∈ N.

Rademacher (1922):
If
∑∞

n=1 |cn|2 <∞, then the series

∞∑
n=1

cnrn(t)

converges almost everywhere.

Kolmogorov, Khintchin (1925):
If
∑∞

n=1 |cn|2 =∞, then the series

∞∑
n=1

cnrn(t)

diverges almost everywhere.
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Rademacher functions

Rademacher functions:

rn(t) = sign sin(2nπt), t ∈ [0, 1], n ∈ N.

Probabilistic interpretation (Steinhaus):

{rn} are independent identically distributed (iid) random
signs (±1).

If
∑
|cn|2 converges, then

∑
±cn converges with

probability 1 (almost surely).

If
∑
|cn|2 diverges, then

∑
±cn diverges with probability 1.



Rademacher functions

Rademacher functions:

rn(t) = sign sin(2nπt), t ∈ [0, 1], n ∈ N.

Probabilistic interpretation (Steinhaus):

{rn} are independent identically distributed (iid) random
signs (±1).

If
∑
|cn|2 converges, then

∑
±cn converges with

probability 1 (almost surely).

If
∑
|cn|2 diverges, then

∑
±cn diverges with probability 1.



Rademacher functions

Rademacher functions:

rn(t) = sign sin(2nπt), t ∈ [0, 1], n ∈ N.

Probabilistic interpretation (Steinhaus):

{rn} are independent identically distributed (iid) random
signs (±1).

If
∑
|cn|2 converges, then

∑
±cn converges with

probability 1 (almost surely).

If
∑
|cn|2 diverges, then

∑
±cn diverges with probability 1.



Rademacher functions

Rademacher functions:

rn(t) = sign sin(2nπt), t ∈ [0, 1], n ∈ N.

Probabilistic interpretation (Steinhaus):

{rn} are independent identically distributed (iid) random
signs (±1).

If
∑
|cn|2 converges, then

∑
±cn converges with

probability 1 (almost surely).

If
∑
|cn|2 diverges, then

∑
±cn diverges with probability 1.



Analogs for lacunary Fourier series

Kolmogorov (1924):
If (nk) is lacunary and

∑∞
k=1 |ck|2 <∞, then the series

∞∑
n=1

ck sin(2πnkt)

converges almost everywhere.

Zygmund (1930):
If (nk) is lacunary and

∑∞
k=1 |ck|2 =∞, then the series

∞∑
n=1

ck sin(2πnkt)

diverges almost everywhere.
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Sidon’s theorems

Assume that f has lacunary Fourier series
∑

k ak sin(nkx+ φk)
with

nk+1

nk
> λ > 1,

∑
|ak| < 1.

Sidon (1927):

‖f‖∞ ≥ Cλ
∑
|ak|

Sidon (1930):

‖f‖1 ≥ Bλ‖f‖2.

for all p ∈ [1,∞),

cp‖f‖2 ≤ ‖f‖p ≤ Cp‖f‖2.
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Probabilistic analogs

Let {rn} be random signs, i.e. independent random variables on
a probability space Ω with P(rn = +1) = P(rn = −1) = 1

2 .

Obvious:
sup
ω∈Ω

∑
anrn(ω) =

∑
|an|

Khinchine inequality (1923):

For 0 < p <∞,

cp
(∑

|an|2
)1/2 ≤ (E∣∣∑ anrn

∣∣p)1/p

≤ Cp
(∑

|an|2
)1/2

.
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