A three-dimensional signed small ball inequality

Dmitriy Bilyk, Michael T. Lacey, loannis Parissis, and Arm&agharshakyan

Abstract LetRdenote dyadic rectangles in the unit ci@g]? in three dimensions.
Let hg be theL”-normalized Haar function whose supporfs We show that for
all integersn > 1 and choices of coefficients € {£1}, we have

| 3 ane| 20
R=2 L
Ry |>2-"2

The trivial L2 lower bound is, and the sharp lower bound would b&2. This is
the best exponent known to the authors. This inequality isvaied by new results
on the star-discrepancy function in all dimensiadns 3.

1 Introduction

We are motivated by the classical question of irregularitiedistribution [2] and re-
cent results which give new lower bounds on the star-disarepin all dimensions
d > 3[4, 5]. We recall these results.
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Given integeN, and selectior? of N points in the unit cubéd, 1]9, we define a
Discrepancy Functiomssociated te? as follows. At any poink € [0,1]9, set

Dn (%) = #(2N[0,x)) — N[0, %)].

Here, by[0,x) we mean thel-dimensional rectangle with left-hand corner at the
origin, and right-hand corner atc [0,1]9. Thus, if we writex = (xq,...,Xq) We

then have J

[Oa ): [Oa )
X Jll Xj

At pointx we are taking the difference between the actual and the &sghaamber
of points in the rectangle. Traditionally, the dependerfcBg on the selection of
points P is only indicated through the number of points in the coltatt?. We
mention only the main points of the subject here, and lea@dittieresting) history
of the subject to references such as [2].

The result of Klaus Roth [7] gives a definitive average casefdound on the
discrepancy function.

K. Roth’s Theorem For any dimension ¢ 2, we have the following estimate

[Dnl|2 = (logN)@-2/2, (1.1)

The same lower bound holds in &, 1 < p < «, as observed by Schmidt [8].
But, theL* infinity estimate is much harder. In dimensida- 2 the definitive result
was obtained by Schmidt again [9].

Schmidt’'s Theorem We have the estimates below, valid for all collectidhs
[0,1]%

IDNJleo = logN. (1.2)

~

The L* estimates are referred to as star-discrepancy bounds.ndimteand
greatly simplifying an intricate estimate of J. Beck [1]ps® of these authors have
obtained a partial extension of Schmidt’s result to all disiensd > 3.

Theorem 1.3 (4, 5]) For dimensions ¢> 3 there is amn =n(d) > 0 for which we
have the inequality
IDnles Z (logN)( @172,

~

That is, there is am improvement in the Roth exponent.

As explained in these references, the analysis of the &areghancy function is
closely related to other questions in probability theoppraximation theory, and
harmonic analysis. We turn to one of these, the simplestte sjuestion, which is
central to all of these issues. We begin with the definitiothefHaar functions.
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In one dimension, the dyadic intervals of the real [hare given by
D={[i2(j+1)2) : j,ke Z}.
Any intervall is a union of its left and right halves, denoted IRyignt, which are
also dyadic. Thédaar function h associated to,lor simply Haar functionis
By = — L + L

Note that for dyadic intervald C |, the Haar functiorh; is completely supported
on a set wheré, is constant. This basic property leads to far-reachingiocapbns
that we will exploitin these notes.

In higher dimensiond > 2, we take the dyadic rectangles to be the tensor prod-
uct of dyadic intervals in dimensiagh

D4 ={R=Ryx - xRy :Ry...,Ry € D}.

TheHaar functionassociated t&® € Dy is likewise defined as
d
hR(Xl,...,Xd):rlhRj(Xj), R=R; x---xRy. (1.4)
=1

While making these definitions on all B¢, we are mainly interested in local ques-
tions, thus rectangleR c [0,1]9 are always dyadic rectanglé&e D°. Namely,
we are mainly interested in the following conjectulerse triangle inequalitfor
sums of Haar functions ol:

Conjecture: The Small Ball Inequality For dimensions @ 3, there is a constant
Cq so that for all integers > 1, and constant§ag : |[R| = 27", RC [0,1]9}, we
have

n(d-2)/2 ar-hRrl| >C2" 5 |agl. (1.5)
|R>2" o |R|=2""
Rc[0,1)9 Rc([0,1)

We are stating this inequality in its strongest possiblenforOn the left, the
sum goes over all rectangles with volumigleast2—", while on the right, we only
sum over rectangles with volumerjual to2~". Given the primitive state of our
knowledge of this conjecture, we will not insist on this distion below.

For the case ofl = 2, (1.5) holds, and is a theorem of Talagrand [10]. (Also see
[6, 8, 11].)

The special case of the Small Ball Inequality when all theffatients ar are
equal to either-1 or +1 we refer to as the ‘Signed Small Ball Inequality.” Before
stating this conjecture, let us note that we have the fohgw(trivial) variant of
Roth’s Theorem in the Signed case:

>n@D/2° ape{+1}.

[ee]

ar-hr
IRI=2""
Rc[o,1)d
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The reader can verify this by noting that the left-hand side loe written as about
nd-1 orthogonal functions, by partitioning the unit cube intarf@hetic copies of
dyadic rectangles of a fixed volume. The Signed Small Baljlradity asserts a
‘square root oft’ gain over this average case estimate.

Conjecture: The Signed Small Ball Inequality For coefficients a € {+1},

> cLn/?, (1.6)
d

[

ar-hr
[R=27"
Rc[0,2)¢

Here, G is a constant that only depends upon dimension.

We should emphasize that random selection of the coeffcigmbws that the
power onn on the right is sharp. Unfortunately, random coefficients\aary far
from the ‘hard instances’ of the inequality, so do not intkca proof of the conjec-
ture.

The Signed Small Ball Conjecture should be easier, but evisnspecial case
eludes us. To illustrate the difficulty in this question,etiat in dimension = 2,
each poini in the unit square is im+ 1 distinct dyadic rectangles of volume?2
Thus, it suffices to find aingle point where all the Haar functions have the same
sign. This we will do explicitly in § 2 below.

Passing to three dimensions reveals a much harder problemh [Eointx in
the unit cube is in about? rectangles of volume 2, but in general we can only
achieve a®/2 supremum norm. Thus, the task is to find a single prinhere the
number of pluses is more than the number of minuses’ In percentage terms
this represents only @ 1/2-percent imbalance over equal distribution of signs.

The main theorem of this note is Theorem 4.1 below, whichgjifie best expo-
nent we are aware of in the Signed Small Ball Inequality. Thethmd of proof is
also the simplest we are aware of. (In particular, it givestée result than the more
complicated argument in [3].) Perhaps this argument cariri@éurther progress on
this intriguing and challenging question.

The authors thank the anonymous referee whose attentioetéd das helped
greater clarity in our arguments.

Dedication to Walter PhilippOne of us was a PhD student of Walter Philipp, the
last of seven students. Walter was very fond of the subjetttisinote, though the
insights he would have into the recent developments arédagt. As a scientist, he
held himself to high standards in all his areas of study. Aseaél, he was faithful,
loyal, and took great pleasure in renewing contacts anddgkip. He is very much
missed.

2 The two-dimensional case

This next definition is due to Schmidt, refining a definitionRdth. Letr e N9
be a partition of, thust = (ry,...,rq), where thej are non-negative integers and
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Ir| := ztd:lrt =n. Denote all such vectors &f,. (‘H' for ‘hyperbolic.) For
vectorr, let ® be all dyadic rectanglelR such that for each coordinate<it < d,

[R|=2"".
Definition 2.1 We call a functionf anr-function with parameter if

f= Z erhr, €r € {+1}. (2.2)
RERy
We will use fr to denote a genericfunction. A fact used without further comment
is thatfs = 1.

Note that in the Signed Small Ball Inequality, one is seekowger bounds on
sumsy pj—n fr.
There is a trivial proof of the two-dimensional Small Balktuality.

Proposition 2.3 The random variables;f,_j), 0 < j < n are independent.

Proof. The sigma-field generated by the functidrfg i) : 0 <k < j} consists of
dyadic rectangleS= S x S with |S| = 21 and|S| =2"". On each line segment
S1 x {Xz}, f(jn_j) takes the values1 in equal measure, so the proof is finishet.

We then have

Proposition 2.4 In the case of two dimensions,

(5 )=z
P foeny =n+1 =2""
kZO enk

Proof. Note that

n
]P)( % f(k,nfk) =N+ 1) = ]P)(f(k,nfk) =1V0<k< n) =21
=
(I

It is our goal to give a caricature of this argument in threaetisions. See § 5
for a discussion.

3 Elementary lemmas

We recall some elementary lemmas that we will need in ouretldinensional
proof.

Paley—Zygmund Inequality Suppose that Z is a positive random variable with
EZ = p, EZ2? = 3. Then,

P(Z>w/2) > 1 (3.1)

Rl
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Proof.
W =EZ=EZ17_, o +EZ17>), /2
< We/2+ WP(Z > w/2)"2.
Now solve forP(Z > p1/2). O

Second Paley—-Zygmund InequalityFor all p1 > 1 there is ap, > 0 so that for all
random variables Z which satisfy

Ez=0, [Zl2<Z]a< pallZ]2 3-2)

we have the inequalit§(Z > pz||Z||2) > p2.
Proof.LetZ, ;= Z1z-pandZ_ := —Z1z7.¢9,sothaZ =2, —Z . Note thattZ =0
forcesEZ; =EZ_. And,

0 := EZ? =EZ2 + EZ2,
o4 == EZ*=Ez? +EZ.

Suppose that the conclusion is not true. Nani¥ > p202) < pz for a very
smallp,. It follows that

EZ, <EZ,1z <py0, +EZ117, 5050,
< p202+P(Z > p202)1/202 < 29%/2027

forpp < 1. HencdEZz_ =EZ, < Zp;/zoz. Itis this condition that we will contradict
below.

We also have

EZ% <EZ% L7, <pyop} T EZE L7, py0,)

2.2 1/2_2
< P02+ P, 04

12
< 2p;/%p}0}
So forp, < (4p1) 4, we haveEZ2 < lo2.
It follows that we havéEz? > 103, andEZ* < p;03. So by (3.1), we have

P(Z- > p302) > p3

whereps is only a function of;. But this contradict&z = < 2p;/202, for smallpy,
so finishes our proof. O

The Paley—Zygmund inequalities require a higher moment,iarapplication
we find it convenient to use the Littlewood—Paley inequaditio control this higher
moment. Let%o, F1,..., Fr a sequence of increasing sigma-fields generated by
dyadic intervals, and let;, 1 <t < T be a martingale difference sequence, namely
E(d : %-1)=0foralt=12....T. Setf = th:ldt. The martingale square
function of f is S(f)? := 1, d?. The instance of the Littlewood—Paley inequalities
we need are:
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Lemma 3.3 With the notation above, suppose that we have in addition tthe
distribution of q is conditionally symmetric givefi;_1. By this we mean that on
each atom A off;_1, the the distribution of da is equal to that of-d;1a. Then, we
have

[[flla =~ [IS(f)]a- (34)

Proof. The case of the Littlewood—Paley for even integers can beggrby expan-
sion of the integral, an argument that goes back many decadd®ur assumption
of being conditionally symmetric is added just to simplifys proof. Thus,

4
If4= S E[]d

1<t tot3ta<T u=1

We claim that unless the integersclts, to,t3,t4 < T occur in pairs of equal integers,
the expectation on the right above is zero. This claim shbas t

Ifls= Y Ed2-d2.

1<ty o<T
It is easy to see that this proves the lemma, namely we wouwle ha

IS(E)13 < 1F117 < ZIS(H)]13.

Let us suppost <t, <tz <t4. If we havets strictly less thany, then
4 3
E rlldtu =E |_| dtu'E(dM : —{]:ta) =0.
u= u=1

If we havet; < tp =tz =ty4, then by conditional symmetrE(dfz : %y,)=0,and so
we have

4
End[u:EdllE(dti : ﬁl)zo'
u=1

If we havet; <t, <tz=t4, the conditional symmetry again impli&%d;, - dlz3 Ry =
0, so that

4
E rlld'(u = Ed'(l E(dtzdé : -r}{l) =0.
u=
Thus, the claim is proved. O

We finish this section with an elementary, slightly techhiteamma.

Lemma 3.5 Let %o, 71, . .. , Fq a sequence of increasing sigma-fields. Lgt A, Aq
be events, withAc F. Assume that for sone< y < 1,

E(1a @ 1) >, 1<t<q. (3.6)
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We then have that

P(A) =y (3.7)
t=1
More generally, assume that
q
P(U{E(lAt Do) < v}) <3-y% (3.8)
t=1
Then, .
P(MA) =3y (3.9)

t=1

Proof. To prove (3.7), note that by assumption (3.6), and backwiatisction we
have

t=1

]P((q]At) _1Et|_ﬂl1At
ZEjl_ilA( XE(lAq . fq,l)

q-1
> yE t|:l 1a

>ya.

To prove (3.9), let us consider an alternate sequence ofeveafine
B := {E(A : 1) <V}

These are the ‘bad’ events. Now defilie:= A UB;. By construction, the set&
satisfy (3.6). Hence, we have by (3.7),

B(NA) >v"

But, now note that by (3.8),
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4 Conditional expectation approach in three dimensions
This is the main result of this note.

Theorem 4.1 For |ag| = 1 for all R, we have the estimate

| 3 ane 20
R=2 -
Ry |>2-"2

We restrict the sum to those dyadic rectangles whose firsttsag the lower bound
|Ry| > 272,

Heuristics for our proof are given in the next section. Th&trietion on the
first side lengths of the rectangles is natural from the pafiview of our proof, in
which the first coordinate plays a distinguished role. Natriéwe hold the first
side length fixed, we want the corresponding sum &/&r be suitably generic. Let
1 < q< nbe integers. The integerwill be taken to beg ~ n/4. Our ‘gain over
average case’ estimate will Reg ~ n'/8. While this is a long way fronm*/2, it is
much better than the explicit gain 0of24 in [3].

We begin the proof. Lef; be the sigma field generated by dyadic intervals in
[0,1] with [I] = 2-"a) for 1 <t < 2q. Letl; := {F: (t—1)n/q<ry <tn/q}.
Note that the sizelif~ n?/q. Let f; be ther-functions specified by the choice of
signs in Theorem 4.1. Here is a basic observation.

Proposition 4.2 Let | € %. The distribution of{ fr : T € I; } restricted to the set
| x [0,1]? with normalized Lebesgue measure is that of

{fs:[Sl=n—[tn/q],0 <& <n/q},

where the §are some-functions. The exact specification of this collection chefse
upon the atom irf;.

Proof. An atoml of % are dyadic intervals of length2"/9). Forr e I, f; restricted
to | x [0,1]2, with normalized measure, is afunction with index

(r1—[tn/q], r2,r3).
The statement holds jointly ine I; so finishes the proof. O
Define sum of ‘blocks’ off; as

B : (4.3)

[
™M

|_|t = Z fr-fg. (44)
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The sumdI; play a distinguished role in our analysis, as revealed bybtmic
computation of a square function in (4.9) and the fundaniémtama 4.10. Let us
seto? = ||B||3 ~n?/q, for0<t < q/2.

We want to show that fog as big axn'/#, we have

q/2

P(t;B[ > n\/ﬁ) >0. (4.5)

In fact, we will show
a/2

]P’(O{Bt > n/m}) >0,

from which (4.5) follows immediately.

Note that the even{Bt > n/\/q} simply requires thaB; be of typical size,
and positive, that is this event will have a large probapilElearly, we should try
to show that these events are in some sense independenticin gdse the lower
bound in (4.5) will be of the form &Y, for someC > 0. Exact independence, as we
had in the two-dimensional case, is too much to hope forebdstwe will aim for
some conditional independence, as expressed in Lemma 3.5.

There is a crucial relationship betweBnandl I, which is expressed through the
martingale square function &, computed in the first coordinate. Namely, define

2

S(B)? := 3 P (4.6)
where} = {se N : (t—1)n/qg<s<tn/q}.
Proposition 4.7 We have
S(B)* =0of + Ik, (4.8)
S(B : ) =0f +E(Tk : F). (4.9)

By construction, we havél; ~ n?/q, for 0<t < %q.
Proof. In (4.6), one expands the square on the right-hand side.c&thiat this
shows that
S(By)* = fr - fs.

[F|=[S|=n

ri=si€X
We can have = &for !I; choices off. Otherwise, we have a term that contributes
to ;. The conditional expectation conclusion follows from (4.8 O

The next fact is the critical observation in [3—5] concegieincidences, assures
us that typically on the right in (4.8) that the first teafd~ n? /qis much larger than
the second’;. See [5, 4.1, and the discussion afterwards].
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Lemma 4.10 We have the uniform estimate

H|_|tHex,XL2/3) 5 n3/2/\/q'

Here, we are using standard notation for an exponential@ripace.

Remark 4.11 A variant of Lemma 4.10 holds in higher dimensions, whichpies
an extension of Theorem 4.1 to higher dimensions. We retutins$ in 8 5.

Let us quantify the relationship between these two obsemnsnd our task of
proving (4.5).

Proposition 4.12 There is a universal constant> 0 so that defining the event
Moo= {IE(I‘ItZ L RV <m2/q} (4.13)

we have the estimate
P(B>1-n/\/q: ) >1lr,. (4.14)

The point of this estimate is that the evehtswill be overwhelmingly likely for
ggn.

Proof. This is a consequence of the Paley—Zygmund Inequalitiegd?ition 4.2,
Littlewood—Paley inequalities, and (4.9). Namely, by Rrsifion 4.2, we have
E(B; : %) = 0, and the conditional distribution & given % is symmetric. By
(4.9), we have

E(B?: %) =SB : %) =0 +E( : %).
We apply the Littlewood—Paley inequalities (3.4) to seé tha
E(B: %) SE(SB: /)% : %) =0t +207E(Mk : K)+E(M? : F).

The evenf'; gives an upper bound on the terms involvingabove. This permits
us to estimate, ds; € %,

|E(B? : I'y)Y%—olr, | < /G,

butot ~ n/,/g, so we havé(B? : I1)¥/2 ~n/,/q. Similarly,

EB: MY S o+ ot 2B s R)| Y4+ EE 2 7)Y

< (1+1)0t.

Hence, we can apply the Paley—Zygmund inequality (3.2) teckale the proposi-
tion. |
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By way of explaining the next steps, let us observe the fahowlf we have
E(lr : %) >1 a.s.(xa), 1<t<q/2, (4.15)

then (4.14) holds, namely(B(-,x2,x3) >1-n/,/q : I't) > T almost surely. Apply-
ing Lemma 3.5, and in particular (3.7), we then have

a/2

le(ﬂ{B[('aXZaX3) > Tn/\/a}) > -[q/Z.
t

=1

Of course there is no reason that such a fairxs) exits. Still, the second half of
Lemma 3.5 will apply if we can demonstrate that we can chagse so that (4.15)
holds except on a set, in ti¢ variable, of sufficiently small probability.

Keeping (3.8) in mind, let us identify an exceptional setelthe set§; as given
in (4.13) to define

a/2

E:= {(xz,x3) L Py, [ U Ff] > exp(—cl(n/q)1/3)}. (4.16)

t=1

Here,c; > 0 will be a sufficiently small constant, independentotlet us give an
upper bound on this set.

q/2
(B < exp(ea(n/a)"") B (U TF) @17)
t=1
q/2
< exp(ca(n/a)*?) Zle,xz,xa(rf) (4.18)
t=

S aexp(cu(n/a) ) ex (<P QE(E: 5) L oo ) (429
< gexp((c1 — c2t??) - (n/q)*/3). (4.20)

Here, we have used Chebyscheff inequality. And, more inapdist, the convexity
of conditional expectation anid-norms to estimate

1/2
IE(TZ )2 sy S 1%2/ VA,

by Lemma 4.10. The implied constant is absolute, and detexsrthe constart,
in (4.20). For an absolute choice@f, and constant’, we see that we have

Py, (E) < exp(—T'(n/q)Y/3). (4.21)

We only needPy, x,(E) < % but an exponential estimate of this type is to be ex-
pected.

Our last essential estimate is
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Lemma 4.22 For 0 < k < 1 sufficiently small, g< kn'/4, and(xp,x3) & E, we have

q/2

]P)xl(ﬂ{Bt(',Xz,Xg) > Tn/\/a}) > 14

t=1

Assuming this lemma, we can sel¢xs, x3) ¢ E. Thus, we see that there is some
(X1,%2,%3) so that for all 1<t < q/2 we haveB(x1,%2,X3) > ™n/,/q, whence

a/2

Bt (X1,%2,%3) > 5 -n/q.
Bataen) pn

Thatis, (4.5) holds. And we can make the last expressiongaadyt n%/8.

Proof. If (x2,x3) & E, bring together the definition & in (4.16), Proposition 4.12,
and Lemma 3.5. We see that (3.9) holds (with 1, and theq in (3.9) equal to the
currentq,/2) provided

1192 > exp(—ci(n/9)Y3).

But this is true by inspection, far < kn%/4. O

5 Heuristics

In two dimensions, Proposition 2.4 clearly reveals an ulydey exponential-square
distribution governing the Small Ball Inequality. The aage case estimateié/?,

and the set on which the sum is abaya square root gain over the average case) is
exponential im.

Let us take it for granted that the same phenomena shouldmttdee dimen-
sions. Namely, in three dimensions the average case estiimaa signed small
ball sum isn, then the event that the sum exceed$ (a square root gain over the
average case) is also exponentiahirHow could this be proved? Let us write

n/2
R = 5
|Ry|>27" ri<n/2

BJ = Z fr.

Here we have imposed the same restriction on the first coatelas we did in The-
orem 4.1. With this restriction, note that egghis a two-dimensional sum, hence
by Proposition 2.3, a sum of bounded independent randorahlas. It follows that
we have by the usual Central Limit Theorem,

P(B; > cvn) > g,
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for a fixed constant. If one could argue for some sort of independence of the svent
{Bj > cy/n} one could then write

n/2
P(H > cn¥/?) > P(ﬂ {Bj > c\/ﬁ}) > e,
j=0

for somee > 0. This matches the ‘exponentialihheuristic. We cannot implement
this proof for theB;, but can in the more restrictive ‘block sums’ used above.

We comment on extensions of Theorem 4.1 to higher dimensidamely, the
methods of this paper will prove

Theorem 5.1 For |ag| = 1 for all R, we have the estimate estimate in dimensions
d> 4
> p(d-1)/2+1/4d

~

H z arhr
RS2
|Ry|>2"/2

L

We restrict the sum to those dyadic rectangles whose firstrgdd the lower bound
|R| >27"/2,

This estimate, when specializedde= 3 is worse than that of Theorem 4.1 due
to the fact that the full extension of the critical estimatima 4.10 is not known
to hold in dimensionsl > 4. Instead, this estimate is known. Fix the coefficients
ar € {£1} as in Theorem 5.1, and Id} be the correspondingfunctions. For
1< g< n, definel; as above, namelfr : |[F| =n, r1 € J}. Definel; as in (4.4).
The analog of Lemma 4.10 in dimensiah% 4 are

Lemma 5.2 In dimensions &> 4 we have the estimate
Il expuz/za-vy < 02372/ /.

See [4, Section 5, especially (5.3)], which proves the egtrabove for the case
of g = 1. The details of the proof of Theorem 5.1 are omitted, sihecthieorem is
at this moment only a curiosity.

It would be quite interesting to extend Theorem 5.1 to the eelsere, say, one-
half of the coefficients are permitted to be zero. This resalild have implications
for Kolmogorov entropy of certain Sobolev spaces; as wédl thse is much more
indicative of the case of general coefficieats As far as the authors are aware,
there is no straight forward extension of this argument eodhse of even a small
percentage of thag being zero.
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