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Abstract. We show that if T is a narrow operator (for the definition see below) on
X = X1 ⊕1 X2 or X = X1 ⊕∞ X2, then the restrictions to X1 and X2 are narrow and
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1. Introduction

A Banach space X is said to have the Daugavet property if every rank-1
operator T : X → X satisfies the Daugavet equation

‖Id + T ‖ = 1 + ‖T ‖. (1.1)

Examples include C[0, 1], L1[0, 1], certain function algebras such as the disk
algebra or H∞ and also their noncommutative counterparts (nonatomic
C∗-algebras and preduals of nonatomic von Neumann algebras [9]). Such
spaces are studied in detail in [6].

It has long been known that the �1-sum and the �∞-sum of two
spaces with the Daugavet property again enjoys the Daugavet property;
see [1, 10, 6] for various degrees of generality in this statement. In this
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paper we present an operator theoretic extension of this result along with
a study of the inverse problem of which unconditional direct sums inherit
the Daugavet property. Our methods are naturally related to ultrapower
techniques, so we also study the Daugavet property for ultraproducts of
Banach spaces.

In [7] we have introduced the notions of a strong Daugavet operator and
of a narrow operator between Banach spaces X and Y ; for definitions see
Section 2. These appear to be, in the case X = Y , the largest reasonable
classes of operators that satisfy (1.1); in particular, weakly compact opera-
tors, operators not fixing a copy of �1, strong Radon-Nikodým operators
and their sums are strong Daugavet operators on Banach spaces with the
Daugavet property. In Section 3 we show that an operator T on X1 ⊕∞ X2

is a strong Daugavet operator if and only if both restrictions of T to X1

resp. X2 are strong Daugavet operators; the same is true for narrow opera-
tors. Section 4 studies the same problem on �1-sums X1 ⊕1 X2; here a sub-
tle difference between strong Daugavet operators and narrow operators is
exhibited, since the restriction of a narrow operator turns out to be narrow
again, but the analogue for strong Daugavet operators proves to be false.

Section 5 deals with the converse problem of determining which
1-unconditional sums of Banach spaces inherit the Daugavet property. These
are completely classified, and it turns out that among all 1-unconditional
sums of two spaces only X1⊕1X2 and X1⊕∞X2 are spaces with the Daugavet
Property.

As pointed out above, our methods rely on ultrapower techniques as
explained in Section 2. Thus it appears natural to try and investigate which
ultapowers XU have the Daugavet property. These can be characterised by
means of a quantitative version of the Daugavet property for X that we
call the uniform Daugavet property. As examples we show that C[0, 1] and
L1[0, 1], have the uniform Daugavet property.

We consider real Banach spaces in this paper; S(X) stands for the unit
sphere of a Banach space X and B(X) for its closed unit ball.

We dedicate this paper to the memory of Yuri Abramovich, whose work
on the Daugavet equation has stimulated our interest in this subject.

2. The Rigid Versions of the Daugavet property, Strong Daugavet
and Narrow Operators

We recall the following characterisation of the Daugavet property from [6]:

LEMMA 2.1. The following assertions are equivalent:
(i) X has the Daugavet property.
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(ii) For every x ∈ S(X), x∗ ∈ S(X∗) and ε > 0 there exists some y ∈ S(X)

such that x∗(y) � 1 − ε and ‖x + y‖ � 2 − ε.

An a bit more general notion will be convenient for us.

DEFINITION 2.2. A Banach space X has the Daugavet property with
respect to a subset � ⊂ S(X∗) (X ∈ DP(�) for short) if for every x ∈ S(X),
x∗ ∈ � and ε > 0 there exists some y ∈ S(X) such that x∗(y) � 1 − ε and
‖x + y‖ � 2 − ε.

According to [7] an operator T on a Banach space X is said to be a
strong Daugavet operator if for every two elements x, y ∈ S(X) and for
every ε > 0 there is an element z ∈ S(X) such that ‖x + z‖ � 2 − ε and
‖T (y − z)‖ � ε. We denote the set of all strong Daugavet operators on X

by SD(X). An operator T is said to be a narrow operator if for every two
elements x, y ∈ S(X), for every x∗ ∈ X∗ and for every ε > 0 there is an
element z ∈ S(X) such that ‖x +z‖ � 2−ε and ‖T (y −z)‖+|x∗(y −z)| � ε.
We denote the set of all narrow operators on X by NAR(X).

To indicate the difference between the two classes we have introduced the
following notation in [7]. If T : X → Y is an operator and x∗ : X → R is a
functional, define

T +̃x∗ : X → Y ⊕1 R, x �→ (T x, x∗(x)).

Then T is narrow if and only if T +̃x∗ is a strong Daugavet operator for
every x∗ ∈ X∗.

A �-version of the definition of a narrow operator will be also useful for us.

DEFINITION 2.3. An operator T on a Banach space X is said to be
narrow with respect to a subset � ⊂ S(X∗) (T ∈ NAR(X, �) for short)
if for every two elements x, y ∈ S(X), for every x∗ ∈ � and for every
ε > 0 there is an element z ∈ S(X) such that ‖x + z‖ � 2 − ε and
‖T (y − z)‖ + |x∗(y − z)| � ε.

It will be technically convenient to work with the case of ε = 0 in the
above definitions. Therefore we introduce “rigid versions” of these notions.

DEFINITION 2.4.
(a) A Banach space X has the rigid Daugavet property with respect to a

subset � ⊂ S(X∗) (X ∈ DPr (�) for short) if for every x ∈ S(X) and
x∗ ∈ � there exists some y ∈ S(X) such that x∗(y) = 1 and ‖x+y‖ = 2.

(b) An operator T on a Banach space X is said to be a rigid strong
Daugavet operator (in symbols T ∈ SDr (X)) if for every two elements
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x, y ∈ S(X) there is an element z ∈ S(X) such that ‖x + z‖ = 2 and
T (y − z) = 0.

(c) An operator T is said to be rigidly narrow with respect to a subset � ⊂
S(X∗) (in symbols T ∈ NARr (X, �)) if for every two elements x, yS(X)

and for every x∗ ∈ � there is an element z ∈ S(X) such that ‖x+z‖ = 2
and ‖T (y − z)‖ + |x∗(y − z)| = 0.

Let us mention that a rigid strong Daugavet operator is necessarily
non-injective. To see this, one just has to apply the definition for y = −x;
then y−z will be a nonzero element which T maps to 0. Using this remark
one can easily prove the following statement.

LEMMA 2.5. If T ∈ SDr (X), then for every x ∈ S(X) and y ∈ B(X) there
is an element z ∈ S(X) such that ‖x + z‖ = 2 and T (y − z) = 0.

Proof. Using the non-injectivity of T one can find an element y1 ∈ S(X)

such that T (y − y1) = 0. Then applying the definition of SDr (X) to x and
y1 one obtains an element z ∈ S(X) such that ‖x+z‖ = 2 and T (y1−z) = 0.
But for this element T (y − z) = 0, too.

For many investigations in the context of the Daugavet property the
study of the rigid notions above turns out to be sufficient, but is techni-
cally more feasible. The connection between the original versions and their
rigid variants is made using ultrapowers. We refer for instance to [2] for an
introduction to ultrapowers of Banach spaces.

Let U be a nontrivial ultrafilter on N, T be an operator acting from a
Banach space X to a Banach space Y, � ⊂ S(X∗). We denote by T U the
natural operator between the ultrapowers XU and YU defined by T U(xn) =
(T xn), and by �U we denote the set of the linear functionals F = (fn), fn ∈
�, of the form F(xn) = limU fn(xn).

LEMMA 2.6.
(1) If X ∈ DP(�), then XU ∈ DPr (�U).
(2) If XU ∈ DP(�U), then X ∈ DP(�).
(3) If T ∈ SD(X), then T U ∈ SDr (XU).
(4) If T U ∈ SD(XU), then T ∈ SD(X).
(5) If T ∈ NAR(X, �), then T U ∈ NARr (X, �U).
(6) If T U ∈ NAR(X, �U), then T ∈ NAR(X, �).

Proof. All these statements don’t differ too much in essence. Let us
prove for example (5). Fix arbitrary x = (xn), y = (yn) ∈ S(XU) and
x∗ = (x∗

n) ∈ �U. Without loss of generality (just replacing one representa-
tion of an element in XU by another) one may assume that xn, yn ∈ S(X)

for all n ∈ N. Applying the condition T ∈ NAR(X, �) for xn, yn, x
∗
n , and

ε = 1
n

we obtain elements zn ∈ S(X) such that ‖xn + zn‖ > 2 − 1
n

and
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‖T (yn − zn)‖ + |x∗
n(yn − zn)| < 1

n
. This means that for z = (zn) ∈ S(XU) the

conditions ‖x + z‖ = 2 and ‖T U(y − z)‖ + |x∗(y − z)| = 0 are fulfilled.

3. Strong Daugavet and Narrow Operators in �∞-Sums

We first fix some notation. If T is an operator defined on X = X1 ⊕∞ X2,
we let T1 stand for the restriction of T to X1, i.e., T1x1 = T (x1, 0); and like-
wise T2x2 = T (0, x2) defines the restriction to X2. Thus for x = (x1, x2) ∈
X, T x = T (x1, x2) = T1x1 + T2x2.

The aim of this section is to prove that T is a strong Daugavet operator
if and only if both restrictions T1 and T2 of T are strong Daugavet opera-
tors. The same is true for narrow operators.

PROPOSITION 3.1. If X = X1 ⊕∞ X2 and Ti ∈ SD(Xi) (Ti ∈ SDr (Xi)) for
i = 1, 2, then T ∈ SD(X) (T ∈ SDr (X) respectively).

Proof. By Lemma 2.6 it is sufficient to consider only the “rigid” version
of the proposition. Indeed, we have XU = XU

1 ⊕∞ XU
2 and (T U)i = (Ti)

U.
Therefore, if Ti ∈ SD(Xi), then (Ti)

U ∈ SDr (XU
i ) and, assuming the rigid

version, we conclude that T U ∈ SDr (XU) which implies T ∈ SD(X).
Thus, we need to prove that for every x = (x1, x2) with ‖x‖ =

max{‖x1‖, ‖x2‖} = 1 and y = (y1, y2) with ‖y‖ = max{‖y1‖, ‖y2‖} = 1,

there is some z = (z1, z2) with ‖z‖ = max{‖z1‖, ‖z2‖} = 1 such that
‖x + z‖ = max{‖x1 + z1‖, ‖x2 + z2‖} = 2 and ‖T (y − z)‖ = ‖T1(y1 − z1) +
T2(y2 − z2)‖ = 0.

Without any loss of generality we may assume that ‖x1‖ = 1. Using
Lemma 2.5, for T1 ∈ SDr (X1), we can find, given x1 ∈ S(X) and y1 ∈ B(X),
some z1 ∈ S(X) with ‖x1 + z1‖ = 2 and ‖T1(y1 − z1)‖ = 0. Put z2 = y2, z =
(z1, z2); then ‖z‖ = 1 and ‖x + z‖ � ‖x1 + z1‖ = 2 and

‖T (y − z)‖ = ‖T1(y1 − z1) + T2(y2 − z2)‖ = ‖T1(y1 − z1)‖ = 0,

completing the proof.

COROLLARY 3.2. If X = X1 ⊕∞ X2 and Ti ∈ NAR(Xi) for i = 1, 2, then
T ∈ NAR(X).

Proof. We have to prove that for each x∗ = (x∗
1 , x∗

2 ) ∈ X∗ = X∗
1 ⊕1

X∗
2, T +̃ x∗ is a strong Daugavet operator; see Section 2 for this notation.
Let us consider the restriction of T +̃ x∗ to X1; then

‖(T +̃ x∗)1x1‖ = ‖(T +̃ x∗)(x1, 0)‖
= ‖T (x1, 0)‖ + |x∗((x1, 0))|
= ‖T1x1‖ + |x∗

1 (x1)|.
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Since T1 is narrow, T1 +̃ x∗
1 is a strong Daugavet operator and hence so

is (T +̃ x∗)1. By symmetry the same is true for the restriction to X2, and
Proposition 3.1 implies that T +̃ x∗ is a strong Daugavet operator. Since x∗

is arbitrary, T is narrow.

We now turn to the converse of Proposition 3.1. In the sequel we shall
call elements x1, . . . , xn of a normed space quasi-collinear if

‖x1 + · · · + xn‖ = ‖x1‖ + · · · + ‖xn‖.

We will need a simple lemma.

LEMMA 3.3. Suppose that x1, . . . , xn are quasi-collinear.
(a) ‖a1x1+ · · · +anxn‖ = a1‖x1‖+ · · · +an‖xn‖ for all nonnegative coefficients

ak.
(b) If xn+1 is quasi-collinear to (x1 + · · · + xn)/n, then all the vectors

x1, . . . , xn+1 are quasi-collinear.
Proof. (a) The function F : R

n
+ → R defined by

F(a1, . . . , an) = ‖a1x1 + · · · + anxn‖ − (a1‖x1‖ + · · · + an‖xn‖)

is convex, takes values � 0 and F(1, . . . , 1) = 0. Hence F = 0.
(b) follows from (a):

‖x1 + · · · + xn + xn+1‖ =
∥
∥
∥
∥
n
x1 + · · · + xn

n
+ xn+1

∥
∥
∥
∥

= n

∥
∥
∥
∥

x1 + · · · + xn

n

∥
∥
∥
∥

+ ‖xn+1‖
= ‖x1‖ + · · · + ‖xn‖ + ‖xn+1‖.

THEOREM 3.4. If X = X1 ⊕∞ X2, then for every strong Daugavet opera-
tor T on X the restrictions T1 and T2 of T to X1 and X2 are strong Daugavet
operators.

Proof. As in Proposition 3.1 it is sufficient to prove that T1 ∈ SD(X1)

whenever T ∈ SDr (X).
So let T ∈ SDr (X), x1, y1 ∈ S(X1) and ε > 0. Apply the definition of

a rigid strong Daugavet operator to x = (x1, 0), y = (y1, 0). We get some
z1 = (z1

1, z
1
2) for which ‖y1 + z1

1‖ = 1, ‖z1
2‖ � 1, ‖x1 + y1 + z1

1‖ = 2 and
T z1 = 0. This means, in particular, that the vectors x1 and y1 + z1

1 are
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quasi-collinear. Now apply the definition of a rigid strong Daugavet oper-
ator to x = ((x1 + y1 + z1

1)/2, 0), y = (

y1, z
1
2

)

. We get Some z2 = (z2
1, z

2
2) for

which T z2 = 0, ‖y1+z2
1‖ = 1, ‖z1

2+z2
2‖ � 1 and ‖(x1+y1+z1

1)/2+(y1+z2
1)‖ =

2. This again means, by Lemma 3.3, that the vectors x1, y1 +z1
1 and y1 +z2

1
are quasi-collinear. Now apply the same token to x = ((x1+(y1+z1

1)+(y1+
z2

1))/3, 0) and y = (y1, z
1
2 + z2

2), etc.
Continuing this process we obtain a sequence zn = (zn

1, z
n
2) for which all

the vectors x1, y1+z1
1, y1+z2

1, . . . are quasi-collinear unit vectors, ‖z1
2 +· · ·+

zn
2‖ � 1 and T zn = 0. Consider z = (z1

1 + z2
1 + · · · + zn

1)/n ∈ X1. By con-
struction and Lemma 3.3 ‖x1 + y1 + z‖ = 2, ‖y1 + z‖ = 1 and

‖T1z‖ = ‖T (z, 0)‖ = ‖T (0, (z1
2 + z2

2 + · · · + zn
2)/n)‖ � ‖T ‖/n.

Because n can be taken arbitrarily big, this proves that T1 ∈ SD(X1).

COROLLARY 3.5. If X = X1 ⊕∞ X2, then for every narrow operator T on
X the restrictions T1 and T2 of T to X1 and X2 are narrow operators.

Proof. This follows directly from Theorem 3.4 and the definition of a
narrow operator.

Let X1 be an M-ideal of a Banach space X (see [5] for a study of
M-ideals) and T be a strong Daugavet operator on X. We haven’t been
able to decide whether the restriction of T to X1 is a strong Daugavet
operator again. This would give us the operator version of the result saying
that an M-ideal in a space with the Daugavet property has the Daugavet
property itself [6, Prop 2.10].

4. Strong Daugavet and Narrow Operators in �1-Sums

We use the same notation concerning restrictions of operators as before,
but for an �1-sum. X = X1 ⊕1 X2.

PROPOSITION 4.1. If X = X1 ⊕1 X2 and Ti ∈ SD(Xi) (Ti ∈ SDr (Xi)) for
i = 1, 2, then T ∈ SD(X) (T ∈ SDr (X) respectively).

Proof. Again, by Lemma 2.6 it is sufficient to consider only the “rigid”
version of the theorem. Thus, we need to prove that for every x = (x1, x2)

with ‖x‖ = ‖x1‖ + ‖x2‖ = 1 and y = (y1, y2) with ‖y‖ = ‖y1‖ + ‖y2‖ = 1,

there is some z = (z1, z2) with ‖z‖ = ‖z1‖ + ‖z2‖ = 1 such that ‖x + z‖ =
‖x1 + z1‖ + ‖x2 + z2‖ = 2 and ‖T (y − z)‖ = ‖T1(y1 − z1) + T2(y2 − z2)‖ = 0.

For i = 1, 2, since Ti ∈ SDr (Xi), we can produce, using Lemma 2.5,
some zi ∈ ‖yi‖S(Xi) with ‖xi + zi‖ = ‖xi‖ + ‖zi‖ and ‖Ti(yi − zi)‖ = 0.
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Now let us take z = (z1, z2); then

‖z‖ = ‖z1‖ + ‖z2‖ = ‖y1‖ + ‖y2‖ = 1,

‖x + z‖ = ‖x1 + z1‖ + ‖x2 + z2‖ = ‖x1‖ + ‖z1‖ + ‖x2‖ + ‖z2‖ = 2

and

T (y − z) = T1(y1 − z1) + T2(y2 − z2) = 0.

So, z satisfies all the conditions above, and the proposition is proved.

By the same argument as in Corollary 3.2 we obtain:

COROLLARY 4.2. If X = X1 ⊕1 X2 and Ti ∈ NAR(Xi) for i = 1, 2, then
T ∈ NAR(X).

We now study the converse of these results. Let us recall that a subset
� ⊂ S(X∗) is said to be 1-norming if

‖x‖ = sup
x∗∈�

x∗(x).

for every x ∈ X. A subset � ⊂ S(X∗) is said to be a boundary for X if
the above supremum is always attained, i.e., if for every x ∈ X there is
some x∗ ∈ � such that x∗(x) = ‖x‖. Clearly, the notion of a boundary
is a “rigid”’ version of a 1-norming set. It is easy to check that �U is a
boundary for XU if and only if � is 1-norming.

LEMMA 4.3. Let X = X1 ⊕1 X2, let �j ⊂ S(X∗
j ) be boundaries for Xj for

j = 1, 2, and let � = �1 ∪ �2. If T ∈ NARr (X, �), then Tj , the restrictions
of T to Xj , are rigid strong Daugavet operators.

Proof. Let us consider the case of T1. We have to prove that for every
x1, y1 ∈ S(X1) there exists some u1 ∈ S(X1) such that ‖x1 + u1‖ = 2 and
T1(u1 − y1) = 0.

Let us take x = (x1, 0), y = (y1, 0) ∈ S(X) and a functional x∗
1 ∈ �1 such

that x∗
1 (y1) = 1. Let us further take x∗ = (x∗

1 , 0) ∈ �. Since T is narrow, we
can apply Definition 2.4 with the elements x, y and x∗ defined above; thus,
there exists some z = (z1, z2) ∈ S(X) such that

‖x + z‖ = ‖x1 + z1‖ + ‖z2‖ = 2

and

‖T (z − y)‖ + |x∗(z − y)| = ‖T (z − y)‖ + |x∗
1 (z1 − y1)| = 0. (4.1)
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From the last condition we obtain |x∗
1 (z1 − y1)| = 0. Keeping in mind that

x∗
1 (y1) = 1, we get x∗

1 (z1) = 1. But ‖x∗
1‖ = 1, so ‖z1‖ = 1. Then

‖z2‖ = 0, (4.2)

because ‖z1‖ + ‖z2‖ = 1. So ‖x1 + z1‖ = ‖x + z‖ = 2 and by (4.1) and
(4.2) T1(y1) = T (y) = T (z) = T1(z1). Thus the definition of a rigid strong
Daugavet operator is fulfilled for T1.

We can now prove the converse of Corollary 4.2.

THEOREM 4.4. Let X = X1 ⊕1 X2 and T ∈ NAR(X). Then T1 and T2,

the restrictions of T to X1 and X2, are narrow operators.
Proof. It has been proved in [7, Cor. 3.14] that if T is narrow then so is

T +̃ x∗ for any x∗ ∈ X∗, in particular for x∗ ∈ � = X∗
1 ∪ X∗

2. By Lemma
2.6 we may pass to ultraproducts, apply the previous lemma, pass back to
the original space and obtain that T1 +̃ x∗

1 is strongly Daugavet for every
x∗

1 ∈ X∗
1. Hence, by definition, T1 is narrow, and by symmetry, so is T2.

However, the analogue of Theorem 4.4 for strong Daugavet operators,
i.e., the converse of Proposition 4.1, is false.

PROPOSITION 4.5. Let X = X1 ⊕1 X2 and T ∈ SD(X). Then T1, the
restriction of T to X1, need not be a strong Daugavet operator.

Proof. The sum functional T x = ∑∞
n=1 x(n) is a strong Daugavet oper-

ator on �1 = R ⊕1 X2 (see [3. Prop. 2.4]), yet its restriction to R (i.e., the
span of e1) is not.

We wish to indicate another counterexample that even works on a space
with the Daugavet property, viz. L1[0, 1]. For this, let us recall the main
features of the example from Theorem 6.3 of [7]. In this example subspac-
es Y1 ⊂ L1[0, 1] and Y = Y1⊕ lin{l} and a measurable subset P ⊂ [0, 1] of
measure µ(P ) < 1/9 with the following properties are constructed:

‖gχ[0,1]\P ‖ � 3‖gχP ‖ ∀g ∈ Y1 (4.3)

and the quotient map q : L1[0, 1] → L1[0, 1]/Y is a strong Daugavet
operator.

Now let Q ⊂ [0, 1], µ(Q) < 1/3, Q ∩ P = ∅. Then the restriction of q

to L1(Q) is bounded from below. So in particular this restriction is not a
strong Daugavet operator; observe that L1[0, 1] = L1(Q) ⊕1 L1([0, 1]\Q).

Indeed, let us assume to the contrary that the restriction of q to L1(Q)

is unbounded from below. This means that for every ε > 0 there exists a
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function f ∈ L1(Q), a function g1 ∈ Y1 and a constant a such that

‖f − (g1 + a)‖ < ε.

Denote [0, 1] \(P ∪Q) by S; then µ(S) > 1/2. Then ‖(a+g1)χP∪S‖ < ε and

aµ(P ) = ‖aχP ‖ � ‖g1χP ‖ − ε � 1
3‖g1χS‖ − ε (by 4.3)

� 1
3‖aχS‖ − 2ε = 1

3aµ(S) − 2ε,

so a < 40ε. This means that ‖f − g1‖ < 41ε. On the other hand

‖f − g1‖ � ‖(f − g1)χP ‖ = g1χP ‖
� 1

3‖g1χQ‖ � 1
3(‖f ‖ − ‖(f − g1)χQ‖) � 1

3(1 − 41ε),

which is a contradiction.

5. The Daugavet Property for Unconditional Sums of Spaces

Throughout this section F denotes a Banach space with a 1-unconditional
normalised Schauder basis. We can think of the elements of F as sequences
with the property that

‖(a1, a2, . . . )‖F = ‖(|a1|, |a2|, . . . )‖F ∀(aj ) ∈ F.

Note that F is naturally endowed with the structure of a Banach lattice
with respect to the pointwise operations.

Suppose that X1, X2, . . . are Banach spaces. Their F -sum X = (X1,
X2, . . . )F consists of all sequences (xj ) with xj ∈ Xj and (‖xj‖) ∈ F with
the norm ‖(xj )‖ = ‖(‖xj‖)‖F . We are going to characterise when such an
F -sum has the Daugavet property.

THEOREM 5.1. Let X1, X2, . . . be Banach spaces with the Daugavet prop-
erty. Then their F-sum X has the Daugavet property if and only if the Banach
lattice F has the positive Daugavet property in the sense that ‖Id + T ‖ =
1 + ‖T ‖ whenever T : F → F is a positive rank-1 operator.

Proof. We first remark that the positive Daugavet property may be
characterised as in Lemma 2.1; the proof is verbatim the same as in
[6, Lemma 2.1].
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LEMMA 5.2. A Banach lattice has the positive Daugavet property if and
only if for every positive a ∈ S(F ), every positive a∗ ∈ S(F ∗) and every ε > 0
there is some positive b ∈ S(F ) such that a∗(b) � 1−ε and ‖a+b‖ � −2−ε.

Now suppose that X has the Daugavet property; we shall verify the con-
dition of Lemma 5.2. Note that F ∗ can be represented by all sequences
(a∗

j ) such that

sup
n

‖(|a∗
1 |, . . . , |a∗

n|, 0, 0, . . . )‖F ∗ < ∞,

and X∗ can be represented by all sequences (x∗
j ), x

∗
j ∈ X∗

j , such that

‖x∗‖ = sup
n

‖(‖x∗
1‖, . . . , ‖x∗

n‖, 0, 0, . . . )‖F ∗ < ∞.

Let a = (aj ) ∈ S(F ) and a∗ = (a∗
j ) ∈ S(F ∗) be positive elements and let

ε > 0. Pick xj ∈ Xj and x∗
j ∈ X∗

j such that ‖xj‖ = aj , ‖x∗
j ‖ = a∗

j and put
x = (xj ), x

∗ = (x∗
j ); then ‖x‖ = ‖x∗‖ = 1. Since X has the Daugavet prop-

erty, we can find y ∈ S(X) such that x∗(y) � 1 − ε and ‖x + y‖ � 2 − ε; cf.
Lemma 2.1. Write y = (yj ) and b = (‖yj‖); then ‖b‖F = 1 and

1 − ε � x∗(y) =
∞

∑

j=1

x∗
j (yj ) �

∞
∑

j=1

‖x∗
j ‖‖yj‖ = a∗(b),

2 − ε � ‖x + y‖ = ‖(‖xj + yj‖)‖F � ‖(‖xj‖ + ‖yj‖)‖F � ‖a‖ + ‖b‖,

where we have used the fact that the norm of F is monotonic in each
variable. Hence F has the positive Daugavet property. (Incidentally, the
assumption that the Xj have the Daugavet property did not enter this part
of the proof.)

Conversely, suppose that F has the positive Daugavet property. Let x =
(xj ) ∈ S(X) and x∗ = (x∗

j ) ∈ S(X∗), define a = (aj ) = (‖xj‖) ∈ S(F )

and a∗ = (a∗
j ) = (‖x∗

j ‖) ∈ S(F ∗). Given ε > 0, find using Lemma 5.2
some b = (bj ) ∈ S(F ) such that a∗(b) � 1 − ε and ‖a + b‖ � 2 − ε.
Since Xj has the Daugavet property, one can find yj ∈ Xj such that ‖yj‖ =
bj , x

∗
j (yj ) � (1 − ε)a∗

j bj and ‖xj + yj‖ � (1 − ε)(aj + bj ); just note that
‖Id + (x∗

j /a
∗
j ) ⊗ (xj/bj )‖ = 1 + aj/bj . Therefore y = (yj ) ∈ S(X) satisfies

x∗(y) =
∞

∑

j=1

x∗
j (yj ) � (1 − ε)

∞
∑

j=1

a∗
j bj = (1 − ε)a∗(b) � (1 − ε)2
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and

‖x + y‖ = ‖(‖xj + yj‖)‖F � (1 − ε)‖(‖xj‖ + ‖yj‖)‖F

= (1 − ε)‖a + b‖F � 2(1 − ε)(1 − 2ε).

Hence X has the Daugavet property.
It is clear that for example c0 and �1 have the positive Daugavet prop-

erty, hence Theorem 5.1 contains [6, Prop. 2.16] as a special case. Also, if
F ∗ is a Banach lattice with the positive Daugavet property, then so is F .

If F is finite-dimensional, we can pass to the limit ε = 0 in Lemma 5.2
by compactness. Thus, we obtain the following variant of Theorem 5.1.

COROLLARY 5.3. Let dim F = n and X1, . . . , Xn be Banach spaces with
the Daugavet property. Then their F -sum (X1 ⊕· · ·⊕Xn)F has the Daugavet
property if and only if for every positive a ∈ S(F ) and every positive a∗ ∈
S(F ∗) there is some b ∈ S(F ) such that a∗(b) = 1 and ‖a + b‖ = 2.

This condition can be rephrased geometrically as follows. For any point
a � 0 in S(F ) and any supporting hyperplane of the positive part of the
unit sphere H = {a∗ = 1} there is a line segment in the unit sphere that
contains a and intersects H ∩ S(F ). From this the following corollary is
evident.

COROLLARY 5.4. If X = (X1 ⊕ X2)F has the Daugavet property, then
either F = �2

1 or F = �2
∞, i.e., either X = X1 ⊕1 X2 or X = X1 ⊕∞ X2.

It is easy to see that F1 ⊕1 F2 and F2 ⊕∞ F2 have the positive Daugavet
property whenever F1 and F2 have; in fact, the proof of Theorem 5.1
shows that the F -sum (F1 ⊕ F2 ⊕ · · · )F of Banach lattices with the
positive Daugavet property is a Banach lattice with the positive Daugavet
property. Therefore, starting from the real line we can form �1-sums and
�∞-sums consecutively to obtain finite-dimensional spaces with the positive
Daugavet property, e.g., the 18-dimensional space

(�3
∞ ⊕1 �4

∞) ⊕∞ (�3
1 ⊕1 �3

∞) ⊕∞ �5
1.

However, there are other examples, even in the three-dimensional case; for

‖(a1, a2, a3)‖F = max
{

|a1| + |a3|
2

, |a2| + |a3|
}
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defines a norm on R
3 with the positive Daugavet property. In this exam-

ple the unit sphere intersected with the half-space {(0, 0, t) : t � 0)} looks
like a hip roof and the positive part of B(F), i.e., B(F) ∩ R

3
+, is the con-

vex hull of the points (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0) and
(1/2, 0, 1). From this description it is easy to see (literally) that this norm
has the positive Daugavet property.

6. The Daugavet Property for Ultraproducts

Let Z be a subspace in X∗, � = S(Z) be a boundary for X, and
X ∈ DP(�). Is it true that under this condition X has the Daugavet
property? Provided the answer to this question is positive Lemma 2.6 easily
implies that an ultrapower of a space with the Daugavet property has
the Daugavet property itself. Unfortunately we do not know the answer;
that is why we investigate the question from another point of view in this
section. Note, however, that it is easy to find a Banach space without the
Daugavet property that has the Daugavet property with respect to some
boundary, e.g., �1 with the boundary ex B�∗

1
. [Added February 2003: Please

see Remark 6.9.]
For an element x ∈ S(X) and ε > 0 denote

l+(x, ε) = {y ∈ X: ‖y‖ � 1 + ε, ‖x + y‖ > 2 − ε}.

The next lemma follows directly from Lemma 2.1.

LEMMA 6.1. The following assertions are equivalent:
(1) X has the Daugavet property.
(2) For every x ∈ S(X) and every ε > 0 the closure of conv(l+(x, ε)) con-

tains B(X).

Lemma 6.1 suggests the following quantitative approach to the Daugavet
property. For a subset A ⊂ X denote by convn(A) the set of all convex
combinations of all n-point collections of elements of A. Clearly conv(A) =
⋃

n∈N
convn(A). Denote

Daugn(X, ε) = sup
x,y∈S(X)

dist(y, convn(l
+(x, ε))).

It is easy to see that for every ε > 0 the sequence (Daugn(X, ε))

decreases. If limn→∞ Daugn(X, ε) = 0 for every ε > 0, then X has the
Daugavet property.
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THEOREM 6.2. Let U be a free ultrafilter on a set � with the following
additional property: For every decreasing sequence of sets An ∈ U there is
a decreasing sequence of sets Bn ∈ U such that Bn ⊂ An and

⋂

n Bn = ∅.
Let Xi , i ∈ �, be a collection of Banach spaces and X be the corresponding
ultraproduct of the Xi . Then the following assertions are equivalent:
(1) X has the Daugavet property.
(2) For every ε > 0, limU,n Daugn(Xi, ε) = 0. In other words, for every fixed

ε > 0 and every δ > 0 there is an n ∈ N such that the set of all i for
which Daugn(Xi, ε) < δ belongs to the ultrafilter U.

Proof. To deduce (1) from (2) one just has to notice that if the set
of all i for which Daugn(Xi, ε) < δ belongs to the ultrafilter U, then
Daugn(X, ε) < δ. So for every ε > 0, Daugn(X, ε) tends to 0 when n tends
to infinity, which proves the Daugavet property for X.

To deduce (2) from (1) let us argue ad absurdum. Suppose there are
ε > 0 and δ > 0 such that for every n ∈ N the set An = {i ∈
�: Daugn(Xi, ε) > δ} belongs to the ultrafilter U. Denote A0 = �, and let
Bn ⊂ An be decreasing sets in U such that

⋂

n Bn = ∅. Let us construct
two elements x = (xi)i∈� and y = (yi)i∈� of S(X) in such a way that xi ,
yi ∈ S(Xi) and for every i ∈ Bn\Bn−1 the distance from convn(l

+(xi, ε)) to
yi is bigger than δ. The convn-hull of a set is increasing when n is increas-
ing, so for every n ∈ N and every i ∈ Bn = ⋃∞

m=n Bm\Bm−1 the distance
from convn(l

+(xi, ε)) to yi is bigger than δ. This implies in turn that for
every n ∈ N

dist(y, convn(l
+(x, ε))) � δ,

so

dist(y, conv(l+(x, ε))) � δ,

which contradicts the Daugavet property of X.

We note that the implication (2) ⇒ (1) does not need the additional
property of U and that every free ultrafilter on N has it.

REMARK 6.3. If limn→∞Daugn(X, ε) = 0 for every ε > 0, then for every
ε > 0 there is some n ∈ N such that Daugn(X, ε) = 0. More explicitly: If
Daugn(X, ε/2) < ε/2, then Daugn(X, ε) = 0. Moreover for every pair x,
y ∈ S(X) not just dist(y, convn(l

+(x, ε))) = 0, but y convn(l
+(x, ε)).

Proof. Suppose Daugn(X, ε/2) < ε/2. Fix x, y ∈ S(X). There exist
y1, . . . , yn ∈ (1 + ε/2)B(X), ‖x + yn‖ > 2 − ε/2, and a1, . . . , an � 0,
∑n

k=1 ak = 1, for which ‖y − ∑n
k=1 akyk‖ < ε/2. Define elements zj = yj +

y − ∑n
k=1 akyk. Then zj ∈ l+(x, ε),

∑n
j=1 ajzj = y, so y ∈ convn(l

+(x, ε)).
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So instead of Daugn(X, ε) it is reasonable to consider the following
notion, which seems to be a bit more convenient (at least it depends only
on one para-meter):

DX(ε) = inf{n: convn(l
+(x, ε)) ⊃ S(X) ∀x ∈ S(X)}

If DX(ε) is finite for every ε > 0, we say that X possesses the uniform
Daugavet property. Equivalently, by Remark 6.3, X has the uniform
Daugavet property if and only if Daugn(X, ε) → 0 for every ε > 0.

The theorem on ultraproducts can be reformulated in the following way.

THEOREM 6.4. Let U be a free ultrafilter on a set � as in Theorem 6.2,
and let Xi be a collection of Banach spaces and X the corresponding ultra-
product of the Xi . Then the following assertions are equivalent:
(1) X has the Daugavet property.
(2) For every ε > 0 there exists some n such that the set of all i for which

DXi
(ε) < n belongs to the ultrafilter U.

COROLLARY 6.5. A Banach space X has the uniform Daugavet property
if and only if every ultrapower XU, U a free ultrafilter on N, has the
Daugavet property, in which case XU even has the uniform Daugavet
property.

It follows from this corollary and the canonical isometric isomorphism
(X ⊕∞ Y )U = XU ⊕∞ YU that the uniform Daugavet property is stable by
taking �∞-direct sums and likewise by taking �1-direct sums.

Let us prove that the basic examples of spaces with the Daugavet prop-
erty in fact are spaces with the uniform Daugavet property.

LEMMA 6.6. Let X = L1[0, 1]. If n > 2/ε, then Daugn(X, ε) = 0; if
n � 2/ε, then Daugn(X, ε) � 1 − εn/(2 + ε). Hence Dx(ε) is of order ε−1.

Proof. Suppose n > 2/ε and let us take arbitrary points x and y from
S(X). There is a partitioning of [0, 1] into sets E1, . . . , En such that ‖x ·
χEi

‖ = 1/n < ε/2. Define functions yi by yi = 1
‖y·χEi

‖y · χEi
if ‖y · χEi

‖ �= 0,

and yi = 0 if ‖y · χEi
‖ = 0. Then

∑n
i=1 yiλi = y, where λi = ‖y · χEi

‖. On
the other hand, if yi �= 0, then

|x + yi‖ � ‖x · χ[0,1]\Ei
‖ + ‖yi‖ − ‖x · χEi

‖ � 2 − 2‖x · χEi
‖ > 2 − ε.

So, yi ∈ l+(x, ε).

If n � 2/ε, then proceeding as above, with N = [2/ε]+1 we get a decom-
position E1, . . . , EN. Let us arrange the λi ’s in decreasing order and take
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the first n of them. Then
∥
∥
∥
∥
∥

n
∑

i=1

yiλi − y

∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥

N
∑

i=n+1

yiλi

∥
∥
∥
∥
∥

�
N

∑

i=n+1

λi = S.

We need to prove that S � (N − n)/N . Assume the opposite. Then

1 =
N

∑

i=1

λi >

n
∑

i=1

λi + N − n

N
;

hence n/N >
∑n

i=1 λi � nλn and 1/N > λn. Thus,

S =
N

∑

i=n+1

λi � λn(N − n) <
N − n

N
,

which is a contradiction. So,

S � N − n

N
= 1 − n

[ 2
ε
] + 1

� 1 − εn

2 + ε

and the proof of the lemma is finished.

LEMMA 6.7. If X = C(K) for a compact Hausdorff space K without iso-
lated points, then for every ε and n, Daugn(X, ε) � 2/n. Hence DX(ε) is of
order ε−1.

Proof. Let x and y ∈ S(X) be arbitrary. Without loss of generality,
assume that x attains the value 1. Take an open neighbourhood U such
that x(u) > 1 − ε for all u ∈ U. Now pick n disjoint subneighbourhoods,
V1, . . . , Vn inside U . For each of them choose a positive function ϕi sup-
ported on Vi such that ‖ϕi‖ � 2, ‖y + ϕi‖ � 1 and y + ϕi attains the value
1 in Vi . Obviously, ‖x + y + ϕi‖ > 2 − ε, hence, y + ϕi ∈ l+(x, ε). On the
other hand,

∥
∥
∥
∥
∥

1
n

n
∑

i=1

(y + ϕi) − y

∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥

1
n

n
∑

i=1

ϕi

∥
∥
∥
∥
∥

� 2
n
,

which proves the lemma.

One can show that the same estimates for the Daugn constants are valid
for rich subspaces of C(K)-spaces (see [7] for this notion), for vector-valued
C(K)- or L1-spaces and for spaces of weakly continuous vector-valued
functions with the sup-norm.
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REMARK 6.8. For every Banach space X the constants DX(ε) can be
estimated from below by (2 + 2ε)/(3ε), which is bigger than 2/(3ε). So the
estimates from above which we have for L1 and C are of optimal order.

Proof. Suppose DX(ε) = n < (2 + 2ε)/(3ε) for some ε > 0. This means
in particular that for a fixed element x ∈ S(X) (taking y = −x) there are
elements y1, . . . , yn ∈ (1 + ε)B(X), ‖x + yn‖ > 2 − ε and a1, . . . , an � 0,
∑n

k=1 ak = 1, for which
∑n

k=1 akyk = −x. Without loss of generality we
may assume that a1 � 1/n (otherwise just change the enumeration). Plug-
ging in ‖x + y1‖ > 2 − ε and x = − ∑n

k=1 akyk we obtain

2 − ε < ‖x + y1‖ =
∥
∥
∥
∥
∥
y1(1 − a1) −

n
∑

k=2

akyk

∥
∥
∥
∥
∥

� (1 + ε)(1 − a1) + (1 + ε)(1 − a1)

� 2(1 + ε)(1 − 1/n) � 2 − ε,

which is a contradiction.

REMARK 6.9. (Added February 2003.) We have recently observed that
the space constructed by Bourgain and Rosenthal in [4] is a space with the
Daugavet property which fails the uniform Daugavet property, the details
will appear else where [8]. Hence the question posed at the beginning of
this section has a negative answer.
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