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CYCLIC SHIFTS OF THE VAN DER CORPUT SET

DMITRIY BILYK

(Communicated by Michael T. Lacey)

Abstract. In 1980, K. Roth showed that the expected value of the L2 dis-
crepancy of the cyclic shifts of the N-point van der Corput set is bounded by
a constant multiple of

√
log N , thus guaranteeing the existence of a shift with

asymptotically minimal L2 discrepancy. In the present paper, we construct a
specific example of such a shift.

1. Introduction

Let AN ⊂ [0, 1]2 be a finite point set of cardinality N . The extent of equidistri-
bution of AN can be measured by the discrepancy function:

DAN
(x1, x2) := �

(
AN ∩ [0, x1) × [0, x2)

)
− Nx1 · x2 ,

i.e. the difference between the actual and expected number of points of AN in
the rectangle [0, x1) × [0, x2). The main principle of the theory of irregularities
of distribution states that the size of this function must increase with N . The
fundamental results in the subject are:

K. Roth’s Theorem ([11], 1954). For any set AN ⊂ [0, 1]2, we have

(1.1) ‖DAN
‖2 � (log N)1/2,

where “ �” stands for “greater than a constant multiple of”.

W. Schmidt’s Theorem ([14], 1972). For any set AN ⊂ [0, 1]2, we have

(1.2) ‖DAN
‖∞ � log N .

Both theorems are known to be sharp in the order of magnitude (e.g., [6], [7],
[12], [2]). One of the most famous examples, yielding sharpness of (1.2), is the van
der Corput “digit-reversing” set, [6]. For N = 2n points, it can be defined as

(1.3) Vn = {(0.a1a2 . . . an1, 0.anan−1 . . . a2a11) : ai = 0, 1} ,

where the coordinates are given in terms of the binary expansion. Unfortunately,
most “classical” sets with minimal L∞ norm of the discrepancy fail to meet the
sharp bounds in the L2 norm. In fact, Halton and Zaremba [8] proved that

(1.4) ‖DVn
‖2
2 =

n2

26
+ O(n) ≈ (log N)2.

Received by the editors October 22, 2008.
2000 Mathematics Subject Classification. Primary 11K38; Secondary 42B05.
Key words and phrases. Discrepancy theory, Fourier analysis.
The author is grateful to the Fields Institute and the Institute for Advanced Study for hospital-

ity and to the National Science Foundation for support (grants DMS-0801036 and DMS-0635607).

c©2009 American Mathematical Society
Reverts to public domain 28 years from publication

2591



2592 DMITRIY BILYK

There are three standard remedies in the theory for this shortcoming. To achieve
the smallest possible order of the L2 discrepancy, one can alter the sets in the
following ways:

1. Davenport’s Reflection Principle. Informally, if P has low L∞ discrepancy,
then the set P̃ = P ∪ {(1 − x, y) : (x, y) ∈ P} has low L2 discrepancy. This was
demonstrated by Davenport [7] in the case of the irrational lattice, and by Chen
and Skriganov ([5], see also [10]) in the case of the van der Corput set.

2. Digit scrambling. This procedure, initially introduced in [3], has been exten-
sively studied; a comprehensive discussion can be found in [9].

3. Cyclic shifts. This transformation is the subject of this paper. It has been
proved by Roth, [13] (see also [12], where the translation idea was originally used)
that for the cyclic shifts of the van der Corput set

(1.5) Vα
n =

{(
(x + α) mod 1, y

)
: (x, y) ∈ Vn

}
,

the expected value of the L2 discrepancy over α satisfies

(1.6)
∫ 1

0

‖DVα
n
‖2 dα � n1/2 = (log N)1/2

.

This implies that there exists a particular cyclic shift of the van der Corput dis-
tribution with minimal L2 norm of the discrepancy function. However, this was
purely an existence proof, and no deterministic examples of such shifts have been
constructed. In the present paper, we “de-randomize” this result and provide an
explicit value of α, which asymptotically minimizes ‖DVα

n
‖2. We prove the following

theorem.

Theorem 1.1. For α0 = 1 − k
2n , where k ∈ N, in the binary form, is given by

(1.7) k :=
(
000 . . . 00︸ ︷︷ ︸

n0 digits

00001111 . . . 00001111︸ ︷︷ ︸
n2 digits

000111 . . . 000111︸ ︷︷ ︸
n1 digits

)
2

+ 1,

with n0 +n1 +n2 = n, n1
n2

= 54
17 , and n0 < 568, the cyclically shifted van der Corput

set Vα0
n satisfies

(1.8)
∥∥DVα0

n

∥∥
2

� n1/2 = (log N)1/2.

Remark. The “+1” at the end of (1.7) is just a minor nuisance, which simplifies
some calculations, and is not important. In fact, one can easily see that a cyclic
shift by the amount α = 1/N = 2−n changes the discrepancy by at most 1 at each
point.

We would like to point out that most constructions of sets with minimal order
of Lp discrepancy (which are important in applications to numerical integration)
are probabilistic; explicit constructions are rare. In fact, the first deterministic
examples of such sets in dimensions d ≥ 3 have only been obtained quite recently
by Chen and Skriganov ([4], [15]).

The outline of the paper is the following: In §2 we deal with the quantities∫
[0,1]2

DVn
(x)dx and

∫
[0,1]2

DVα
n
(x)dx (which can be viewed as the “zero-order” term

of the expansion in any reasonable orthonormal basis) and minimize the latter. In
§3, we examine the Fourier coefficients D̂Vn

(n1, n2) when (n1, n2) �= (0, 0) and show
that they do not change too much under cyclic shifts.
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We will refer to the two parts of the discrepancy function as “linear” and “count-
ing”:

LN (x1, x2) = Nx1 · x2 ,(1.9)

CAN
(x1, x2) =

∑
p∈AN

1[p1,1)×[p2,1)(x1, x2) .(1.10)

In proving upper bounds for the discrepancy function, one of course needs to capture
a large cancelation between these two.

2. The integral of the discrepancy function

Recall that in our definition of the van der Corput set, Vn =
{(0.a1 . . . an1, 0.an . . . a2a11)}, both coordinates have 1’s in the (n + 1)st binary
place. This is just a technical modification, which ensures that, for any α = j/2n,
j ∈ Z, the average value of both coordinates in Vα

n is one-half:

(2.1)
1
2n

∑
(p1,p2)∈Vα

n

p1 =
1
2n

∑
(p1,p2)∈Vα

n

p2 =
1
2
.

This makes many formulas look ‘cleaner’ and is not essential to the computations.
It has been noticed (see [8], [1]), that the quantity

∫
[0,1]2

DVn
(x)dx is the main

reason why ‖DVn
‖2 is large. Indeed, if one compares (1.4) and (2.3) below, it is

easy to see that

(2.2)
∥∥∥DVn

−
∫

DVn

∥∥∥
2

� (log N)1/2.

We include the proof of the lemma below for the sake of completeness.

Lemma 2.1. For the van der Corput set Vn,

(2.3)
∫

[0,1)2
DVn

(x) dx =
n

8
.

Proof. The linear part of the discrepancy function clearly gives us

(2.4)
∫

[0,1)2
LN dx = 2n−2 .

Let X1, . . . , Xn be independent random variables taking values {0, 1} with prob-
ability 1

2 . A straightforward computation yields∫
[0,1)2

CVn
(x1, x2) dx1 dx2 =

∑
(p1,p2)∈Vn

(1 − p1)(1 − p2)

= 2n
E

[
1 −

n∑
j=1

Xj2−j − 2−n−1

][
1 −

n∑
k=1

Xk2−n+k−1 − 2−n−1

]
(2.5)

= 2n−2 +
n

8
.

Combining (2.4) and (2.5) proves the lemma. �
In what follows we prove that the average of

∫
[0,1]2

DVα
n
dx over α is zero. Besides,

we construct a specific value of α0, for which∫
[0,1]2

DV α0
n

dx ≈ 1.



2594 DMITRIY BILYK

Theorem 2.2. Assume that α ∈ [0, 1) is an n-digit binary number. Then

(2.6) Eα

∫
[0,1]2

DVα
n
dx = 0.

Proof. We denote 1 − α = k
2n (k = 1, . . . , 2n) and start with the following compu-

tation:
(2.7)∫

[0,1]2
CVα

n
=
∑

p∈Vα
n

(1 − p1)(1 − p2)

=
∑

p∈Vn: p1<1−α

(1 − p1 − α)·(1 − p2) +
∑

p∈Vn: p1>1−α

(2 − p1 − α)·(1 − p2)

=
∫

[0,1]2
CVn

dx + (1 − α)
∑

p∈Vn

(1 − p2) −
∑

p∈Vn: p1<1−α

(1 − p2)

=
∫

[0,1]2
CVn

dx − k

2
+

∑
p∈Vn: p1<k/2n

p2.

Next, we examine the behavior of the last sum above. Using the structure of the
van der Corput set, we can write

(2.8)
∑

p∈Vn: p1<k/2n

p2 =
n∑

l=1

2−lfl(k) + k2−n−1,

where k2−n−1 comes from the final 1’s in the expansion of p2 and
(2.9)
fl(k) = #{0 ≤ j ≤ k − 1 such that the lth (from the end) binary digit of j is 1}.

It can be seen that

fl(k) = 2l−1m if k − 1 = 2lm, 2lm + 1, ... , 2lm + 2l−1 − 1, and(2.10)

fl(k) = 2l−1m + j if k − 1 = 2lm + 2l−1 + j − 1, where 1 ≤ j ≤ 2l−1.(2.11)

Thus, if we set fl(k) = 2l−1ml(k) + jl(k), where 0 ≤ ml(k) < 2n−l and 1 ≤ jl(k) ≤
2l−1, we have Ekml(k) = 1

2 · (2n−l − 1) and

Ekjl(k) =
1
2
· 1
2
(2l−1 + 1),

where the extra one-half above comes from the fact that jl(k) = 0 half of the time.
Thus

(2.12) Ekfl(k) = 2n−2 − 2l−2 + 2l−3 +
1
4
.

Plugging this into (2.8), we obtain

Ek

∑
p∈Vn: p1<k/2n

p2 =
n∑

l=1

2−l

(
2n−2 − 2l−3 +

1
4

)
+ Ekk · 2−n−1

= 2n−2 − n

8
+

1
4
.(2.13)
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Finally, equation (2.7), together with (2.13) as well as (2.3), yields

E

∫
[0,1]2

DVα
n

=
∫

[0,1]2
DVn

dx − Ek
k

2
+ Ek

∑
p∈Vn: p1<k/2n

p2

=
n

8
−
(

2n−2 +
1
4

)
+
(

2n−2 − n

8
+

1
4

)
= 0.(2.14)

�

To facilitate the construction of an example, we further look at the functions
fl(k) = 2l−1ml(k) + jl(k) defined above, (2.9)-(2.11). Assume that k − 1 is written
in the binary representation:

k − 1 =
n∑

j=1

kj · 2j−1 =
(
knkn−1 . . . k2k1

)
2
.

By construction, ml(k) = (knkn−1 . . . kl+1)2; furthermore, when kl = 0, we have
jl(k) = 0, and if kl = 1, jl(k) = (kl−1 . . . k1)2 + 1. Thus, fl(k) can be written in
closed form in terms of the digits of k − 1 as follows:

(2.15) fl(k) =
n∑

j=l+1

kj2j−2 + kl ·
l−1∑
j=1

kj2j−1 + kl.

Indeed, if kl = 0, the last two terms will disappear; otherwise, they’ll equal exactly
jl(k).

Plugging this into (2.8), we obtain

(2.16)
∑

p∈Vn: p1<k/2n

p2 =
n−1∑
l=1

n∑
j=l+1

kj · 2j−l−2 +
n∑

l=1

kl · 2−l +
n∑

l=2

l−1∑
j=1

kj · kl · 2j−l−1.

Obviously, the second term above is bounded by one. Next we shall look at the
first term in (2.16). At this point we assume that

(2.17)
n∑

j=1

kj =
n

2
+ O(1);

i.e. approximately half of the binary digits of k− 1 are ones and half are zeros. We
have
n−1∑
l=1

n∑
j=l+1

kj · 2j−l−2 =
1
2

n∑
j=2

kj · 2j−1

j−1∑
l=1

2−l =
1
2

n∑
j=2

kj · 2j−1 · (1 − 2−(j−1))

=
1
2

n∑
j=2

kj · 2j−1 − 1
2

n∑
j=2

kj =
1
2
k − n

4
+ O(1).(2.18)

As to the last term of (2.16), we have the following lemma:

Lemma 2.3. For every n ∈ N, there exists k : 1 ≤ k ≤ 2n with
∑n

j=1 kj =
n/2 + O(1), where k − 1 =

(
knkn−1 . . . k2k1

)
2
, so that

(2.19)
n∑

l=2

l−1∑
j=1

kj · kl · 2j−l−1 =
n

8
+ O(1).
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Assuming this statement for the moment and putting together (2.16), (2.18),
and (2.19) for k defined by Lemma 2.3 above, we obtain

(2.20)
∑

p∈Vn: p1<k/2n

p2 =
(

1
2
k − n

4

)
+

n

8
+ O(1) =

1
2
k − n

8
+ O(1).

Together with (2.7), (2.5), this yields:

(2.21)
∫

[0,1]2
CVα

n
dx =

(
2n−2 +

n

8

)
− 1

2
k +

(
1
2
k − n

8

)
+ O(1) = 2n−2 + O(1).

Finally, (2.21) and (2.4) give

(2.22)
∫

[0,1]2
DVα

n
(x)dx = O(1).

Thus, it remains to prove Lemma 2.3. We shall denote

(2.23) S(n, k − 1) :=
n∑

l=2

l−1∑
j=1

kj · kl · 2j−l−1

and will look at some basic examples first. Let k′ be of the form

(2.24) k′ :=
(
000111 . . . 000111

)
2
,

where the sequence 000111 is repeated n′ times, n = 6n′. We then have the following
calculation:

S(6n′, k′)=
1
2

n′−1∑
l′=1

(
2−(6l′+1)+2−(6l′+2)+2−(6l′+3)

)⎛⎝l′−1∑
j′=0

[
26j′+1 + 26j′+2 + 26j′+3

]⎞⎠
(2.25)

+
1
2

n′−1∑
l′=0

(
1
2

+
(

1
2

+
1
4

))
(2.26)

=
1
2

n′−1∑
l′=1

2−6l′(26l′ − 1)
1

26 − 1
(2−1 + 2−2 + 2−3)(21 + 22 + 23) +

1
2
· 5
4
n′

=
(

7
72

+
45
72

)
· n

6
+ O(1)

=
13
108

n + O(1),(2.27)

where the term in (2.25) describes the interactions of digits in different triples and
(2.26) arises from interactions within the triples. (Notice that the obtained fraction
13
108 ≈ 0.12037... is quite close to the desired 1

8 = 0.125.)



CYCLIC SHIFTS OF THE VAN DER CORPUT SET 2597

Next we set k′′ = (00001111....00001111)2, where the string 00001111 is repeated
n′′ times. An absolutely analogous computation yields:
(2.28)

S(8n′′, k′′)

=
1
2

n′′−1∑
l′′=1

2−8l′′(28l′′ − 1)
1

28 − 1
(2−1 + 2−2 + 2−3 + 2−4)(21 + 22 + 23 + 24)

+
1
2

n′−1∑
l′=0

(
1
2

+
(

1
2

+
1
4

)
+
(

1
2

+
1
4

+
1
8

))
=

19
136

n + O(1).

We are now ready to define the number k which satisfies (2.19). Set

(2.29) k − 1 :=
(
00001111 . . . 00001111︸ ︷︷ ︸

n2 digits

000111 . . . 000111︸ ︷︷ ︸
n1 digits

)
2
.

Then we have

(2.30) S(n1 + n2, k − 1) = S(n1, k
′) + S(n2, k

′′) + I(n1, n2),

where I(n1, n2) describes the interaction between the two parts of k. We can
estimate:

(2.31) I(n1, n2) =
1
2

(
n∑

l=n1+1

kl2−l

)⎛⎝ n1∑
j=1

kj2j

⎞⎠ ≤ 1
2
(
2−n1−1 · 2

)
(2n1+1 − 1) ≤ 1.

We now choose n1 and n2 so that n1
n2

= 54
17 , i.e. n1 = 54

71n, n2 = 17
71n. We then

obtain

S(n, k − 1) =
13
108

n1 +
19
136

n2 + O(1)

=
(

13 · 54
108 · 71

+
19 · 17
136 · 71

)
n + O(1)

=
n

8
+ O(1),

(2.32)

which finishes the proof of Lemma 2.3. Thus, if we set α0 = 1 − k
2n , where k is as

defined in (2.29), then the cyclic shift of the van der Corput set by α0 satisfies

(2.33)
∫

[0,1]2
DVα0

n
(x) dx = O(1).

Remark. Of course, the above construction only works when n is a multiple of
71 · 2 · 4 = 568. However, it can be easily adjusted for other values of n just by
setting the “remainder” digits equal to zero.

3. The Fourier coefficients of the discrepancy function

Having eliminated the main problem, we shall now proceed to show that the
remaining part of DVn

behaves well under cyclic shifts. We shall use the exponential
Fourier basis (rather than the more standard in this theory Haar basis) since it is
better adapted to cyclic shifts.
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Obviously, for any α, we have∑
p∈Vα

n

e−2πimp1 =
∑

p∈Vn

e−2πimp1 =
2n−1∑
j=0

e−2πi m
2n j · e−πi m

2n

=

⎧⎪⎨⎪⎩
0, if m �≡ 0 mod 2n,

m, if m = 2nm′, m′ even,

−m, if m = 2nm′, m′ odd.

(3.1)

Fourier coefficients in the case n1, n2 �= 0. We first note that, for n1, n2 �= 0,
the Fourier coefficient of the linear part is:

(3.2) L̂N (n1, n2) = − N

4π2n1n2
.

The counting part yields

(3.3) ĈVN
(n1, n2) = − 1

4π2n1n2

∑
p∈VN

(
1 − e−2πin1p1

) (
1 − e−2πin2p2

)
,

and, thus,

D̂Vn
(n1, n2) =

1
4π2n1n2

∑
p∈VN

(
e−2πin1p1 + e−2πin2p2 − e−2πi(n1p1+n2p2)

)
.(3.4)

We now consider the following cases:

• Both n1 and n2 ≡ 0 mod 2n. Then D̂Vn
(n1, n2) = C N

4π2n1n2
, where C

takes values −3 or 1, depending on whether n1/2n and n2/2n are even or
odd.

• n1 �≡ 0 mod 2n, n2 ≡ 0 mod 2n. In this case D̂Vn
(n1, n2) = N

4π2n1n2
·

e−πin2/2n

.
• n2 �≡ 0 mod 2n, n1 ≡ 0 mod 2n. In this case D̂Vn

(n1, n2) = N
4π2n1n2

·
e−πin1/2n

.
• n1, n2 �≡ 0 mod 2n. In this case we have that D̂Vn

(n1, n2) =
− 1

4π2n1n2

∑
p∈VN

e−2πi(n1p1+n2p2).

Changing p1 to (p1 + α) mod 1 in the above computations, with α = j/2n, we
notice that

(3.5)
∣∣D̂Vα

n
(n1, n2)

∣∣ = ∣∣D̂Vn
(n1, n2)

∣∣ when n1, n2 �= 0.

Indeed, in the first three cases the coefficient does not change, while in the last it
is multiplied by e−2πin1α.

Fourier coefficients in the case n2 = 0, n1 �= 0. We first note that, in this case,
(3.6)

L̂N (n1, 0) = − N

4πin1
and ĈVn

(n1, 0) = − 1
2πin1

∑
p∈Vn

(
1 − e−2πin1p1

)
(1 − p2) .

Thus, taking into account (2.1), we have

(3.7) D̂Vn
(n1, 0) =

1
2πin1

∑
p∈Vn

e−2πin1p1 · (1 − p2) .
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Once again, we obtain that
(3.8)

D̂Vα
n
(n1, 0) = D̂Vn

(n1, 0) · e−2πin1α, i.e.
∣∣D̂Vα

n

∣∣ = ∣∣D̂Vn

∣∣ if n1 �= 0, n2 = 0.

Fourier coefficients in the case n1 = 0, n2 �= 0. As above, we can compute

(3.9) D̂Vn
(0, n2) =

1
2πin2

∑
p∈Vn

(1 − p1) · e−2πin2p2 .

In the case n2 ≡ 0 mod 2n, we obtain, using (2.1),

(3.10) D̂Vn
(0, n2) = D̂Vα

n
(0, n2) =

N

4πin2
· e−πin2/2n

.

The only somewhat non-trivial case is when n1 = 0, n2 �≡ 0 mod 2n. The
Fourier coefficient in this case is

D̂Vα
n
(0, n2) =

1
2πin2

∑
p∈Vα

n

(1 − p1) · e−2πin2p2

= D̂Vn
(0, n2) +

1
2πin2

∑
p∈Vn: p1>k/2n

e−2πin2p2 , where k/2n = 1 − α.(3.11)

We shall examine the last sum above. Assume n2 = 2sm, where 0 ≤ s < n and
m is odd. Let us look over the part of the sum, ranging over a dyadic interval of
length 2−l, 1 ≤ l ≤ n. This means that the first l digits of p1 (and thus, the last l
digits of p2) are fixed, and the last n− l (the first n− l of p2) are allowed to change
freely:
(3.12) ∑

p∈Vn: p1∈[q2−l,(q+1)2−l)

e−2πin2p2

= e−2πi2sm(qn−l+12
−n+l−1+···+qn2−n+2−n−1) ·

2n−l−1∑
j=0

e−2πim2−n+l+sj .

It is easy to see that the last sum equals zero when l+s < n; otherwise, its absolute
value is at most 2n−l. We now split the interval {p1 > k/2n} into at most n dyadic
intervals of length 2−l, 1 ≤ l ≤ n. We obtain

(3.13)
∣∣∣ ∑
p∈Vn: p1>k/2n

e−2πin2p2

∣∣∣ ≤ n∑
l=n−s

2n−l = 2s+1 − 1.

That is, for n2 = 2sm, by (3.11) and (3.13), we have

(3.14)
∣∣∣D̂Vα

n
(0, n2) − D̂Vn

(0, n2)
∣∣∣ ≤ 2s+1

2πn2
=

1
πm

.

4. Proof of Theorem 1.1

For a function f ∈ L2
(
[0, 1]2

)
and S ⊂ Z

2, we shall denote by fS the orthogonal
projection of f onto the span of the Fourier terms with indices in S, i.e.

(4.1) fS(x1, x2)
def=

∑
(n1,n2)∈S

f̂(n1, n2) e2πi(n1x1+n2x2).
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Due to (3.5), (3.8), and Parseval’s identity, we have

(4.2)
∥∥∥(DVα0

n

)
Z2\{n1=0}

∥∥∥
2

=
∥∥∥(DVn

)
Z2\{n1=0}

∥∥∥
2
.

Inequality (3.14) yields

(4.3)
∥∥∥(DVα0

n
− DVn

)
{n1=0,n2 �=0}

∥∥∥2
2

�
n−1∑
s=0

∑
m odd

1
m2

� n = log N.

Thus, we see that
∥∥(DVn

)Z2\(0,0)

∥∥
2

indeed does not change much under cyclic shifts.
The inequalities above and (2.2) yield:

(4.4)
∥∥(DVα0

n

)
Z2\(0,0)

∥∥
2

�
∥∥(DVn

)
Z2\(0,0)

∥∥
2

+ (log N)1/2 � (log N)1/2
.

Together with the fact that
∫

DVα0
n

� 1, (2.33), this finishes the proof:

(4.5)
∥∥DVα0

n

∥∥
2

� (log N)1/2 .
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