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Discrepancy theory and harmonic analysis

Dmitriy Bilyk

Abstract. In the present survey we discuss various applications of methods and ideas of har-
monic analysis in problems of geometric discrepancy theory and irregularities of distribution.
A great number of analytic tools (exponential sums, Fourier series, Fourier transform, orthog-
onal expansions and wavelets, Riesz products, Littlewood–Paley theory, Carleson’s theorem)
have found applications in this area. Some of the methods have been used since the birth of the
subject, while the more modern ideas are still paving their way into the field. We illustrate their
applications by considering several standard topics in uniform distribution theory: Weyl’s cri-
terion, metric estimates for the discrepancy of sequences, discrepancy with respect to balls and
rotated cubes, lower bounds for the discrepancy function. This exposition of Fourier-analytic
techniques in discrepancy theory is intended for a broad mathematical readership.
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1 Introduction

Traditionally harmonic analysis played a pivotal role in the development of discrep-
ancy theory. Nearly every important result used analytic techniques and objects. Ex-
ponential sums arise already in the famous Weyl’s criterion [48] and the Erdős–Turán
inequality [23]; lower bounds for the discrepancy with respect to balls or rotated boxes
(independently, Beck [5] and Montgomery [34]) employ Fourier analysis; Roth’s cele-
brated lower bound for the L2-discrepancy relied on wavelet expansions [37]; Halász’s
proofs of the endpoint (L1 and L∞) lower bounds for the discrepancy function in di-
mension 2 [26] cleverly used Riesz products much in the same way as in Sidon’s the-
orem on lacunary Fourier series [42]; Walsh analysis is a common tool in the study of
the distributional properties of digital nets [18, 22] – this sample convincingly demon-
strates the impact of harmonic analysis on discrepancy theory.

While the aforementioned methods have been exploited by experts in uniform dis-
tribution for a long time, some of the more modern methods (e.g., Littlewood–Paley
theory) have been overlooked and only gained acclaim in discrepancy theory in the re-
cent years. They have been heavily used in some of the important latest achievements
(such as the lower bounds of the star-discrepancy in higher dimensions [10, 11] and
deterministic constructions of distributions with optimal Lp discrepancy [43]).

This work is supported by the NSF grant DMS-1101519.
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In the present expository paper we attempt to survey some of the applications of
harmonic analysis to discrepancy theory and irregularities of distribution, although any
such endeavor is doomed to be incomplete, and the choice of topics is rather eclectic.

While there is a number of good books on discrepancy theory [7, 15, 22, 29, 33]
and nice surveys on subjects closely related to the present topic [9, 17, 31, 35, 47],
in this article the author has tried to collect in one place and crystallize some of the
most important ideas involving applications of harmonic analysis to discrepancy, thus
creating a good first introduction to the subject. The exposition is very concise and
mostly based on some of the colloquium talks that the author has given in the recent
years, therefore it can be comprehended in a matter of a couple of hours.

The paper has three main parts (each at most 5 pages long). Section 2 deals with the
relations between discrepancy and exponential sums (Weyl’s criterion, Erdős–Turán
inequality, metric results). Useful further references for this section include [2, 29, 35].
Section 3 explains some ideas of Fourier analysis in application to discrepancy. The
arguments outlined in this section (as well as further results) are presented in full detail
in, e.g., [6, 7, 15, 33, 35]. Finally, the last section discusses the use of dyadic analysis
and wavelets in discrepancy function estimates – the reader is referred to [9] for a very
detailed survey of this topic.

We do not assume any special prerequisites on the reader’s part – familiarity with
basic concepts of harmonic analysis (Fourier trasform/series, orthogonal bases etc.)
would be sufficient. We often use the symbol. to mean “less than a constant multiple
of”, where the implicit constant may depend on the dimension and other parameters,
but not on the number of points N .

2 Exponential sums

Harmonic analysis, in one way or another, has been present in the theory of uniform
distribution from its very dawn. In the very paper, where the concept of uniform
distribution was introduced, it was immediately connected to the notion of exponential
sums [48]. This statement became known as the Weyl criterion.

We recall the definition of uniform distribution introduced by Hermann Weyl. A
sequence (ωn) ⊂ [0, 1] is called uniformly distributed if for any subinterval I ⊂ [0, 1]
we have

lim
N→∞

#{n ≤ N : ωn ∈ I}
N

= |I|,

i.e. the proportion of points in I is asymptotically equal to the length of I . One can

rewrite it to say that the relation lim
N→∞

1
N

N∑
n=1

f(ωn) =

∫ 1

0
f(x)dx holds for all indi-

cators of intervals f = 1I , which may be easily extended to all continuous 1-periodic
functions f . The celebrated Weyl criterion then immediately follows from the Weier-
strass theorem on approximating continuous functions by trigonometric polynomials.
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Theorem 2.1 (Weyl Criterion). A sequence (ωn) ⊂ [0, 1] is uniformly distributed in
[0, 1] if and only if for all k ∈ Z, k 6= 0:

lim
N→∞

1
N

N∑
n=1

e2πikωn = 0. (2.1)

This criterion has an interesting and intuitive geometric explanation: the expression
1
N

∑N
n=1 e

2πiωn is the center of mass of the firstN points of (ωn) put on the unit circle.
If (ωn) is uniformly distributed in [0, 1], this center of mass should be close to zero.
However, this is not sufficient – e.g., it holds also if the points are concentrated in the
vertices of a regular polygon. This obstacle is overcome by considering all integer
dilations k 6= 0.

Among the countless applications of the Weyl criterion, two very important ones are
the most immediate. First, it implies that the sequence {nθ} is uniformly distributed
in [0, 1] if and only if θ is irrational (here {x} stands for the fractional part of x).
Second, it can be used to deduce the fact that for any subsequence (nk) of integers, the
sequence {nkθ} is uniformly distributed for a.e. θ. The latter may be viewed as a less
precise generalization of the former fact.

The concept of uniform distribution may be quantified using the notion of discrep-
ancy. For a sequence ω = (ωn)

∞
n=1 and an interval I ⊂ [0, 1] consider the quantity

∆N,I = ]{ωn : ωn ∈ I;n ≤ N} −N |I|. The discrepancy of ω is defined as

DN = sup
I⊂[0,1]

∣∣∆N,I ∣∣, (2.2)

and it is easy to show that a sequence (ωn)
∞
n=1 is uniformly distributed in [0, 1] if and

only if lim
N→∞

DN

N
= 0.

This statement together with the Weyl criterion suggests that discrepancy DN and
the exponential sums (2.1) should exhibit similar behavior.

Indeed, the inequality

∣∣∣∣∣
N∑
n=1

e2πiωn

∣∣∣∣∣ . DN (ω) is quite simple and can be viewed, in

particular, as a partial case of Koksma’s inequality connecting discrepancy and numer-
ical integration ∣∣∣∣ ∫ 1

0
f(x)dx− 1

N

N∑
n=1

f(ωn)

∣∣∣∣ . 1
N
‖f ′‖1 ·DN (ω)

with f(x) = e2πix. A relation in the opposite direction is given by the Erdős–Turán
inequality, which we state in a slightly simplified form.

Theorem 2.2 (Erdős–Turán [23]). For any sequence ω ⊂ [0, 1] and for any N, m ∈ N

DN (ω) .
N

m
+

m∑
k=1

1
k

∣∣∣∣∣
N∑
n=1

e2πikωn

∣∣∣∣∣ .
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It is folklore knowledge in the subject that the Erdős–Turán inequality misses the
optimal estimates by a logarithm. For example, for a badly approximable irrational
number θ, Erdős–Turán yields DN ({nθ}) . log2 N , while in fact the sharp bound is
DN ({nθ}) . logN .

We now return to the discussion of sequences {nkθ}. Since, for any (nk) ⊂ N, the
sequence {nkθ} is uniformly distributed for almost every θ, it is completely natural to
pose the question about the behavior of the discrepancy of such sequences.

In 1981 Baker [3] proved that for any (nk) ⊂ N

DN ({nkθ}) .
√
N log

3
2+εN for a.e. θ. (2.3)

Berkes and Philipp [8] constructed an example demonstrating that the power of loga-
rithm cannot be better than 1

2 . It is conjectured that 1
2 + ε is indeed the sharp exponent

in this estimate.
This conjecture is strongly supported by the fact that it holds for the exponential

sums: for any (nk) ⊂ N we have∣∣∣∣ N∑
k=1

e2πinkθ
∣∣∣∣ . √N log

1
2+εN for a.e. θ. (2.4)

Inequality (2.3) is, in fact, obtained using this estimate together with Erdős–Turán:
hence an extra logarithm. The proof of (2.4) is the very reason I decided to include
this topic into the discussion. It demonstrates the use of very non-trivial harmonic
analysis in discrepancy estimates. The argument relies on one of the deepest and most
important results of the twentieth-century harmonic analysis – Carleson’s theorem on
the almost everywhere convergence of the Fourier series of L2 functions [14]. Even
though one only needs this theorem in a very special, innocently looking case, the
author is not aware of any simplifications.

Carleson’s theorem states that the maximal operator of partial Fourier sums is bounded

in L2, i.e.
∥∥∥∥ supN

∣∣∑N
−N f̂ke

2πikx
∣∣ ∥∥∥∥

2
. ‖f‖2 for each f ∈ L2[0, 1], which in turn

implies that the Fourier series of f converges a.e.
Applying it to the function f(θ) =

∑N
k=1 e

2πinkθ we find that∥∥∥∥ sup
M≤N

∣∣∣ M∑
k=1

e2πinkθ
∣∣∣ ∥∥∥∥

2
.
√
N.

Chebyshev’s inequality implies that

µ

(
sup

M≤2m

∣∣∣∣ M∑
k=1

e2πinkθ
∣∣∣∣ > 2m/2m

1
2+ε

)
.

1
m1+2ε ,

where µ is the Lebesgue measure. (Originally Carleson proved a weak L2 estimate for
the maximal operator. For our purposes, however, the weak bound would suffice.)
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Since
∑ 1

m1+2ε <∞, Borel–Cantelli lemma implies that the measure of the set of θ

for which supM≤2m

∣∣∣∣∑M
k=1 e

2πinkθ
∣∣∣∣ > 2m/2m

1
2+ε for infinitely many values of m is

zero, which immediately yields (2.4). �
Remark. Incidentally, while completing this manuscript, the author learned about

the paper of Aistleitner [2] in the same volume which strongly overlaps with and ex-
pands the topics discussed in this section. The reader is enthusiastically directed to-
wards this article for further reading – it contains many interesting results in discrep-
ancy and metric number theory, including some recent developments.

3 Fourier analysis methods
In this section we shall illustrate the use of Fourier methods in discrepancy problems.
It has long been known that the presence of curvature or rotational invariance crucially
influences the behavior of the Fourier transform, see e.g. [44]. Hence ideas of Fourier
analysis naturally arise in discrepancy questions related to such geometrical situations.

We shall discuss two somewhat similar cases – discrepancy with respect to balls
(disks) and with respect to rectangles rotated in arbitrary directions. For simplicity we
restrict ourselves to the two-dimensional setting.

3.1 Rotated rectangles

We consider a point distribution PN ⊂ [0, 1]2 with #PN = N , and let A be a transla-
tion invariant collection of sets in R2, e.g. the set of all rotated rectangles.

We can view the discrepancy of the distribution PN with respect to sets in A as a
measure defined on A. Namely for A ∈ A

D(A) = D(PN , A) =
∑
p∈PN

δp(A)−N · vol
(
A ∩ [0, 1]2

)
,

where δp is a Dirac delta mass concentrated at the point p. We are then interested in
the quantity D(PN ,A) = supA∈A |D(A)|, however we look at the L2 averages rather
than the supremum. Due to translation invariance, for a fixed set A we see that

∆A(x) := D(A+ x) =

∫
R2

1A+x(y)dD(y) = (1A ∗ D) (x),

i.e. the discrepancy with respect to the translate ofA is a convolution of the characteris-
tic function ofAwith the discrepancy measure (we made a minor technical assumption
that the set A is symmetric, i.e. −A = A). This fact suggests the use of the Fourier
transform, which “diagonalizes” the convolution operator: ∆̂A(ξ) = 1̂A(ξ) · D̂(ξ).
Plancherel’s theorem implies that

‖∆A‖2
2 = ‖∆̂A‖2

2 =

∫
R2
|1̂A(ξ)|2 · |D̂(ξ)|2dξ.
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In order to show that this integral is large for any choice of PN , most of the work shall
be done on the factor |1̂A(ξ)| which depends on the geometry of A, since we have
almost no control over |D̂(ξ)|2.

Let Ar =
[
− r

2 ,
r
2

]2, r ≤ 1 be the indicator of an axis-parallel square. The proof
starts with a trivial observation that if r0 ≈ 1

2
√
N

, then ‖∆Ar0
‖2

2 & 1. Indeed, in this

case the counting part of the discrepancy is integer, while the area term yieldsNr2 ≈ 1
4

for most squares, therefore the difference is at least a constant.
If only we had the pointwise linear growth bound |1̂Ar(ξ)|2 & r

r0
· |1̂Ar0

(ξ)|2 for
r > r0, we would immediately blow up the trivial bound to the desired result by taking
r0 ≈ 1

2
√
N

and r ≈ 1:

‖∆A1‖2 &

√
1

1/2
√
N
‖∆A1/2

√
N
‖2 ≈ N1/4.

However, the linear growth doesn’t hold, since |1̂Ar(ξ)|2 =
(

sin(πξ1r)
πξ1

)2
·
(

sin(πξ2r)
πξ2

)2
.

Intuitively, in the expression above one can observe the dependence on r only very
close to the coordinate axes, i.e. where either πξ1r or πξ2r is very small. In addition,
the expression turns into zero periodically along the axes, thus annihilating the depen-
dence on r. The graph for r = 0.5 depicted below illustrates exactly this behavior.

Figure 1. |1̂Ar
(ξ)|2 for r = 0.5

The remedy suggests itself: one should average over dilations to eliminate the zeros
on the axes and then average over rotations in order to smear the dependence on r from
the axes to the whole plane. More precisely, if Ar,θ denotes the rotation of Ar by θ,
then a straightforward but technical calculation shows that

ωr(ξ) :=
1

2π

∫ 2π

0

1
r

∫ 2r

r
|1̂Aρ,θ(ξ)|

2 dρ dθ ≈ min
{
r4,

r

|ξ|3

}
,

therefore ωr(ξ)
ωr0 (ξ)

& r
r0

and we have the desired linear growth.
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This argument, due to Beck [5], proves the two-dimensional variant of the following
theorem (higher-dimensional extensions are not much harder):

Theorem 3.1 (Beck 1988 [6]). Let A be the family of arbitrarily rotated cubes in Rd.
For any point distribution PN ⊂ [0, 1]d with #PN = N we have

D(PN ,A) = sup
A∈A
|D(A)| & N

1
2−

1
2d .

3.2 The lower bound for circles

In this case, for the sake of simplicity, we shall treat the unit square [0, 1]2 as a torus
T2. We present a very similar, albeit different in some details, method developed by
Montgomery [34]. Start with a set PN ⊂ T2, with #PN = N , and let Cr denote
a circle of radius r centered at the origin. As before, if we write the discrepancy
measure D =

∑
p∈PN δp − vold and consider the discrepancy of PN with respect to

the translate of the circle Dr(q) = #{PN ∩ (Cr + q)} − Nπr2 = (1Cr ∗ D) (q) for
q ∈ T2, Parseval’s identity for the Fourier series again yields the separation of factors
depending on the geometries of Cr and PN :

‖Dr‖2
2 =

∑
t∈Z2

|1̂Cr(t)|2 · |D̂(t)|2.

The first factor here is classical: 1̂Cr(t) = r
|t|J1(2π|t|r), where J1 is the Bessel

function of the first kind whose asymptotics is well-known

J1(x) =

√
2
πx

cos(x− 3π/4) +O(x−3/2).

While this factor has the decay of the right order, an obstacle to obtaining a lower
bound is the same as in the previous case – the leading term vanishes infinitely often.
This can be dealt with by averaging over dilations just as before. However, a much
simpler averaging procedure happens to work in this situation: one may average over
only two points: 1

2 and 1
4 . It turns out that J2

1 (x) + J2
1 (2x) &

1
x . (We skip the calcula-

tions and only present the graphs below, see Figure 2.) This implies, in particular,

|1̂C1/4(t)|
2 + |1̂C1/2(t)|

2 &
1
|t|3

. (3.1)

The Fourier coefficients of the discrepancy measure may be dealt with as follows.
It is easy to see that D̂(0) = 0 and D̂(t) =

∑
p∈PN e

−2πi<p,t> for t 6= 0. Simple
algebraic manipulations then lead to

∑
|t1|,|t2|≤M

∣∣∣∣ ∑
p∈PN

e−2πi<p,t>
∣∣∣∣2 ≥ ∑

p,q∈PN

FM (p1 − q1)FM (p2 − q2)

≥ N · F 2
M (0) =M2N,
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Figure 2. a) x · J2
1 (x) and x · J2

1 (2x); b) x · (J2
1 (x) + J2

1 (2x))

whereFM is the Fejér kernel: FM (x) =
M∑

m=−M

(
1−|m|

M

)
e−2πimx =

1
M

(
sinπMx

sinπx

)2

.

The second inequality above is obtained by throwing away “non-diagonal” terms.
Since for t = 0 we have

∑
p∈PN e

−2πi<p,t> = N , this implies that∑
|t1|,|t2|≤M

|D̂(t)|2 &M2N −N2.

Putting this inequality together with the estimate |1̂C1/4(t)|2 + |1̂C1/2(t)|2 &
1
|t|3 and

choosing M ≈
√
N one arrives at

‖D1‖2
2 + ‖D1/2‖2

2 &
1
M3 (M

2N −N2)& N
1
2 ,

which proves the following theorem due to Montgomery [34]:

Theorem 3.2. For any distribution PN ⊂ T2, with #PN = N there exists a circle C
of radius either 1

4 or 1
2 such that the discrepancy of PN with respect to C satisfies

D(PN , C) & N1/4.
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3.3 Further remarks

While perfectly clean calculations are possible only in such special cases as disks or
rotated boxes, more general situations can also be treated. In particular, for any closed
C1 curve with interior S of diameter at most one, if one defines S(s, θ) to be a copy
of S compressed by a factor of 0 ≤ s ≤ 1 and rotated by θ ∈ [0, 2π), then it can be
shown using an integration by parts argument that∫ 1

0

∫ 2π

0

∣∣1̂S(s,θ)(t)∣∣2 dθ dt ≈ L

|t|3
,

where L is the length of the curve. This is an analogue of (3.1) and similarly lets one
prove that for any PN ⊂ T2 there exists a translated, scaled, and rotated copy of S
with discrepancy D(PN , S(s, θ) + x0) & N1/4 (see Montgomery [35] for details).

Independently Beck showed that for any convex body A ⊂ Rd, which is “not too
thin” (contains a ball of radius N−1/d), and a point distribution PN ⊂ Td, there exists
A′, a translated, scaled, and rotated image of A with |D(PN , A′)| & N

1
2−

1
2d ·
√
σ(A),

where σ(A) is the surface area of A. If one insists that the copy be completely con-
tained in [0, 1]d, then the exponent above becomes 1

2 −
1

2d − ε, see [5].
It is known that these results are almost sharp [4]: e.g., there exist distributions for

which the discrepancy with respect to balls is of the order N
1
2−

1
2d
√

logN (a random
perturbation of a square lattice;

√
logN arises from the large deviation arguments), and

the lower bound is indeed sharp for the L2 average of the discrepancy over translations
and dilations (in this case even a non-randomized lattice would suffice). Chen and
Travaglini [19] noticed an interesting effect that in high dimensions the randomized
lattice yields slightly smaller L2-discrepancy with respect to balls than the standard
lattice, while in low dimensions the latter beats the former (if d 6≡ 1 mod 4).

The striking difference between the case of rotational invariance or curvature (ro-
tated boxes, balls: discrepancy polynomial inN ) and the absence of rotations/curvature
(e.g., axis-parallel rectangles; discrepancy logarithmic in N , see the next section) was
first studied by Schmidt [39]. Recently the author with Ma, Pipher, and Spencer
[12, 13] studied some intermediate situations. Let Ω ⊂ [0, 2π] be a set of directions
and define the directional discrepancy DΩ(N) = infPN supR

∣∣D(PN , R)
∣∣, where the

supremum is over rectangles R pointing in directions of Ω. Below is a corollary of
more general results obtained in terms of the metric entropy properties of Ω, showing
the difference between “thicker” and “thinner” rotation sets.

Theorem 3.3. The following estimates hold:
• Lacunary directions, e.g. Ω = {2−n}: DΩ(N) . log3 N

• Lacunary of order M , e.g. Ω = {2−n1 + ...+ 2−nm}: DΩ(N) . logM+2 N

• “Superlacunary” sequence, e.g. Ω = {2−2n}: DΩ(N) . logN · (log logN)2

• Ω has upper Minkowski dimension 0 ≤ d < 1: DΩ(N) . N
d
d+1+ε.
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4 Dyadic harmonic analysis: discrepancy function estimates
Let PN ⊂ [0, 1]d be an N -point subset of the unit cube. In accordance with (2.2) we
define the discrepancy function of the set PN as

DN (x) = ]{PN ∩ [0, x)} −Nx1x2 . . . xd.

Different norms of this function give us information about equidistribution of the set
PN as well as the numerical integration errors for cubature formulas given by PN in
various function classes [47, 22]. The most interesting is the L∞ norm of DN , i.e. the
“extreme” discrepancy. We shall start, however, by discussing the “average” case.

4.1 Lp-discrepancy, 1 < p < ∞.

This situation is more or less fully understood. The following statement has been
proved in a seminal paper of Roth [37] in 1954 for p = 2 and extended to all p > 1 by
Schmidt in 1977 [41]: Let 1 < p <∞, for all PN ⊂ [0, 1]d with #PN = N we have

‖DN‖p & (logN)
d−1

2 . (4.1)

This estimate has been shown to be sharp in the order of magnitude, i.e. there exist
point distributions PN ⊂ [0, 1]d with

‖DN‖p . (logN)
d−1

2

(Davenport [21], 1956 (d = 2, p = 2); Roth [38], 1979 (d ≥ 3, p = 2); Frolov [25],
1980 (p > 2, d = 2); Chen [16], 1983 (p > 2, d ≥ 3)). In the last decade using
harmonic analysis methods (e.g., Walsh analysis and Littlewood–Paley theory) Chen
and Skriganov [18, 43] constructed the first non-probabilistic examples in d ≥ 3.

Most standard proofs of discrepancy function estimates akin to (4.1) utilize Haar
functions, which brings us to the realm of dyadic harmonic analysis and wavelets –
see e.g. [36] for a nice exposition. In one dimension, we define the system of dyadic
intervalsD to consist of all intervals of the form I =

[
k2−n, (k+1)2−n

)
for n, k ∈ Z+

with k < 2n. For each such interval, an L∞ normalized Haar function is defined as
hI = −1Ileft + 1Iright , where Ileft and Iright are the left and right halves of I . It is well
known that together with the constant function, this system forms an orthogonal basis
of L2[0, 1]. In higher dimensions, for a rectangle R = R1 × ... × Rd ∈ Dd, the Haar
function is defined as a tensor product: hR(x) =

∏d
k=1 hRk(xk).

The main idea of the proof of (4.1), which propagated into many further results in
the theory, is that the behavior of the discrepancy function is mostly determined by the
portion of the Haar expansion corresponding to rectangles of volume roughly 1/N :

DN ≈
∑

R∈Dd: |R|≈ 1
N

〈DN , hR〉
|R|

hR (4.2)
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Heuristically, these are the scales that carry the most information about the distribution
(large rectangles encode too much cancelation, while the smaller ones are too fine to
“see” an N -point set). This idea is similar to the concept of hyperbolic cross approxi-
mation in approximation theory [47] (constant volume of R means that the product of
frequencies of hR is constant, i.e. frequencies live on a hyperbola τ1 · ... · τd ≈ N ).

In particular, for n ≈ log2 N , using Parseval’s identity, we would get

‖DN‖2 ≥
( ∑
|R|=2−n

|〈DN , hR〉|2

|R|

)1/2

& n
d−1

2 ≈ (logN)
d−1

2 (4.3)

provided that |〈DN , hR〉| & 2−n for “many” R’s (which is true if 2n ≈ 2N , see [9]).
The factor nd−1 above is roughly the number of different shapes of dyadic rectangles

of volume 2−n, in other words d − 1 is the number of free parameters (d dimensions
minus one free parameter removed by the condition |R| = 2−n).

Alternatively, one could prove the same bound by duality, considering the function

F =
∑

R: |R|=2−n,
|〈DN ,hR〉|& 2−n

±hR (4.4)

A similar argument shows that for appropriate choices of signs we have 〈DN , F 〉 &
nd−1, ‖F‖ ≈ n

d−1
2 , and hence by Cauchy–Schwartz ‖DN‖2 & n

d−1
2 ≈ (logN)

d−1
2 .

Both approaches can be extended from L2 to Lp using Littlewood–Paley inequali-
ties, which we describe here in a simplified form. Let f =

∑
I∈DaIhI . The dyadic

Littlewood–Paley square function of f is defined as

Sf =

(∑
I∈D
|aI |21I

)1/2

.

The Littlewood–Paley inequalities state that its Lp norm is equivalent to that of f : for
all 1 < p <∞, there exist Ap, Bp > 0 such that

Ap‖Sf‖p ≤ ‖f‖p ≤ Bp‖Sf‖p. (4.5)

The product Littlewood–Paley inequalities, which extend (4.5) to our setting, were
obtained by Fefferman and Pipher [24]. Let f =

∑
aRhR and define the dyadic

product Littlewood–Paley square function

Sdf =

( ∑
R∈Dd

|aR|21R
)1/2

.

Then for all 1 < p <∞, one has

Adp‖Sdf‖p ≤ ‖f‖p ≤ Bd
p‖Sdf‖p. (4.6)
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Such inequalities are usually obtained by applying the one-dimensional (Hilbert-space
valued) inequalities (4.5) iteratively in each coordinate, hence the constants are raised
to the power d. In our setting however, it is enough to apply it only d− 1 times, since
we have d− 1 free parameters.

One can easily see that, applying (4.6) to either (4.3) or (4.4), one immediately
extends the proof to all values of p ∈ (1,∞) and obtains (4.1).

4.2 The L∞ discrepancy estimates

It is natural to conjecture that the extreme discrepancy should be much larger than the
average one, i.e. ‖DN‖∞ � (logN)

d−1
2 . This is supported by the two-dimensional

result of Schmidt [40], 1972 : for any PN ⊂ [0, 1]2

‖DN‖∞ & logN. (4.7)

It was known for a long time that this bound is best possible, i.e. there exist sets in
[0, 1]2 with ‖DN‖∞ . logN (Lerch [32] 1904; van der Corput [20], 1934). The best
known higher-dimensional constructions go back to Halton and Hammersley [27, 28]
and have discrepancy of the order (logN)d−1.

There is no consensus among the experts today as to what the exact form of the
conjecture should be. Motivated by the the best known examples, some believe that
the correct power of the logarithm should be d− 1; at the same time, the limitations of
the wavelet method, cf. (4.10) below, convince others that the right bound should be

‖DN‖∞ & (logN)d/2. (4.8)

A result of the author, Lacey, and Vagharshakyan [11], 2008 states that in all dimen-
sions one gets at least slightly better than the L2 bound:

‖DN‖∞ & (logN)
d−1

2 +η

for some η = η(d) > 0.
The heuristic (4.2) used in the proof of the L2 bounds suggests that in order to

understand the behavior of ‖DN‖∞ one should look at the L∞ norm of linear combi-
nations of hR with |R| ≈ 1

N . The relevant conjecture (which arises in probability and
approximation theory, cf. [9]) states that in dimensions d ≥ 2, for all αR ∈ R

n
d−2

2

∥∥∥∥ ∑
|R|=2−n

αRhR

∥∥∥∥
∞
& 2−n

∑
|R|=2−n

|αR|. (4.9)

This became known as the small ball conjecture. If we restrict the choice of coeffi-
cients to αR = ±1, this form of the conjecture∥∥∥∥ ∑

|R|=2−n
αRhR

∥∥∥∥
∞
& nd/2 (4.10)
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reveals striking similarity to the discrepancy conjecture (4.8). Moreover, an argument
similar to (4.3) shows that

∥∥∑
|R|=2−n αRhR

∥∥
2 & n

d−1
2 in perfect unison with the L2-

discrepancy bound (4.1), i.e. in both conjectures one gains
√
n over the L2 estimate.

The two-dimensional version of (4.9) was proved by Talagrand [45], 1994 and
Temlyakov [46], 1995. Choosing αR to be random i.i.d. ±1 one can show that (4.9) is
best possible, which is the motivation behind the discrepancy conjecture (4.8).

Take a closer look at the two-dimensional small ball inequality, which has the form∥∥∥∥ ∑
|R|=2−n

αRhR

∥∥∥∥
∞
& 2−n

∑
|R|=2−n

|αR|. (4.11)

One cannot help but notice the similarity to the classical Sidon’s theorem [42] in
Fourier analysis: if a bounded 2π-periodic function f has lacunary Fourier series∑∞

k=1 ake
inkx, nk+1/nk > λ > 1, then

∥∥f∥∥∞ & ∞∑
k=1

|ak|.

This theorem is proved using Riesz products PK(x) =
∏K
k=1(1 + εk cosnkx). Hence

it is not surprising that a similar technique works for (4.11). This proof (due to
Temlyakov [46]) is so short and elegant – it is indeed a “proof from the book” – that
the author decided to reproduce it here.

Proof. For k = 0, 1, . . . , n, consider the Rademacher-like functions

fk =
∑

R: |R|=2−n

|R1|=2−k

sign(αR)hR.

Notice that the rectangles in the sum above do not overlap. Construct the test function
as a Riesz product:

Ψ :=
n∏
k=1

(1 + fk) .

As a product of non-negative terms, obviously Ψ ≥ 0. Moreover, in two dimensions,
if R 6= R′ and |R| = |R′|, then hR · hR′ = ±hR∩R′ . Therefore,

∫
Ψ = 1. (Indeed,

multiply out the Riesz product – the leading term is one, and the rest are products of
Haar functions, hence have integral zero.) Thus

∥∥Ψ
∥∥

1 = 1, and we have∥∥∥∥ ∑
|R|=2−n

αRhR

∥∥∥∥
∞
≥
〈∑

αRhR,Ψ

〉
=
∑
|αR|〈hR, hR〉 =

∑
|R|=2−n

|αR|·2−n,

where the non-diagonal terms vanish by the same token. This finishes the proof.

The proof of (4.7) in [26] is just a bit more technical than the argument above.
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4.3 The other endpoint: L1

The opposite endpoint of the Lp scale is even more mysterious. In 1981 Halász [26]
proved that in dimension d = 2 for any collection of N points PN ⊂ [0, 1]2 one has

‖DN‖1 &
√

logN. (4.12)

It can be shown that this bound, ‖DN‖1 &
√

logN , continues to hold for d ≥ 3, and
nothing better is known in higher dimensions, i.e. it is not even known if the bound
grows with the dimension! It is conjectured, of course, that the L1 estimate should
match the Lp bounds for 1 < p <∞:

‖DN‖1 & (logN)
d−1

2 . (4.13)

While this conjecture seems to be out of reach at the moment, some relevant work
has been done recently. In 2010, Lacey [30] has obtained estimates in function spaces
“near” L1 . He proved that

‖DN‖
L(logL)

d−2
2
& (logN)

d−1
2 . (4.14)

This result is non-trivial, but the same bound in L(logL)
d−1

2 is quite easy – one would
need to estimate the test function F (4.4) in the dual space exp

(
L

2
d−1
)
, which is

straightforward and aligns with the logic that the Littlewood–Paley inequalitites only
need to be applied d − 1 times. Lacey also proves the estimate in the (dyadic) d-
parameter Hardy space Hp, 0 < p ≤ 1:

‖DN‖Hp & (logN)
d−1

2 .

The classical Littlewood–Paley characterizations of Hp yields the norm equivalence
‖f‖Hp ≈ ‖Sdf‖Lp , hence the proof essentially repeats the Lp argument for p > 1.

In addition, several L1 “dichotomy” results have been obtained recently by the au-
thor, Amirkhanyan, and Lacey [1]. They say that if for some PN the L1-discrepancy
is too small and violates the conjecture, then the discrepancy of PN has to be large in
some other norm. Below is a sampler of the results quantifying this phenomenon.

Theorem 4.1 ([1], 2013). The following statements hold:

(i) If PN ⊂ [0, 1]d satisfies ‖DN‖p . (logN)
d−1

2 for some 1 < p <∞, then

‖DN‖1 & (logN)
d−1

2 . (4.15)

(ii) Every PN ⊂ [0, 1]d satisfies either

‖DN‖1 ≥ (logN)(d−1)/2−ε or ‖DN‖2 ≥ exp(c(logN)ε) . (4.16)
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(iii) For d ≥ 3, if PN ⊂ [0, 1]d satisfies ‖DN‖1 .
√

logN , then

‖DN‖2 & N
C . (4.17)

Some remarks are in order. The first result, (4.15), says essentially that if some
point distribution PN violates the L1 conjecture (4.13), then it necessarily has Lp-
discrepancy larger than the optimal (logN)

d−1
2 . This statement is very simple – it just

requires an application of Hölder’s inequality and the Roth–Schmidt bound (4.1).
The second inequality, (4.16), states that if the exponent in the L1 conjecture is

incorrect, then the L2-discrepancy must be much larger. The idea of the proof is the
following: while the “dual” function F (4.4) does not have good L∞ bounds, it does
satisfy certain exponential estimates (see [11]), hence it can only be large on very
small sets. If in addition, ‖DN‖2 is not too big, then throwing away these small sets is
harmless, and one can prove an L1 bound.

Finally, inequality (4.17) speculates what happens if Halász’s bound (4.12) were
indeed best possible in higher dimensions. In this case, the L2 discrepancy of the
optimal distribution has to be huge (polynomial in N ). The rough idea is that while
the L1 norm is very small, the very close L(logL)

d−2
2 norm is much larger (4.14),

which implies very strong localization of DN . Extrapolation arguments allow one to
push this heuristic to prove the L2 estimate (4.17). The details are contained in [1].
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