
The Journal of Geometric Analysis
Volume 16, Number 4, 2006

Distributional Estimates for the Bilinear
Hilbert Transform

By Dmitriy Bilyk and Loukas Grafakos

ABSTRACT. We obtain size estimates for the distribution function of the bilinear Hilbert transform acting
on a pair of characteristic functions of sets of finite measure, that yield exponential decay at infinity and
blowup near zero to the power −2/3 (modulo some logarithmic factors). These results yield all known
Lp bounds for the bilinear Hilbert transform and provide new restricted weak type endpoint estimates on
Lp1 × Lp2 when either 1/p1 + 1/p2 = 3/2 or one of p1, p2 is equal to 1. As a consequence of this
work we also obtain that the square root of the bilinear Hilbert transform of two characteristic functions
is exponentially integrable over any compact set.

1. Introduction

Certain bilinear singular integral operators can be expressed as averages of bilinear Hilbert
transforms in a way analogous to that which linear singular integrals can be written as averages of
linear directional Hilbert transforms. The bilinear Hilbert transforms were introduced in the early
1960s to play exactly this role by A. Calderón in his study of the first commutator. Properties
of these operators remained elusive until the appearance of the fundamental work of Lacey and
Thiele [11, 12] in the late 1990s who established their boundedness on certain products of Lebesgue
spaces. This work was based on a remarkable set of techniques called time-frequency analysis
and revealed a fundamental and deep connection with almost everywhere convergence of Fourier
series and in particular, the boundedness of the Carleson-Hunt operator, see Lacey and Thiele [13];
on the latter the work of Fefferman [3] was influential. The Carleson-Hunt operator is defined as

C(f )(x) = sup
N>0

∣∣∣∣ ∫ +N

−N
f̂ (ξ)e2πixξ dξ

∣∣∣∣
where f̂ (ξ) = ∫

R f (x)e
−2πixξ dx is the Fourier transform of the function f on the line. Car-

leson [2] answered a longstanding conjecture posed by Lusin by establishing the boundedness of
the operator C on L2. A few years later, Hunt [8] obtained its Lp boundedness for 1 < p < ∞
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as a consequence of the following powerful distributional estimate

∣∣{C(χF ) > λ
}∣∣ ≤ C |F |

{
1
λ

(
1 + log 1

λ

)
when λ ≤ 1

e−cλ when λ > 1 .
(1.1)

This estimate holds for some fixed constants c, C and for all measurable sets F of finite measure
and all λ > 0. Using standard interpolation, estimate (1.1) easily implies the Lp boundedness
of C for 1 < p < ∞. Moreover, recent extrapolation techniques by Antonov [1] and their
refinement by Sjölin and Soria [15] show that estimate (1.1) implies the boundedness of C on
L logL log log logL of every compact set; this implies the almost everywhere convergence of the
partial Fourier integrals of functions locally in this class.

The main purpose of this article is to prove an estimate analogous to that in (1.1) for the
bilinear Hilbert transform Hα . This operator is defined for a parameter α ∈ R by

Hα(f, g)(x) = 1

π
lim
ε→0

∫
|t |≥ε

f (x − t)g(x + αt)
dt

t
, x ∈ R

for functions f, g on the line. In the aforementioned work [11, 12], Lacey and Thiele proved
that the operator Hα maps Lp1 × Lp2 to Lp, whenever 1 < p1, p2 ≤ ∞, 1

p1
+ 1

p2
= 1

p
, and

2
3 < p < ∞, α �= −1. At this time it remains unknown whether the bilinear Hilbert transform is
bounded for values of p ≤ 2

3 , even nearL1 ×L1 → L1/2. It is quite clear that the time-frequency
techniques will not resolve this issue without new ideas (see a counterexample in [10]).

Our approach uses the model sum reduction of Lacey and Thiele [11, 12], a tree analysis
based on a selection inspired by Lacey [9], and relies on an “improved energy estimate” that
appeared in the proof of (1.1) by Grafakos, Tao, and Terwilleger [6]. A variant of this energy
estimate had previously appeared in the related work of Muscalu, Thiele, and Tao [14].

The main result of the article is the following.

Theorem 1.1. Let 2 ≤ p2 < ∞ and α ∈ R \ {0,−1}. Then there exist constants C =
C(α, p2), c = c(α, p2) such that for all measurable sets F1, F2 of finite measure we have

|{|Hα(χF1 , χF2)| > λ}|≤C (|F1| |F2|
1
p2
) p2
p2+1

λ
− p2
p2+1

(
1 + log 1

λ

) 2p2
p2+1 when λ < 1 ,

e−c
√
λ when λ ≥ 1.

(1.2)

Analogously, the following estimate is valid for 2 ≤ p1 < ∞:

|{|Hα(χF1 , χF2)| > λ}|≤C (|F1|
1
p1 |F2|

) p1
p1+1

λ
− p1
p1+1
(
1 + log 1

λ

) 2p1
p1+1 when λ < 1 ,

e−c
√
λ when λ ≥ 1 .

(1.3)

These estimates correspond to the line segments {( 1
p1
, 1
p2
) : p1 = 1, 2 ≤ p2 < ∞} and

{( 1
p1
, 1
p2
) : 2 ≤ p1 < ∞, p2 = 1}. As a corollary we obtain the following distributional

estimate corresponding to the line segment {( 1
p1
, 1
p2
) : 1 ≤ p1, p2 ≤ 2, 1

p1
+ 1

p2
= 3

2 }.

Corollary 1.2. For any α ∈ R \ {0,−1} there exist constants C = C(α), c = c(α) such that
for all measurable sets F1, F2 of finite measure we have

|{|Hα(χF1 , χF2)|>λ}| ≤ C
(|F1| 1

2 |F2| 1
2 min(|F1|, |F2|) 1

2
) 2

3

λ− 2
3
(
1+log 1

λ

) 4
3 for λ<1

e−c
√
λ for λ≥1.

(1.4)
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Remark. In the distributional estimate (1.4), the expression |F1| 1
2 |F2| 1

2 min(|F1| 1
2 , |F1| 1

2 ) is

dominated by |F1|
1
p1 |F2|

1
p2 , where 1 ≤ pj ≤ 2 and 1

p1
+ 1

p2
= 3

2 . Thus, this estimate (up to a
logarithmic term) is similar to a restricted weak type estimate for such exponents.

Notice that the exponential decay at infinity for the distribution function of Hα is not as
strong as in the case of the Carleson-Hunt operator and at the moment we do not know if it is
sharp. Estimates (1.2), (1.3), and (1.4) not only capture the boundedness of Hα on products of
Lebesgue spaces but also yield other crucial quantitative information such as local exponential
integrability of Hα and also its boundedness on other rearrangement invariant spaces even at the
endpoint cases.

We state the exponential integrability of Hα in the form of corollary.

Corollary 1.3. Let α ∈ R \ {0,−1} and c = c(α) be as in Corollary 1.2. Then there is a
constant C′ = C′(α) such that for any bounded measurable set K and for all measurable sets
F1, F2 of finite measure the following holds:∫

K

ec
′|Hα(χF1 ,χF2 )(x)|

1
2
dx ≤ C′

(
|K| + (|F1| 1

2 |F2| 1
2 min(|F1|, |F2|) 1

2
) 2

3

)
for any 0 < c′ < c.

2. Decomposition of the bilinear Hilbert transforms

In the sequel we will drop the dependence of Hα on α and simply denote it by H . We will
use the notation |A| for the Lebesgue measure of a setA and 〈f, g〉 for the complex inner product∫
f (x)g(x) dx. For a number a > 0 and an interval I we denote aI an interval of length a|I |

concentric with I and by a ⊗ I the interval [ap, aq] if I = [p, q]. We will use the notation � to
express that a certain quantity is at most a constant multiple of another one.

Our goal will be to study the trilinear form

(f1, f2, f3) →
∫
H(f1, f2)(x)f3(x) dx

for three functions f1, f2, f3 which will be characteristic functions of sets of finite measure, i.e.,
f1 = χF1 , f2 = χF2 , and f3 = χE′ .

We fix L to be the smallest integer greater than 210 max{|α|, 1
|α| ,

1
|1+α| }3. The dependence

of the bounds on α will enter the proof through polynomial dependence on L.

We begin by noting that the distribution p.v. 1
t

that appears in the definition of H can be
written as c1δ0 + c2γ for some constants c1, c2, where δ0 is the Dirac mass at the origin and γ
is another distribution that satisfies γ̂ = χ(0,∞). Since all the estimates that we are going to be
proving in this article are trivial for δ0, we may restrict our attention to γ . Let θ be a smooth
function which is equal to 1 on (−∞, 2L) and 0 on (3L,∞). Define

ψ̂(ξ) = θ(ξ)− θ(2ξ) .

Observe that ψ̂ is nonzero and is supported in [L, 3L]. For each integer k we define

ψk(x) = 2− k
2ψ
(
2−kx

)
.

Then we have
γ =

∑
k∈Z

2− k
2ψk .
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Indeed, if we look at the Fourier transform of the right-hand side of the identity above, we get a
telescopic sum:(∑

k∈Z

2− k
2ψk

)̂
(ξ) = lim

N→∞

N∑
−N

[
θ
(
2kξ
)− θ

(
2k+1ξ

)] = lim
N→∞

[
θ
(
2−Nξ

)− θ
(
2N+1ξ

)] = γ̂ .

It clearly suffices to study the trilinear form

�(f1, f2, f3) :=
∑
k∈Z

2− k
2

∫ ∫
f1(x − t)f2(x + αt)f3(x)ψk(t) dt dx . (2.1)

We can further break the functionψ into a sum of at most 2L functionsψ(M) such that ψ̂(M)

is supported in the interval [M − 1
2 ,M + 1

2 ] for L ≤ M ≤ 2L. It would suffice to study each
piece separately. For notational convenience, we will omit the dependence on M and will just
write ψ .

For further decomposition we fix a Schwartz function φ ofL2 norm 1, with Fourier transform
supported in [− 1

2 ,
1
2 ], which also has the property that for all ξ ∈ R we have∑

l∈Z

∣∣φ̂(ξ − l/2)
∣∣2 ≡ C0

for some constant C0 > 0.

Let u = Iu × ωu be a rectangle in R2 and set

φu(x) = |Iu|− 1
2φ
(x − c(Iu)

|Iu|
)
e2πic(ωu)x ,

where c(J ) denotes the center of the interval J .

For each k ∈ Z we consider the set of dyadic rectangles of scale k:

Sk = {(2kn, 2k(n+ 1)
)× (2−km/2, 2−k(m/2 + 1)

) |m, n ∈ Z
}
.

Then S =⋃k Sk is the set of all dyadic rectangles of area 1 in R2.

It is an easy calculation to verify that for all f ∈ L2

f = 1

C0

∑
u∈Sk

〈f, φu〉φu

where the convergence is inL2. Moreover, the series also converges a.e. for all f ∈ Lp, 1 < p <

∞, see [5]. Using this decomposition of the identity in the kth term of (2.1), as in [12], we obtain

�(f1, f2, f3) :=
∑
k∈Z

∑
u1,u2,u3∈Sk

Ck,u1,u2,u3�k,u1,u2,u3(f1, f2, f3) , (2.2)

where

Ck,u1,u2,u3 = C−3
0

∫
R

∫
R
φu1(x − t)φu2(x + αt)φu3(x)ψk(t) dt dx

and
�k,u1,u2,u3(f1, f2, f3) = 2− k

2 〈f1, φu1〉〈f2, φu2〉〈f3, φu3〉 .
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We now take a closer look at the coefficients Ck,u1,u2,u3 in two different ways. First,

|Ck,u1,u2,u3 |
≤ C−3

0

∫ ∫ ∣∣∣∣φ(x − t − c(Iu1)

|Iu1 |
)
φ
(x + αt − c(Iu2)

|Iu2 |
)
φ
(x − c(Iu3)

|Iu3 |
)
ψ
(
2−kt

)∣∣∣∣2−2k dt dx

= C−3
0

∫ ∫ ∣∣∣∣φ(x − t − A1
)
φ
(
x + αt − A2

)
φ
(
x − A3

)
ψ(t)

∣∣∣∣ dt dx ,
where Ai = c(Iui )|Iui | for i = 1, 2, 3 (these numbers are half-integers). Observe that

A2 − A1 = (x − t − A1)− (x + αt − A2)+ (1 + α)t ,

A3 − A1 = (x − t − A1)− (x − A3)+ t ,

A3 − A2 = (x + αt − A2)− (x − A3)− αt .

This implies that at least one of the arguments in the last displayed double integral has to have
size at least 1

4Ldiam{Ai}. Since φ and ψ are Schwartz functions, it follows that, for any positive
integer m, there exists a constant Cm such that

|Ck,u1,u2,u3 | ≤ Cm

(
1 + diam{Ai}

4L

)−m
= Cm

(
1 + maxi,j |c(Iui )− c(Iuj )|

2k 4L

)−m
. (2.3)

Secondly, we set F1(x, t) = φu1(x− t)φu2(x+αt), F2(x, t) = φu3(x)ψk(t). These are Schwartz
functions of two variables. We have

F̂1(ξ, τ ) = 1

1 + α
φ̂u1

(
αξ − τ

1 + α

)
φ̂u2

(
ξ + τ

1 + α

)
,

F̂2(ξ, τ ) = 1

1 + α
φ̂u3(ξ)ψ̂k(τ ) .

Thus, applying the two-dimensional Plancherel formula, we obtain

|Ck,u1,u2,u3 |≤
C

|1 + α|
∫ ∫ ∣∣∣∣φ̂(αξ − τ

1 + α
−B1

)
φ̂

(
ξ + τ

1 + α
−B2

)
φ̂(ξ−B3)ψ̂(τ )

∣∣∣∣ dξ dτ , (2.4)

where Bi = c(ωui )|ωui | = 2kc(ωui ) (notice that this is an integer or a half-integer).

Assume that the integral above is not zero. Then we must have

αξ−τ
1+α −B1 ∈

[
− 1

2
,

1

2

]
,
ξ+τ
1+α −B2 ∈

[
− 1

2
,

1

2

]
, ξ −B3 ∈

[
− 1

2
,

1

2

]
, τ ∈

[
M−1

2
,M+1

2

]
,

which imply

B1 ∈
[

α

1 + α
B3− 1

1+αM− 1+|α|+|1 + α|
2|1+α| ,

α

1 + α
B3 − 1

1 + α
M+ 1+|α| + |1+α|

2|1+α|
]

(2.5)

and

B2 ∈
[

1

1 + α
B3 + 1

1 + α
M − 2 + |1 + α|

2|1 + α| ,
1

1 + α
B3 + 1

1 + α
M + 2 + |1 + α|

2|1 + α|
]
. (2.6)

This means that the triple of parameters B1, B2, B3 really depends only on the parameter B3
as for each value ofB3, the quantitiesB1 andB2 can take only a finite number of values depending
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on α. Also, (2.5) and (2.6) show that B1 + B2 = B3 up to an error that can only take a finite
number of integer values (depending on α.)

We introduce parameters ν1, ν2, µ1, µ2 by setting

A1 = A3 + ν1, A2 = A3 + ν2, B1 = α

α + 1
B3 + µ1, B2 = 1

α + 1
B3 + µ2 .

We also set ν = max |νi |. We aim to reduce the sum over u1, u2, u3 ∈ Sk as the rapidly converging
sum over ν1, ν2, µ1, µ2 of the sum over the tiles u3.

For N sufficiently large we have

|�(f1, f2, f3)|

≤
∞∑
ν=0

CN
(
1 + ν

4L

)−N ∑
(ν1,ν2):

max |νi |=ν

∑
µ1

∑
µ2

∣∣∣∣∑
k∈Z

∑
u3∈Sk

εν1,ν2,µ1,µ2,u3 �k,u1,u2,u3(f1, f2, f3)

∣∣∣∣ (2.7)

where u1 = u1(u3) and u2 = u2(u3) are uniquely determined by u3 in terms of ν1, ν2, µ1, µ2,
εν1,ν2,µ1,µ2,u3 is a constant of modulus at most 1, and µ1 ∈ 1

2 Z − α
1+α

1
2 Z and µ2 ∈ 1

2 Z − 1
1+α

1
2 Z

range in the intervals

µ1 ∈
[

− 1

1 + α
M − 1 + |α| + |1 + α|

2|1 + α| ,− 1

1 + α
M + 1 + |α| + |1 + α|

2|1 + α|
]
,

µ2 ∈
[

1

1 + α
M − 2 + |1 + α|

2|1 + α| ,
1

1 + α
M − 2 + |1 + α|

2|1 + α|
]
.

Thus, µ1 and µ2 take only a finite number of values depending on α. (Note that εν1,ν2,µ1,µ2,s3 is
the ratio of Ck,u1,u2,u3 by CN(1 + max |νi |

4L )−N .)

It will clearly suffice to study the boundedness of the expression inside the absolute values
in (2.7) and to obtain bounds independent of µi and polynomial in ν, since for each ν, there are
of the order of ν pairs (ν1, ν2) with max |νi | = ν.

Next, we further separate the triples in such a way that for two triples (u1, u2, u3) and
(u′

1, u
′
2, u

′
3) from the same group the following conditions hold:

if k �= k′, then
∣∣k − k′∣∣ > L10 , (2.8)

if A3 �= A′
3, then

∣∣A3 − A′
3

∣∣ > νL10 , (2.9)

if B3 �= B ′
3, then

∣∣B3 − B ′
3

∣∣ > L10 . (2.10)

Obviously, the number of such groups is polynomial in L and ν.

To facilitate the study of the sums above, we introduce tri-tiles. A tri-tile is a rectangle
s = Is × ωs and three subrectangles s1, s2, s3 built in the following way.

Let (u1, u2, u3) be a triple of rectangles participating in the sum in (2.7). Define Is = Isi =
Iu3 . Defining the frequency projections requires a little bit more work, as we cannot just use the
dyadic grid. We want these projections to satisfy the following properties:

J =
⋃
s∈S

(
ωs ∪ ωs1 ∪ ωs2 ∪ ωs3

)
is a grid . (2.11)

If ωsi � J for some J ∈ J , then ωsj � J for some J ∈ J for all j = 1, 2, 3 . (2.12)

ωsi �= ωsj for i �= j . (2.13)
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We build these intervals by induction on the cardinality of the set U of triples of rectangles. If
this set is nonempty, we pick the triple u1, u2, u3, such that k, where |ωu3 | = 2k , is maximal. Let
U ′ = U \ (u1, u2, u3). By induction we find the intervals ωs , ωsi (i = 1, 2, 3), corresponding
to the elements of U ′. If there is an element u′ ∈ U ′ such that ωu′

3
= ωu3 , then we define ωs ,

ωsi (i = 1, 2, 3) to be the same as the corresponding intervals for u′. Otherwise we define (for
i = 1, 2, or 3) ωsi to be the convex hull of the interval Ciωui (C1 = 1+α

α
, C2 = 1 + α, C3 = 1)

and all sets ωs′ that intersect it. (Note that because of the separation of scales what we get is
only slightly smaller than the interval itself.) Next, we define ωs as follows: Take [a, b] to be the
convex hull of ωsi (i = 1, 2, 3), then set ωs to be the convex hull of [a, b] and all intervals ωs′ that
intersect [a, b]. Properties (2.11) and (2.12) are obvious in view of (2.10) and (2.8). Also |ωs |
and |ωsi | are comparable to 2k with a factor depending on L. Property (2.13) follows from (2.5),
(2.6), and the separation of scales.

We define the functions adapted to the tri-tile s with parameters ν1, ν2, µ1, µ2 as follows:

ϕν1,µ1,α
s1

(x) = |Is |− 1
2φ

(
x − c(Is)

|Is | − ν1

)
e

2πi
(

α
α+1 c(ωs1 )+θs1 |ωs1 |

)
x = φu1(x) ,

ϕν2,µ2,α
s2

(x) = |Is |− 1
2φ

(
x − c(Is)

|Is | − ν2

)
e

2πi
(

1
α+1 c(ωs2 )+θs2 |ωs2 |

)
x = φu2(x) ,

ϕαs3(x) = |Is |− 1
2φ

(
x − c(Is)

|Is |
)
e

2πi
(
c(ωs3 )+θs3 |ωs3 |

)
x = φu3(x) ,

where the error terms θsi in the modulations are chosen so that α
α+1c(ωs1) + θs1 |ωs1 | = c(ωu1),

1
α+1c(ωs2)+ θs2 |ωs2 | = c(ωu2), and c(ωs2)+ θs3 |ωs3 | = c(ωu3). Obviously, |θsi | ≤ CL.

Then the expression inside the absolute values in (2.7) becomes exactly∑
s3∈⋃

k∈Z
Sk

|Is |− 1
2 εν1,ν2,µ1,µ2,s

〈
f1, ϕ

ν1,µ1,α
s1

〉 〈
f2, ϕ

ν2,µ2,α
s2

〉 〈
f3, ϕ

α
s3

〉
.

This expression needs to be controlled with bounds that grow polynomially in the parameters
ν1, ν2, and are independent of µ1, µ2. We will work with sums over finite sets of tri-tiles and get
bounds independent of the choice of the finite set, which is clearly sufficient by a limiting argument.

Note that if ωui and ωu′
i

were not disjoint, then neither are ωsi and ωs′i . Thus,

if ωsi ∩ ωs′i = ∅, then 〈ϕsi , ϕs′i 〉 = 0 .

For notational convenience, in the sequel we will suppress the dependence of the functions
ϕsj on the parameters ν1, ν2, µ1, µ2. Notice that

|ϕsk (x)| ≤ C

(
1 +

∣∣∣∣x − c(Is)

|Is | − νk

∣∣∣∣)−10

≤ C

(
1 +

∣∣∣∣x − c(Is)

|Is |
∣∣∣∣)−10

(1 + ν)10 .

3. Estimates for the model sums. The case Is ⊆ �

Let S be a finite set of tri-tiles with fixed data ν1, ν2, µ1, and µ2. Then we define the “model
sum” associated with S as follows:

HS(f1, f2)(x) =
∑
s∈S

|Is |− 1
2 εs〈f1, ϕs1〉〈f2, ϕs2〉ϕs3(x) .
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We set

� =
{
x : M(χF1)(x) > 8 min

(
1,

|F1|
|E|

)}⋃{
x : M(χF2)(x) > 8 min

(
1,

|F2|
|E|

)}
,

whereM is the Hardy-Littlewood maximal function. SinceM if of weak type (1, 1)with constant
at most 2, it is easy to see that |�| < 1

2 |E|. We now setE′ = E \�. Obviously, then |E′| ≥ 1
2 |E|.

The main purpose of this article is to obtain a good estimate for the expression∫
E′
HS(χF1 , χF2)(x) dx = 〈HS(χF1 , χF2), χE′ 〉 .

To do so we will break the model sum into two parts: The sum over those s ∈ S for which Is ⊆ �

(easier case) and the sum over tiles with Is � �.

We begin with the easier case. For a dyadic interval J we set

ω(x) =
(

1 +
( |x − c(J )|

|J |
)2
)5

and

SJ = {s ∈ S : Is = J } .

We have the following inequalities (for i = 1, 2, 3):

‖(〈f, ϕsi 〉)‖�∞(SJ ) � (1 + ν)10|J |− 1
2 ‖f ‖L1(ω−1) (3.1)∥∥∥∥ ∑

s∈SJ
αsϕsi

∥∥∥∥
L2(ω)

� (1 + ν)10‖(αs)‖�2(SJ )
(3.2)

‖(〈f, ϕsi 〉)‖�2(SJ )
� (1 + ν)10‖f ‖L2(ω−1) . (3.3)

Indeed, to prove (3.1), for any s ∈ SJ we have

|〈f, ϕsi 〉| =
∣∣∣∣ ∫

R
f (x)|J |− 1

2 ϕ

(
x − c(J )

|J | − νi

)
e2πix(Cic(ωsi )+θ |ωsi |) dx

∣∣∣∣
≤ C (1 + ν)10|J |− 1

2 ‖f ‖L1(ω−1) .

Next, we prove (3.2), which is an analog of Bessel’s inequality. Although, the functions
ϕsi are no longer orthogonal in the weighted space L2(ω), we will see that they are “almost”
orthogonal in this space. It is straightforward to check that

|〈ϕsi , ϕs′i 〉ω| = ∣∣(|ϕ(y − νi)|2
(
1 + y2)5)̂ ((Ki(c(ωsi )− c(ωs′i ))+ (θsi − θs′i )|ωsi |

)|J |)∣∣
≤ C(1 + ν)10(1 +Ki |c(ωsi )− c(ωs′i )| |J |)−10

,

since |ϕ(y − νi)|2(1 + y2)5 (and its Fourier transform) is a Schwartz function (here K1 = α
α+1 ,
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K2 = 1
α+1 , K3 = 1). Now we have

∥∥∥∥ ∑
s∈SJ

αsϕsi

∥∥∥∥2

L2(ω)

≤
∑
s,s′∈SJ

|αs | |αs′ | |〈ϕsi , ϕs′i 〉ω|

≤ C(1 + ν)10
∑
k,m

|αk| |αm|(1 + |k −m|)−10

≤ 2C(1 + ν)10
∑
k∈Z

(
|αk|2

∑
m∈Z

(1 + |k −m|)−10
)

≤ C′(1 + ν)10‖(αk)‖2
�2 .

Note that (3.3) is the dual statement of (3.2).

Let M be the Hardy-Littlewood maximal function and M2(f ) = M(f 2)1/2. We prove the
following estimate.

Lemma 3.1. For A > 1 we have

‖HSJ (χF1 , χF2)‖L1((AJ )c) ≤ (1 + ν)20CMA
−M |J | inf

x∈J M(χF1)(x) inf
x∈J M2(χF2)(x) .

Proof. If we writeHSJ (χF1 , χF2) = (HSJ (χF1 , χF2)ω
1
2 ) ω− 1

2 and use Hölder’s inequality, we
obtain:

‖HSJ (χF1 , χF2)‖L1((AJ )c) ≤ ∥∥ω− 1
2
∥∥
L2((AJ )c)

‖HSJ (χF1 , χF2)‖L2(ω)

≤ C A−M |J | 1
2

∥∥∥∥ ∑
s∈SJ

|J |− 1
2 〈χF1 , ϕs1〉〈χF2 , ϕs2〉ϕs3

∥∥∥∥
L2(ω)

≤ C A−M‖(〈χF1 , ϕs1〉〈χF2 , ϕs2〉)‖�2(SJ )

≤ C A−M‖(〈χF1 , ϕs1〉)‖�∞(SJ )‖(〈χF2 , ϕs2〉)‖�2(SJ )

≤ C (1 + ν)20A−M |J |− 1
2 ‖χF1‖L1(ω−1)‖χF2‖L2(ω−1)

≤ C (1 + ν)20A−M |J |− 1
2 |J | inf

x∈J M(χF1)(x) |J | 1
2 inf
x∈J M2(χF2)(x) .

In the last estimate we have used the fact that

1 +
( |x − c(J )|

|J |
)2 ≥ 1 +

( |x − θ |
|J | − 1

2

)2

for all θ ∈ J .

The main conclusion is the following.

Lemma 3.2.∣∣∣∣∫
E′

∑
s:Is⊆�

|Is |− 1
2 〈χF1 , φs1〉〈χF2 , φs2〉φs3(x) dx

∣∣∣∣≤Cν(min |F1|, |F2|) 1
2 |F1| 1

2 |F2| 1
2 |E|− 1

2 . (3.4)

where Cν ≤ C (1 + ν)20.
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Proof. Since the roles of F1 and F2 are symmetric, it will suffice to prove that (3.4) holds with

the expression C |F1| |F2| 1
2 |E|− 1

2 on the right-hand side of the inequality.

We organize all dyadic intervals J ⊆ � into sets Fk (k ≥ 0) in the following way:

Fk = {J : 2kJ ⊆ �, 2k+1J � �
}
.

We note that ∑
J∈Fk

|J | ≤ 4|�| ≤ 2|E| .

Indeed, assume Jmax is a maximal element of Fk with respect to inclusion. If J ⊆ Jmax and
|J | < |Jmax|, then J must have a common endpoint with Jmax (otherwise, we would have
2k+1J = 2k(2J ) ⊆ 2kJmax ⊆ �, thus J /∈ Fk). Thus, for each particular scale, Jmax may
contain at most 2 intervals belonging to Fk . Therefore

∑
J∈Fk,J⊆Jmax

|J | ≤
∞∑
k=0

2−k+1|Jmax| ≤ 4|Jmax| .

Since the maximal elements of Fk are disjoint, summing over them we obtain the required con-
clusion.

Also, for any J ∈ Fk we have E′ ⊆ (�)c ⊆ (2kJ )c. Thus, we have:∣∣∣∣ ∫
E′
H{Is⊆�}(χF1 , χF2) dx

∣∣∣∣
≤
∑
J⊆�

∣∣∣∣ ∫
E′
HSJ (χF1 , χF2) dx

∣∣∣∣
=

∞∑
k=0

∑
J∈Fk

∣∣∣∣ ∫
E′
HSJ (χF1 , χF2) dx

∣∣∣∣
≤

∞∑
k=0

∑
J∈Fk

‖HSJ (χF1 , χF2)‖L1((2kJ )c)

≤ CM(1 + ν)20
∞∑
k=0

∑
J∈Fk

|J |2−kM inf
x∈J M(χF1) inf

x∈J M2(χF2)

≤ CM(1 + ν)20
∞∑
k=0

2−kMC2k+2
0

∑
J∈Fk

|J | inf
2k+1J

M(χF1) inf
2k+1J

M2(χF2)

≤ C′(1 + ν)20
∞∑
k=0

2−kMC2k+2
0

∑
J∈Fk

|J | |F1|
|E|

( |F2|
|E|

) 1
2

≤ C(1 + ν)20|F1| |F2| 1
2 |E|− 1

2 .

4. Estimates for model sums. The case Is ��� �

We will now deal with the harder case Is � �. This part of the proof is based on an adaptation
of the L2 × L2 → L1,∞ estimate in [9].
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We denote by P the set of all tri-tiles s ∈ S, for which Is � �. Tri-tiles admit a partial
order. We say that s < s′ if Is ⊆ Is′ and ωs′ ⊆ ωs . We note that s and s′ intersect as rectangles
if and only if they are comparable under “<.”

The separation of scales (2.8) allows to say that if s < s′, then ωs′ ⊆ ωsi for some i = 1, 2, 3
or it is disjoint with all ωsi ’s.

We say that a collection of tri-tiles T is a tree with top t if for all s ∈ T , s < t . Every finite
collection of tri-tiles S is a union of trees. Indeed, if we denote by S∗ the set of all elements in S
which are maximal under “<,” and, for each t ∈ S∗, Tt is the maximal tree in S with top t , then
S = ∪t∈S∗Tt . We refine the notion of the tree by saying that T is a j -tree (j = 1, 2, 3) if T is a
tree with top T and for every s ∈ T , ωsj ∩ ωt = ∅.

For a tree T , s ∈ T , s �= t , at most one of the intervals ωsi can intersect ωt . Thus, if we
denote Tk = {s ∈ T : ωsk ∩ ωt �= ∅}, k = 1, 2, 3, then Tk is a j -tree for j �= k (there are also
elements such that ωsi ∩ ωt = ∅ for all i = 1, 2, 3, but those may be added to any of the Tk’s).
Then T = ∪3

k=1Tk , i.e., any tree is a union of at most three subtrees which are j -trees for at least
two choices of j .

For a k-tree T we set

�(T , k) = 1

‖fk‖2

(
|It |−1

∑
s∈T

|〈fk, ϕsk 〉|2
) 1

2

and we define the k-energy of a finite set of tiles S by

Ek(S) = sup�(T , k) , (4.1)

where the supremum is taken over all k-trees T ⊆ S. Note that a singleton {s} is a k-tree for all
k, so for all s ∈ S,

|Is |− 1
2 |〈fk, ϕsk 〉| ≤ Ek(S) ‖fk‖2 .

Now fix some j = 1, 2, 3 and let T be a k-tree for k �= j . Applying the above estimate and
the Cauchy-Schwarz inequality, we deduce

|〈HT (f1, f2), f3〉| ≤
∑
s∈T

|〈fj , ϕsj 〉|
|Is | 1

2

∏
k �=j

|〈fk, ϕsk 〉| (4.2)

≤ Ej (S) ‖fj‖2

∑
s∈T

∏
k �=j

|〈fk, ϕsk 〉|

≤ Ej (S) ‖fj‖2 |It |
∏
k �=j

�(T , k)‖fk‖2

≤ |It |
3∏
j=1

Ej (S) ‖fj‖2 .

This is a crucial estimate on a single tree that will be used in conjunction with the idea that any
tree can be written as a union of three trees of the above type.

Next, we state the main lemma which will allow us to obtain the estimates for the model
sums (cf. [9]).
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Lemma 4.1. Let S be a finite set of tri-tiles. Then S can be written as a union of two sets
S = S1 ∪ S2, which have the following properties. Let S∗

1 be the set of elements which are
maximal in S1 under “<” (i.e., S1 is a union of trees with tops in S∗

1 ). We then have∑
t∈S∗

1

|It | ≤ C1(1 + ν)20Ek(S)−2 , (4.3)

Ek(S2) ≤ 1

2
Ek(S) . (4.4)

This lemma only yields weak-type estimates from L2 × L2 into L1,∞. But the fact that we
are now working with the set of tiles P = {s ∈ S : Is � �} and all functions are characteristic
of some sets gives us an advantage quantified by the following energy estimate which appeared
in [6, 4], and is essentially contained in [14].

Lemma 4.2. For k = 1, 2 and fk = χFk , there exists a constantC > 0, such that the following
estimate is valid:

Ek(P ) ≤ C|E|− 1
2 min

[( |Fk|
|E|

) 1
2

,

( |Fk|
|E|

)− 1
2
]
. (4.5)

With these two lemmata at hand we can derive an estimate of the model sum for the case
Is � � in the following way. We construct inductively the sequence of pairwise disjoint sets Pj
such that

P =
n0⋃

j=−∞
Pj

and the following properties are satisfied:

(1) Ek(Pj ) ≤ 2j+1 for k = 1, 2, 3.

(2) Pj is a union of trees Tjk such that
∑
k |Itop(Tjk)| ≤ C0(1 + ν)202−2j for all j ≤ n0.

(3) Ek(P \ (Pn0 ∪ · · · ∪ Pj )) ≤ 2j for k = 1, 2, 3.

This sequence is constructed in the following way: We start the induction at the number
j = n0 such that Ek ≤ 2n0 for k = 1, 2, 3. We set Pn0 = ∅. Then properties (1), (2), and (3)
are clearly satisfied. Assuming that we have already constructed the set Pn, we construct Pn−1 as
follows. Let S = P \ (Pn0 ∪ · · · ∪ Pn). First, if E1(S) > 2n−1, then apply Lemma 4.1 to S with

k = 1, thus obtaining the sets S(1)1 with a control of the sum of the tops and S(1)2 with small 1-

energy, otherwise just skip this step (i.e., S(1)1 = ∅). Then, in the same fashion, if E2(S
(1)
2 ) > 2n−1,

we apply this lemma to S(1)2 obtaining the set S(2)1 and S(2)2 (otherwise again skipping this step,

S
(2)
1 = ∅). And, finally, we apply Lemma 4.1 for the third time with k = 3 to the set S(2)2 to obtain

S
(3)
1 and S(3)2 (we also skip this step, if E1(S

(2)
1 ) ≤ 2n−1). We set Pn−1 = S

(1)
1 ∪ S(2)1 ∪ S(3)1 .

Observe that if all three steps were skipped, then Pn−1 = ∅. We have to verify that properties
(1)–(3) indeed hold.

First, for k = 1, 2, 3:

Ek(P \ (Pn0 ∪ · · · ∪ Pn−1)) ≤ 1

2
Ek(P \ (Pn0 ∪ · · · ∪ Pn)) ≤ 2n−1

by Lemma 4.1 (and the fact that we just skipped the corresponding step if this was already so for
some k), thus verifying (3). Then,

Ek(Pn−1) ≤ Ek(P \ (Pn0 ∪ · · · ∪ Pn)) ≤ 2n = 2(n−1)+1 ,
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which proves (1). And finally, using Lemma 4.1, we have (with the convention that S(0)1 = S):

∑
k

|Itop(Tjk)| ≤ C(1 + ν)20
3∑
k=1

Ek
(
S
(k−1)
1

)−2 ≤ 3C(1 + ν)202−2(n−1) ,

since the sum actually ranges over those values of k for which Ek(S(k−1)
1 ) > 2n−1, otherwise the

corresponding part of Pn−1 is empty.

Taking into account the above families Pj , we obtain the following:

|〈HP (χF1 , χF2), χE′ 〉|

≤
∞∑

j=−∞

∑
k

|〈HTjk (χF1 , χF2), χE′ 〉|

≤ C

∞∑
j=−∞

(∑
k

|ItopTjk
|
)

E1(χF1 , Sj )E2(χF2 , Sj )E3(χE′ , Sj )|F1| 1
2 |F2| 1

2 |E| 1
2

≤ C′
∞∑

j=−∞
2−2j min

(
|F1|− 1

2 ,
|F1| 1

2

|E| , 2j
)

min

(
|F2|− 1

2 ,
|F2| 1

2

|E| , 2j
)

2j |F1| 1
2 |F2| 1

2 |E| 1
2

= C′
∞∑

j=−∞
2−j min

(
|F1|− 1

2 ,
|F1| 1

2

|E| , 2j
)

min
(
|F2|− 1

2 ,
|F2| 1

2

|E| , 2j
)

|F1| 1
2 |F2| 1

2 |E| 1
2 , (4.6)

where we used the estimate on a single tree (4.2) and the improved energy estimate (4.5).

We control (4.6) in different cases:

(A) Suppose |E| ≥ |F2| ≥ |F1|. Then (4.6) is bounded by
log

|F1|
1
2

|E|∑
j=−∞

2j +
log

|F2 |
1
2

|E|∑
j=log

|F1|
1
2

|E|

|F1| 1
2 |E|−1 +

∞∑
j=log

|F2 |
1
2

|E|

2−j |F1| 1
2 |F1| 1

2 |E|−2

 |F1| 1
2 |F2| 1

2 |E| 1
2

� |F1| |F2| 1
2 |E|− 1

2

(
1 + log

|F2|
|F1|

)
.

So, by symmetry, in the case |E| ≥ |F1|, |F2| the expression (4.6) can be controlled by

min
(|F1| 1

2 , |F2| 1
2
)|F1| 1

2 |F2| 1
2 |E|− 1

2

(
1 +

∣∣∣∣ log
|F2|
|F1|

∣∣∣∣) . (4.7)

We may also note that in this case | log |F2||F1| | ≤ log |E|2
|F1| |F2| .

(B) Suppose that |F1| ≤ |E| ≤ |F2| and |E|2 ≥ |F1| |F2|. In this case, we can bound (4.6) by
log

|F1|
1
2

|E|∑
j=−∞

2j +
log |F2|−

1
2∑

j=log
|F1|

1
2

|E|

|F1| 1
2 |E|−1 +

∞∑
j=log |F2|−

1
2

2−j |F1| 1
2 |F1|− 1

2 |E|−1

 |F1| 1
2 |F2| 1

2 |E| 1
2

� |F1| |F2| 1
2 |E|− 1

2

(
1 + log

|E|2
|F1| |F2|

)
.
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Thus, by symmetry, in the case when |E| is between |F1| and |F2| and |E|2 ≥ |F1| |F2| we obtain
that (4.6) is bounded by

min
(|F1| 1

2 , |F2| 1
2
)|F1| 1

2 |F2| 1
2 |E|− 1

2

(
1 + log

|E|2
|F1| |F2|

)
. (4.8)

The other cases work in a similar way:

(C) If |E| is between |F1| and |F2|, but |E|2 ≤ |F1| |F2|, the bound is

min
(|F1| 1

2 , |F2| 1
2
)|E| 1

2

(
1 + log

|F1| |F2|
|E|2

)
. (4.9)

(D) For |E| ≤ |F1|, |F2|, we obtain the bound

min
(|F1| 1

2 , |F2| 1
2
)|E| 1

2

(
1 +

∣∣∣∣ log
|F1|
|F2|

∣∣∣∣) . (4.10)

Combining the four Cases (A), (B), (C), and (D) we obtain the following inequality for the
case when the tiles s satisfy Is � �:∣∣∣∣∫
E′
H{s: Is��}(χF1 , χF2) dx

∣∣∣∣
≤ C1 min

(|F1| 1
2 , |F2| 1

2
)

min

( |F1| 1
2 |F2| 1

2

|E| 1
2

, |E| 1
2

)(
1+
∣∣∣∣∣∣∣ log

|F1|
|E|

∣∣∣− ∣∣∣ log
|F2|
|E|

∣∣∣∣∣∣∣) . (4.11)

As a consequence of the results so far we deduce the following.

Proposition 4.3. There exists a constantC1 such that, for any setsE,F1, F2 with the property
that |E|2 ≥ |F1| |F2| there exists a set E′ ⊆ E with |E′| ≥ 1

2 |E| such that for any set of tri-tiles
S we have the following estimate:∣∣∣∣∫

E′
HS(χF1 , χF2)(x) dx

∣∣∣∣≤C1 min(|F1|, |F2|) 1
2 |F1| 1

2 |F2| 1
2 |E|− 1

2

(
1+log

|E|2
|F1| |F2|

)
. (4.12)

This estimate is also valid for the bilinear Hilbert transform H .

Proof. The result forHS follows from the estimates (3.4) and (4.9). Note that the construction
of E′ did not depend on the choice of the set of tri-tiles, so E′ is the same for any S, and by an
averaging argument this estimate is also valid for H .

It is clear that, since both adjoints of HS , are “essentially” the same operators, the same
estimate (with different constants) also holds for them.

5. Lr1 × Lr2 → Lr boundedness of the model sums

In this section we will show that estimates (3.4) and (4.9) imply boundedness of the model
sum operator HS from Lr1 × Lr2 to Lr for 1

r1
+ 1

r2
= 1

r
, r1, r2 > 1, r > 2

3 . We include this
section for the sake of completeness (as we will use this result in the sequel), but we point out
that the reader may wish to skip it and cite the results of Lacey and Thiele [11, 12].
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Take some p1, p2 such that 1
p1

+ 1
p2

= 3
2 and p1, p2 > 1. We will show that HS is of

restricted weak type (r1, r2, r)where 1
r1

= 1
p1

−ε, 1
r2

= 1
p2

−ε and 1
r

= 3
2 −2ε. By interpolation

it follows that HS is bounded from Lr1 × Lr2 to Lr when |r−1
1 − r−1

2 | < 1/2 and 2/3 < r < 2.
The boundedness of HS in the remaining range of exponents follows by duality. (Note that the
same conclusion may be obtained using the interpolation theorem of Grafakos and Tao [7] as the
operator HS has bounded kernel whenever S is a finite set.)

We recall that a bilinear operator T is of restricted weak type (r1, r2, r) if and only if the
following is valid: For any sets E, F1, F2 of finite measure there exists a set E′ ⊂ E with
|E′| ≥ 1

2 |E|, such that

∣∣∣∣ ∫
E′
T (χF1 , χF2)(x) dx

∣∣∣∣ � |F1|
1
r1 |F2|

1
r2

|E| 1
r
−1

. (5.1)

Take arbitrary sets E, F1, F2 of finite positive measure. It follows from (3.4) and (4.9) that∣∣∣∣ ∫
E′
HS(χF1 , χF2) dx

∣∣∣∣ � |F1|
1
p1 |F2|

1
p2

|E| 1
2

(
1 +

∣∣∣ log
|F1|
|E|

∣∣∣)(1 +
∣∣∣ log

|F2|
|E|

∣∣∣) . (5.2)

We will use the fact that 1 + log x � xε for x ≥ 1. In the case when |E| ≥ max(|F1|, |F2|)
we can estimate the right-hand side of (5.2) by the expression

|F1|
1
p1 |F2|

1
p2

|E| 1
2

(
1 + log

|E|
|F1|

)(
1 + log

|E|
|F2|

)
� |F1|

1
p1

−ε |F2|
1
p2

−ε

|E| 1
2 −2ε

= |F1|
1
r1 |F2|

1
r2

|E| 1
r
−1

.

Now consider the case |F1| ≤ |E| ≤ |F2| (as the case |F2| ≤ |E| ≤ |F1| is symmetric). Fix
some ε1 > 2ε. Put α = 1

p1
− ε+ ε1 (ε and ε1 have to be chosen small enough, so that α ≤ 1) and

β = 1
p2

− ε1 + ε (thus β ≤ 1 also). We have α + β = 3
2 . Thus, similarly to (5.2), we obtain:∣∣∣∣ ∫

E′
HS(χF1 , χF2) dx

∣∣∣∣ � |F1|α |F2|β
|E| 1

2

(
1 + log

|E|
|F1|

)(
1 + log

|F2|
|E|

)

� |F1|α |F2|β
|E| 1

2

( |E|
|F1|

)ε1
( |F2|

|E|
)ε1−2ε

= |F1|
1
p1

−ε |F2|
1
p2

−ε

|E| 1
2 −2ε

= |F1|
1
r1 |F2|

1
r2

|E| 1
r
−1

.

The remaining case is |E| ≤ min(|F1|, |F2|). We observe that in this case the set� is empty,
since M(χFi ) ≤ 1. We therefore only need to use (4.6) which for |E| small yields:∣∣∣∣ ∫

E′
HS(χF1 , χF2) dx

∣∣∣∣ � min(|F1|, |F2|) 1
2 |E| 1

2

(
1 + log

|F1|
|E|

)(
1 + log

|F2|
|E|

)
� |F1|

1
p1

− 1
2 |F2|

1
p2

− 1
2 |E| 1

2

( |F1|
|E|

) 1
2 −ε( |F2|

|E|
) 1

2 −ε

= |F1|
1
p1

−ε |F2|
1
p2

−ε

|E| 1
2 −2ε

= |F1|
1
r1 |F2|

1
r2

|E| 1
r
−1

.
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Thus, for any measurable sets E and F1, F2, HS satisfies (5.1) and this implies that it is
of restricted weak type (r1, r2, r). The strong type estimates for the same range of exponents
can now be obtained by varying r1 and r2 and using the result on interpolation between adjoint
operators (cf. [7]).

6. Distributional estimates corresponding to the case p1 = 1, 2 ≤ p2 < ∞
Fix 2 ≤ p2 < ∞. There are some minor differences in the treatment of the cases p2 = 2

and p2 > 2. In the case p2 = 2 for the moment we shall assume that |F1| ≤ |F2|.
Case: p2 = 2, |E| 3

2 ≥ |F1| |F2| 1
2 , |F1| ≤ |F2| ≤ |E|.

Since |E| 3
2 ≥ |F1| |F2| 1

2 and |F2| ≥ |F1|, we have |E|2 ≥ |F1| |F2|. Using estimate (4.12)
we obtain ∣∣∣∣ ∫

E′
H(χF1 , χF2) dx

∣∣∣∣ ≤ C1
|F1| |F2| 1

2

|E| 1
2

(
1 + log

|E| 3
2

|F1| |F2| 1
2

)
. (6.1)

We note that this estimate is also valid if |E| ≥ max |Fi |, even when |F1| ≥ |F2|. We will
use this estimate in the inductive procedures below.

Case: p2 > 2, |E|1+ 1
p2 ≥ |F1| |F2|

1
p2 , |E| ≥ |F2|.

Let α = 1
2 − 1

p2
> 0, β = 1 − 1

p2
> 0. Since |E| ≥ |F2| we must have |E|2 ≥ |F1| |F2|.

Using (4.12) we obtain∣∣∣∣ ∫
E′
H(χF1 , χF2)(x) dx

∣∣∣∣ ≤ C1 min(|F1|, |F2|) 1
2 |F1| 1

2 |F2| 1
2 |E|− 1

2

(
1 + log

|E|2
|F1| |F2|

)

≤ C1
|F1| |F2|

1
p2

|E| 1
p2

( |F2|
|E|

)α(
1 + log

|E|1+ 1
p2

|F1| |F2|
1
p2

+ log
|E|β
|F2|β

)

� |F1| |F2|
1
p2

|E| 1
p2

(
1 + log

|E|1+ 1
p2

|F1| |F2|
1
p2

)
, (6.2)

since the function f (x) = xα(1 + log 1
xβ
) is bounded on [0, 1] when α > 0 (here x = |F2||E| ).

Case: p2 ≥ 2, |E|1+ 1
p2 ≥ |F1| |F2|

1
p2 , |E| ≤ |F2| (which implies |E| ≥ |F1|).

In this case, we will obtain an estimate via an iterative procedure which consists of two
parts. Let us denote by H ∗2 the adjoint of H with respect to the second variable. At first, we set
F 0

2 = F2. We will continue this part of the iteration until the first integer n such that |Fn2 | ≤ |E|.
At the j th step, according to the estimates above, we choose a subset Sj of Fj2 with |Sj | ≥ 1

2 |Fj2 |,
such that:

∣∣∣∣ ∫
Sj
H ∗2(χF1 , χE)(x) dx

∣∣∣∣ � |F1| |E| 1
p2

|Fj2 | 1
p2

(
1 + log

∣∣Fj2 ∣∣1+ 1
p2

|F1| |E| 1
p2

)
≤ |F1|

(
1 + log

|F2|1+ 1
p2

|F1| |E| 1
p2

)
.

Then we set Fj+1
2 = F

j

2 \ Sj . Obviously, for the number of steps n we have n � 1 + log |F2||E| .
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Thus, we have∣∣∣∣ ∫
E

H(χF1 , χF2) dx

∣∣∣∣ � |F1|
(

1 + log
|F2|1+ 1

p2

|F1| |E| 1
p2

)(
1 + log

|F2|
|E|

)
+
∣∣∣∣ ∫
E

H(χF1 , χFn2
) dx

∣∣∣∣
� |F1| |F2|

1
p2

|E| 1
p2

(
1 + log

|E|1+ 1
p2

|F1| |F2|
1
p2

)2

+
∣∣∣∣ ∫
E

H(χF1 , χFn2
) dx

∣∣∣∣ .
In the last line we have used the following simple inequality (with a = |E|

|F1| , b = |F2||E| ):

For a ≥ 1, b ≥ 1, such that ab
− 1
p2 ≥ 1 we have(

1 + log
(
ab

1+ 1
p2

))(
1 + log b

)
�
(

1 + log
a

b
1
p2

)2

b
1
p2 . (6.3)

To prove (6.3) we note that if b
1
p2 ≤ √

a, then log a

b
1
p2

≥ log
√
a = 1

2 log a and we have

(
1 + log

(
ab

1+ 1
p2

))(
1 + log b

)
�
(

1 + log a

)2

�
(

1 + log
a

b
1
p2

)2

b
1
p2 ,

while when
√
a ≤ b

1
p2 ≤ a, then(

1 + log
(
ab

1+ 1
p2

))(
1 + log b

)
�
(

1 + log b

)2

� b
1
p2 .

It remains to estimate the term ∣∣∣∣ ∫
E

H(χF1 , χFn2
) dx

∣∣∣∣ .
In the second part of the iteration process we proceed in a similar manner, only now we will be
splitting either F2 or E, depending on which one is larger in size. We set En = E. At the j th

step, if |Ej | ≥ |Fj2 |, we choose Sj ⊂ Ej such that |Sj | ≥ 1
2 |Ej | and∣∣∣∣ ∫

Sj
H(χF1 , χFj2

) dx

∣∣∣∣ �
|F1|

∣∣Fj2 ∣∣ 1
p2∣∣Ej ∣∣ 1

p2

(
1 + log

∣∣Ej ∣∣1+ 1
p2

|F1|
∣∣Fj2 ∣∣ 1

p2

)

≤ |F1|
∣∣Fj2 ∣∣ 1

p2∣∣Ej ∣∣ 1
p2

(
1 + log

∣∣Ej ∣∣ 1
p2∣∣Fj2 ∣∣ 1
p2

+ log
|E|
|F1|

)

� |F1|
(

1 + log
|E|
|F1|

)
,

where we have once again made use of the fact that f (x) = x · log 1
x

is bounded on [0, 1] (x =
|Fj2 | 1

p

|Ej | 1
p

≤ 1
)
.

In the other case, when |Fj2 | ≥ |Ej |, we choose Sj ⊂ F
j

2 with |Sj | ≥ 1
2 |Fj2 | such that∣∣∣∣ ∫

Sj
H ∗2(χF1 , χEj

)
dx

∣∣∣∣ � |F1|
∣∣Ej ∣∣ 1

p2∣∣Fj2 ∣∣ 1
p2

(
1 + log

∣∣Fj2 ∣∣1+ 1
p2

|F1|
∣∣Ej ∣∣ 1

p2

)
.
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An identical calculation and the fact that |Fj2 | ≤ |E| show that this can also be dominated

by |F1|
(
1 + log |E|

|F1|
)
.

In the first case we set Fj+1
2 = F

j

2 , Ej+1 = Ej \ Sj . In the second case we set Fj+1
2 =

F
j

2 \ Sj , Ej+1 = Ej . We proceed until the first integer m such that both |Em|, |Fm2 | ≤ |F1|.
Obviously, the number of steps in the second part m �

(
1 + log |E|

|F1|
)
. We now have

∣∣∣∣ ∫
E

H(χF1 , χFn2
) dx

∣∣∣∣ =
∣∣∣∣ ∫
En+1∪Sn

H(χF1 , χFn2
) dx

∣∣∣∣
≤

∣∣∣∣ ∫
Sn
H(χF1 , χFn2

) dx

∣∣∣∣+ ∣∣∣∣ ∫
En+1

H(χF1 , χFn+1
2
) dx

∣∣∣∣
� |F1|

(
1 + log

|E|
|F1|

)
+
∣∣∣∣ ∫
En+1

H(χF1 , χFn+1
2
) dx

∣∣∣∣
� . . .

� m |F1|
(

1 + log
|E|
|F1|

)
+
∣∣∣∣ ∫
Em
H(χF1 , χFm2

) dx

∣∣∣∣
� |F1|

(
1 + log

|E|
|F1|

)2 + ∣∣Em∣∣ 1
2 |F1| 1

4
∣∣Fm2 ∣∣ 1

4

� |F1| |F2|
1
p2

|E| 1
p2

(
1 + log

|E|1+ 1
p2

|F1| |F2|
1
p2

)2
,

where we made use of the boundedness of H on L4 × L4 → L2 and the following inequality:

For any a ≥ 1, b ≥ 1, such that ba
− 1
p2 ≥ 1 we have

(1 + log b)2 �
(

1 + log
(
ba

− 1
p2

))2
a

1
p2 ,

with a = |F2||E| , b = |E|
|F1| . The proof of this inequality is similar to that in (6.3) and is omitted.

Case: p2 ≥ 2, |E|1+ 1
p2 ≤ |F1| |F2|

1
p2 . (We are still assuming that |F1| ≤ |F2| whenp2 = 2.)

Here we will need the following lemma.

Lemma 6.1. Let 2 ≤ p2 < ∞. For all measurable sets E, F1, F2 of finite measure satisfying

|E|1+ 1
p2 ≤ |F1| |F2|

1
p2 (and also |F1| ≤ |F2| when p2 = 2) we have

∣∣∣∣ ∫
E

H(χF1 , χF2)(x) dx

∣∣∣∣ � |E|
(

1 + log
|F1| |F2|

1
p2

|E|1+ 1
p2

)2

.

Proof. Let us denote F 0
i = Fi for i = 1, 2. We shall now employ an inductive procedure

similar to the one described above. At the j th step among the sets Fj1 and Fj2 we choose the one

which has greater size and denote it byFjmax and the other one byFjmin. ByH ∗ max we shall denote

the expression H ∗1(χE, χFj2
) in the case when Fjmax = F

j

1 and H ∗2(χ
F
j
1
, χE) in the other case.

By (6.2) or (6.1) applied to the respective adjoint ofH with the roles ofE and Fjmax interchanged,
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we can choose Sj ⊂ F
j
max such that |Sj | ≥ 1

2 |Fjmax| and

∣∣∣∣ ∫
Sj
H ∗ max(x) dx

∣∣∣∣ � |E| ∣∣Fjmin

∣∣ 1
p2∣∣Fjmax

∣∣ 1
p2

(
1 + log

∣∣Fjmax
∣∣1+ 1

p2

|E| ∣∣Fjmin

∣∣ 1
p2

)
. (6.4)

We define Fj+1
i = F

j
i \Sji for all i = 1, 2, where we set Sji = Sj if Fjmax = F

j
i and Sji = ∅

otherwise. Let us examine the right-hand side of the inequality above. If |E| ≤ |Fjmin|, it is easy
to check that

∣∣Fjmax
∣∣1+ 1

p2∣∣Fjmin

∣∣ 1
p2 |E|

≤
(∣∣Fjmin

∣∣ ∣∣Fjmax
∣∣ 1
p2

|E|1+ 1
p2

)p2+1

≤
( |Fmin| |Fmax|

1
p2

|E|1+ 1
p2

)p2+1

≤
( |F1| |F2|

1
p2

|E|1+ 1
p2

)p2+1

.

Thus, in this case we can estimate the right-hand side by (p2 + 1)|E|(1 + log |F1| |F2|
1
p2

|E|1+ 1
p2

)
.

In the case when |E| ≥ |Fjmin|, we have

∣∣∣F 1+ 1
p2

max

∣∣∣2∣∣Fjmin

∣∣ 1
p |E|

≤
∣∣Fmax

∣∣1+ 1
p2

|Fmin|1+ 1
p2

.

So, in this case, the right-hand side of the inequality can be estimated by

|E|
( ∣∣Fjmin

∣∣∣∣Fjmax
∣∣
) 1
p2
(

1 + log

∣∣Fjmax
∣∣∣∣Fjmin

∣∣
)

� |E| ,

since the function f (x) = x
1
p2 (1 + log 1

x
) is bounded for x ∈ [0, 1].

Thus, in each case we get

∣∣∣∣ ∫
Sj
H ∗ max(x) dx

∣∣∣∣ ≤ C′′ |E|
(

1 + log
|F1| |F2|

1
p

|E|1+ 1
p

)
.

We proceed by induction and we stop at the first integer n such that

|E|1+ 1
p ≥ ∣∣Fn1 ∣∣ ∣∣Fn2 ∣∣ 1

p2 .

(Such an integer always exists since the quantity |Fn1 | |Fn2 | 1
p2 gets smaller by at least a factor of

1

2
1
p2

when j is replaced by j + 1.) Obviously, the number of steps n � 1 + log |F1| |F2|
1
p

|E|1+ 1
p2

.
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We can now estimate∣∣∣∣ ∫
E

H(χF1 , χF2) dx

∣∣∣∣ =
∣∣∣∣ ∫
E

H(. . . , χS0 + χF 1
max
, . . . ) dx

∣∣∣∣
≤

∣∣∣∣ ∫
S0
H ∗ max(x) dx

∣∣∣∣+ ∣∣∣∣ ∫
E

H(χF 1
1
, χF 1

2
) dx

∣∣∣∣
� |E|

(
1 + log

|F1| |F2|
1
p2

|E|1+ 1
p2

)
+
∣∣∣∣ ∫
E

H(. . . , χS1 + χF 2
max
, . . . ) dx

∣∣∣∣
≤ . . .

� n |E|
(

1 + log
|F1| |F2|

1
p2

|E|1+ 1
p2

)
+
∣∣∣∣ ∫
E

H(χFn1
, χFn2

) dx

∣∣∣∣
� |E|

(
1 + log

|F1| |F2|
1
p2

|E|2
)2

+ |E|1− p2+1
θp2
∣∣Fn1 ∣∣ 1

θ
∣∣Fn2 ∣∣ 1

θp2

≤ C2 |E|
(

1 + log
|F1| |F2|

1
p2

|E|1+ 1
p2

)2

,

where in the second line from the bottom we have used the Hölder inequality and the fact that H
is of strong type (θ, θp2, θ

p2
p2+1 ) for some large θ .

In the case p2 > 2 we obtain the following estimate: For any sets F1, F2, and E of finite
measure we can find E′ ⊂ E with |E′| ≥ 1

2 |E| such that∣∣∣∣ ∫
E′
H(χF1 , χF2) dx

∣∣∣∣ � |E| min

[
1, |F1| |F2|

1
p2

|E|1+ 1
p2

][
1 +

∣∣∣ log |E|1+ 1
p2

|F1| |F2|
1
p2

∣∣∣]2

. (6.5)

We now remove the assumption that |F1| ≤ |F2| when p2 = 2. For p2 = 2, we can consider
the (symmetric) case when |F1| ≥ |F2|, proceed as above with the roles ofF1 andF2 interchanged
and putting together the two estimates we obtain: For any sets F1, F2, and E of finite measure
we can find a set E′ ⊂ E with |E′| ≥ 1

2 |E| such that∣∣∣∣∫
E′
H(χF1 , χF2) dx

∣∣∣∣� |E| min

[
1, min(|Fi |)

1
2 |F1|

1
2 |F2|

1
2

|E| 3
2

][
1+
∣∣∣ log |E| 3

2

min(|Fi |)
1
2 |F1|

1
2 |F2|

1
2

∣∣∣]2

. (6.6)

7. Distributional estimates for the bilinear Hilbert transform

We can now prove Theorem 1.1.

Proof. For a given λ > 0, we set

E+
λ = {H(χF1 , χF2) > λ} ,

E−
λ = {H(χF1 , χF2) < −λ} .

Suppose that |E+
λ |1+ 1

p2 > |F1| |F2|
1
p2 . Then by (6.5) there is a subset S+

λ of E+
λ of at least

half its measure so that

λ

2

∣∣E+
λ

∣∣ ≤ ∣∣∣∣ ∫
S+
λ

H(χF1 , χF2) dx

∣∣∣∣ ≤ C3
|F1| |F2|

1
p2∣∣E+

λ

∣∣ 1
p2

(
1 + log

∣∣E+
λ

∣∣1+ 1
p2

|F1| |F2|
1
p2

)2

.
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This implies that

∣∣E+
λ

∣∣ ≤ C4
(|F1| |F2|

1
p2
) p2
p2+1 λ

− p2
p2+1

(
1 + log

1

λ

) 2p2
p2+1

. (7.1)

But then this implies that there is a λ0 > 0 such that for λ > λ0 we have |E+
λ |1+ 1

p2 ≤ |F1| |F2|
1
p2 .

Thus, for λ > λ0, |E+
λ |1+ 1

p2 ≤ |F1| |F2|
1
p2 holds and estimate (6.5) gives

λ
∣∣E+
λ

∣∣ ≤ C5
∣∣E+
λ

∣∣ (1 + log
|F1| |F2|

1
p2∣∣E+

λ

∣∣1+ 1
p2

)2

from which one easily deduces that

∣∣E+
λ

∣∣ ≤ 1

2
C e−c

√
λ
(
|F1| |F2|

1
p2

) p2
p2+1

. (7.2)

Suppose now that λ ≤ λ0. As shown, if |E+
λ |1+ 1

p2 > |F1| |F2|
1
p2 , then (7.1) is valid. If

|E+
λ |1+ 1

p2 ≤ |F1| |F2|
1
p2 then (7.2) holds which is even stronger.

An identical argument yields the same result for |E−
λ | with the same λ0.

For p2 = 2 we run the same argument for estimate (6.6) and in the end dominate the

expression min(|F1| 1
2 , |F2| 1

2 )|F1| 1
2 |F2| 1

2 by |F1| |F2| 1
2 .

Replacing the constants C, c by different ones we may take λ0 = 1 and thus estimate (1.2)
is now proved. Estimate (1.3) is proved likewise. Finally, Corollaries 1.2 and 1.3 are easy
consequences of these estimates.
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