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Abstract This paper is a brief account of the life and the scientific work of K.I. Os-
kolkov.

Konstantin Ilyich Oskolkov, or Kostya for his friends and colleagues, was born
in Moscow on Feb 17th, 1946. Kostya’s father, Ilya Nikolayevich, worked as an
engineer at the Research Institute of Cinema and Photography. His mother, Maria
Konstantinovna, was a distinguished pediatric cardiology surgeon. Since Maria’s
father was a priest, during Stalin’s purges her parents had to hide away, and for
a long time she grew up without them and was forced to hide her background.
Kostya’s paternal grandfather, Nikolay Innokent’evich Oskolkov, was a famous en-
gineer who built bridges, dams and subways across all of Russia and USSR. At
the age of 25, he directed the reconstruction of the famous Borodinsky bridge in
Moscow, giving the bridge the look that it still has today. Nikolay Innkont’evich’s
wife, Anna Vladimirovna Speer, came from the lineage of Karl von Knorre, a fa-
mous astronomer, a student of V.Ya. Struve, the founder and director of the Nikolaev
branch of the Pulkovo observatory.

The early 70’s were a time of scientific bloom in the USSR. Physicists, engi-
neers, and mathematicians were honored members of the society – newspaper ar-
ticles, movies and TV shows were created about them. It was during this time
that Kostya’s academic career began. In 1969, Kostya graduated with distinction
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from the Moscow Institute of Physics and Technology, one of the leading institu-
tions of Soviet higher education specializing in science and technology, with a ma-
jor in applied mathematics. One of Kostya’s professors was Sergey Alexandrovich
Telyakovskii, who encouraged Kostya to start graduate school at the Steklov Math-
ematical Institute of the Academy of Sciences of USSR under his supervision. In
1972, Kostya received the degree of Candidate of Sciences (the equivalent of Ph.D.),
and then in 1979 at the same institute he defended the dissertation for the degree of
Doctor of Sciences (Dr. Hab.), a nationally recognized scientific degree which was
exceptionally hard to achieve.

The beginning of Kostya’s scientific work coincided with a revolutionary period
of breakthrough results in multidimensional harmonic analysis. In 1971, C. Feffer-
man [69] proved the duality of the real Hardy space H1 and BMO. In that same
year C. Fefferman [67] constructed an example of a continuous function on the two-
dimensional torus whose rectangular Fourier series diverges almost everywhere. In
1972 L. Carleson and P. Sjölin [65] found the sharp region of Lp-convergence of
two-dimensional Bochner-Riesz averages. In 1972 C. Fefferman [70] disproved a
long-standing “disc multiplier” conjecture by showing that the spherical sums of
multidimensional Fourier series converge in the Lp norm only in the trivial case
p = 2.

In the 70’s the Function Theory seminar at Moscow State University was led
by D.E. Menshov and P.L. Ulyanov. During that time, an extremely talented group
of mathematicians working in harmonic analysis, approximatively of Kostya’s age,
was active in Moscow. Notable names include S.V. Bochkarev, B.S. Kashin, E.M.
Nikishin, and A.M. Olevskii. It was in this academic environment that Kostya began
his career. His research activity was also greatly influenced by such well-known
Soviet mathematicians as members of the Academy of Sciences S.M. Nikol’skii
and L.S. Pontryagin, as well as his Ph.D. advisor S.A. Telyakovskii.

Between 1972 and 1991, Kostya worked at the Steklov Institute. Together with
Boris Kashin they led a seminar. The atmosphere of this seminar was extremely
welcoming and informal. Both supervisors always tried to encourage the speaker
and provide suggestions on how they could improve the results or the presentation
(which was not very typical in the Russian academia). He also worked at the Depart-
ment of Computational Mathematics and Cybernetics of Moscow State University,
where he taught one of the main courses on Optimal Control.

Much of Kostya’s time and effort was invested into the collaboration between the
Academy of Scences of USSR and Hungary. In particular, for a long time he was an
editor of the journal “Analysis Mathematica”.

Kostya extensively traveled to different cities and towns of the Soviet Union,
where he lectured on various topics, served as an opponent in dissertation defenses,
and chaired the State Examination Committee. In the former USSR, where much of
the scientific activity and potential was concentrated in big centers like Moscow or
Leningrad, such visits greatly enriched the mathematical life of other cities. In par-
ticular, Kostya often visited Odessa. Numerous mathematicians from Odessa have
been inspired by their communication with Kostya. The papers of V. Kolyada, V.
Krotov, A. Korenovsky, P. Oswald, and A. Stokolos in the present volume attest to
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this fact.

At that time Kostya was one of few members of the Steklov Institute who spoke
English and German fluently. Because of that, he was constantly involved in receiv-
ing frequent foreign visitors to the Institute, which he always did with great pleasure.
In particular, he often spoke with L. Carleson, who visited the Institute on several
occasions.

The work of L. Carleson profoundly influenced Kostya’s mathematical research.
From the start of his scientific career, Kostya was very enthusiastic about Carleson’s
theorem, which establishes the a.e. convergence of Fourier series of L2 functions
(1966). The original proof was so complicated that soon after its publication there
appeared more detailed proofs in several books (e.g., C. Mozzochi [93], O. Jørsboe
and L. Mejlbro [92]), as well as an alternative proof by C. Fefferman [68]. Lectur-
ing in various parts of the Soviet Union, Kostya often stressed the importance of
this proof and attracted attention on this theorem in which he saw great potential
for future research. His predictions came true when in the mid-nineties, M. Lacey
and C. Thiele (as well as other authors later on) further developed the techniques
used in the proof of Carleson’s theorem and successfully applied them to problems
in multilinear harmonic analysis [91]. In particular, they provided a short proof of
Carleson’s theorem based on their method of time-frequency analysis of combina-
torial model sums.

We now highlight some of Kostya’s contributions to mathematics. We choose to
violate the chronological order and start with the topic, which we find most inter-
esting and influential (although, this choice inevitably reflects the personal tastes of
the authors). The focus of our exposition is on the results in the area of harmonic
analysis. The subsequent articles by M. Chakhkiev, V. Kolyada, V. Maiorov and V.
Temlyakov give a snapshot of Oskolkov’s contribution in the areas of Approxima-
tion Theory and Optimal Control.

Kostya’s research activity was to a great extent inspired and motivated by his
participation in the seminar of Luzin and Men’shov at Moscow State University.
For a long time, this seminar was supervised by P.L. Ul’yanov. As a student of N.K.
Bari, P.L. Ul’yanov was deeply interested in the finest features of convergence of
Fourier series, in particular the problem of finding spectra of uniform convergence.

Let us turn to rigorous definitions. Let K = {kn} be a sequence of pairwise
distinct integers. Denote by C (K ) the subspace of continuous 1-periodic functions
with uniform norm, whose Fourier spectrum is contained in K , i.e.

C (K ) =
{

f (t) : f (t +1) = f (t) ∈ C , f̂k =
∫ 1

0
f (t)e−2πiktdt = 0, k 6∈K

}
.

Denote

SN f (t) =
N

∑
n=0

f̂ke−2πiknt , LN(K ) = sup
06≡ f∈C (K )

‖SN f‖
‖ f‖

.
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The sequence K is called a spectrum of uniform convergence if for any function
f in C (K ) the sequence SN( f ) converges to f (t) uniformly in t as N → ∞. The
boundedness of the sequence LN suffices to deduce that K is a spectrum of uniform
convergence, however the main difficulty lies precisely in obtaining good bounds on
LN in terms of the spectrum K .

The classical result of du Bois-Reymond on the existence of a continuous func-
tion whose Fourier series diverges at one point shows that the sequence of all in-
tegers is not a spectrum of uniform convergence, while all lacunary sequences are
spectra of uniform convergence. For a long time it was not known whether the se-
quence n2 (or more general polynomial sequences) is a spectrum of uniform con-
vergence. This problem was repeatedly mentioned by P.L. Ulyanov, in particular, in
his 1965 survey [101]. In his remarkable publication [30] Kostya gave a negative
answer to this question. His proof is very transparent, elegant, short and inspiring,
and led to a series of outstanding results.

We shall briefly outline Kostya’s approach. If one denotes

hN(P) = ∑
1≤|n|≤N

e2πiP(n)

n
,

it is then evident that

|hN(P)| ≤ ∑
1≤|n|≤N

1
n
∼ 2logN→ ∞.

This is a trivial bound of hN . At the same time, any non-trivial estimate of the
type |hN(P)| ≤ (logN)1−ε for all polynomials of degree r would easily imply the
bound LN ≥ (logN)ε , and the growth of the Lebesgue constants would then dis-
prove the uniform convergence. Therefore the question reduces to improving the
trivial bounds for the trigonometric sums, which is far from being simple.

Kostya has demonstrated that no power sequence and, more generally, no polyno-
mial sequence can be a spectrum of uniform convergence. In addition, a remarkable
lower bound LN > ar(logN)εr for the Lebesgue constants of polynomial spectra has
been established. Here εr = 2−r+1, the constant ar is positive and depends only on
the degree of the polynomial defining the spectrum, but not on the polynomial itself.

Kostya’s ingenious insight consisted of applying the method of trigonometric
sums to the solution of this problem. His main observation was that the sequence hN
is nothing but the Hilbert transform of the sequence {e2πiP(n)} and the algebraically
regular nature of this sequence allows one to obtain a substantially improved result.
For instance, when r = 1 and P(x) = αx, the following canonical relations hold

h(P)≡ ∑
n6=0

e2πiαn

n
= 2i

∞

∑
n=1

sin(2πiαn)
n

= 2πi
(

1
2
−{α}

)
,

where {α} is the fractional part of the number α and α 6∈ Z. Moreover, the supre-
mum of the partial sums is nicely bounded by
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sup
N,α

∣∣∣∣∣2i
N

∑
n=1

sin(2πiαn)
n

∣∣∣∣∣< ∞, (1)

as opposed to the aforementioned logarithmic bound, which can be interpreted as
boundedness in two parameters: the upper limit of the partial sums and all polyno-
mials of the first degree.

On one hand this estimate demonstrates the applicability of the method of
trigonometric sums, on the other hand it shows the type of bound one may expect to
obtain by using this method for polynomials of higher degrees.

Consequently, Kostya managed to improve the trivial bound and to deduce the
estimate LN > ar(logN)εr with some constant ar depending on r from the bound

|hN(P)| ≤ cr(logN)1−εr , (2)

where P is a polynomial of degree r with real coefficients and εr = 21−r.
The method employed in [30] to prove (2) is elegant and essentially elementary.

It is roughly as follows: by squaring out the quantity |hN(P)|, one obtains a double
sum

|hN(P)|2 = ∑
1≤|n|,

∑
|m|≤N

e2πi(P(n)−P(m))

nm
.

Introducing the summation index ν = n−m and invoking elementary estimates, one
obtains a relation of the type

|hN(P)|2 ≤ ∑
1≤|ν |≤N

|hN(Pν)|
ν

+1

where Pν(x) = P(x+ν)−P(x), (ν =±1,±2, . . .). Since for each ν the polynomial
Pν(x) has degree strictly less than r, the proof may be completed by induction on r.

Notice that if r = 1, inequality (2) turns into (1). Kostya and his coauthor and
friend G.I. Arkhipov, came up with the brilliant idea that (2) can be substantially im-
proved; in fact, the logarithmic growth of (2) may be replaced with boundedness, as
in (1), for polynomials P of arbitrary degree, not just of degree r = 1. The proof is not
simple, and requires heavy machinery like the Hardy-Littlewood-Vinogradov circle
method for trigonometric sums. The following remarkable theorem was proved in
[32]:

Theorem A Let Pr be the class of algebraic polynomials P of degree r with real
coefficients. Then

sup
N

sup
{P∈Pr}

∣∣∣∣∣ ∑
1≤|n|≤N

e2πiP(n)

n

∣∣∣∣∣≡ gr < ∞

and for every P∈Pr, the sequence of symmetric partial sums convergences and the
sum is bounded uniformly in Pr.
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Of course, this stronger bound brought forth new results, that didn’t take long to
appear. The first application was obtained for the discrete Radon transform. Namely,
let P ∈Pr and define

T f (x) = ∑
j 6=0

f (x−P( j))
j

.

Then

T̂ f (n) = f̂ (n) ∑
j 6=0

e2πinP( j)

j
,

therefore

|T̂ f (n)| ≤ | f̂ (n)|sup
N

sup
{Q∈Pr}

∣∣∣∣∣ ∑
1≤| j|≤N

e2πiQ( j)

j

∣∣∣∣∣≤ gr| f̂ (n)|

and
T : L2→ L2.

In 1990 E. M. Stein and S. Wainger [99] independently proved the boundedness of
the discrete Randon transform in the range 3/2 < p < 3. A. Ionescu and S. Wainger
[71] subsequently extended the result to all 1 < p < ∞. See [96] for a good source
of information about the current state of the subject.

Later, Kostya found a new and unexpected method of proof for Theorem A by
interlacing the theory of trigonometric sums with PDEs. His key observation was
that formal differentiation of the trigonometric sum

h(t,x) := (p. v. ) ∑
|n|∈N

eπi(n2t+2nx)

2πin

yields the solution of the Cauchy initial value problem for the Schrödinger equation
of a free particle with the initial data 1/2−{x}

∂ψ

∂ t
=

1
2πi

∂ 2ψ

∂x2 , ψ(t,x) |t=0 = 1/2−{x}.

However, one, has to make rigorous sense of this formalism, which is highly non-
trivial. For instance, the series ϑ(t,x) := ∑n∈Z eπi(n2t+2nx), which arises naturally,
is not summable by any regular methods for irrational values of t as observed by
G.H. Hardy and J.E. Littlewood, see [72].

Using the Green function Γ (t,x) =
√

i
t e−

πix2
t and the Poisson summation for-

mula, Kostya established the following identity, which must be understood in the
sense of distributions.

ϑ(t,x) = Γ (t,x)ϑ
(
−1

t
,−x

t

)
.
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This might be viewed as a generalization of the well-known reciprocity of truncated
Gauss sums, see [72, p.22]:

q

∑
n=1

e
πin2 p

q =

√
iq
p

p

∑
m=1

e−
πim2q

p

From this identity, Kostya derives the existence and global boundedness for the
discrete oscillatory Hilbert transforms with polynomial phase h(t,x), i.e. a particular
case of Theorem A for the polynomials of second degree. The case of higher-degree
polynomials, e.g. cubic, requires the analysis of linearized periodic KdV equation.
The general case was considered in the remarkable paper [37].

The success achieved by Kostya in the study of the Schrödinger equation of a free
particle with the periodic initial data has been developed even further. Z. Ciesielski
suggested that Kostya tries to use Jacobi’s elliptic ϑ -function as a periodic initial
data. This function has lots of internal symmetries and the problem sounded quite
promising.

Formally, the problem is the following

∂ψ

∂ t
=

1
2πi

∂ 2ψ

∂x2 , ψ(t,x) |t=0 = ϑε(x) = c(ε) ∑
m∈Z

e−
π(x−m)2

ε

Here, ε is a small positive parameter which tends to 0 and c(ε) a positive factor,
normalizing the data in the space L2(T), i. e. on the period.

D. Dix, Kostya’s colleague from the University of South Carolina, conducted
a series of computer experiments (unpublished) and plotted the 3D-graph of the
density function ρ = ρ(θε , t,x) = |ψ(θε , t,x)|2,(t,x) ∈ R2, for ε = 0.01 The result
was astonishing, see Figure 1.

Figure 1. The Schrödinger landscape
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Instead of expected chaos, the picture turned out to be well structured. First, the
graphs represent a rugged mountain landscape, and second, the landscape is not a
completely random combination of “peaks and trenches.” In particular, it is criss-
crossed by a rather well-organized set of deep rectilinear canyons, or, “the valleys of
shadow.” The solutions exhibit deep self-similarity features, and complete rational
Gauss’ sums play the role of scaling factors. Effects of such nature are labeled in
the modern physics literature as quantum carpets.

Moreover, Kostya showed that semi-organized and semi-chaotic features, exhib-
ited by the bi-variate Schrödinger densities |ψ(t,x)|2, also occur for a wide class of√

δ -type initial data where δ = δ (x) denotes the periodic Dirac’s delta-function. By
definition,

√
δ is a family of regular periodic initial data { fε(x)}ε>0 such that in the

distributional sense | fε |2→ δ for ε → 0.
These phenomena were mathematically justified by Kostya using the expansions

of densities |ψε |2 into ridge-series (infinite sums of planar waves) consisting of
Wigner’s functions and by analyzing the distribution of zeros of bi-variate Gauss
sums.

Figure 2 below demonstrates Bohm’s trajectories – the curves on which the solu-
tion ψ conserves the initial value of the phase, i. e. remains real-valued and positive.

Figure 2. The Bohm trajectories

Figure 2 looks like a typical quantum carpet from the Talbot effect. The Talbot
effect phenomenon, discovered in 1836 by W.H.F. Talbot [100], the British inventor
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of photography, consists of multi-scaled recovery (revival) of the periodic “initial
signal” on the grating plane. It occurs on an observation screen positioned parallel
to the original plane, at the distances that are rational multiples of the so-called
Talbot distance. At the bottom of the figure, the light can be seen diffracting through
a grating, and this exact pattern is reproduced at the top of the picture, one Talbot
Length away from the grating. Half way down, one sees the image shifted to the
side, and at regular fractions of the Talbot Length, the sub-images are clearly seen.
A caFul examination of Figure 2 reveals the aforementioned features in this picture.

Kostya suggested the model that explains the Talbot effect mathematically [57].
He established the bridges between the following equations describing the Talbot
effect:

Wave 7→ Helmholtz with small parameter 7→ Schrödinger

Subsequently, several theorems concerning the Talbot effect were proved by him,
explaining the phenomenon of “the valleys of shadows” – the rectilinear domains of
extremely low light intensity in Figure 1.

In particular, it was discovered that there are surprisingly wide and very interest-
ing relations of his results on Vingradov series with many concepts in mathematics,
such as the Fresnel integral, continued fractions, Weyl exponential sums, Carlesons
theorem on trigonometric Fourier series of L2 functions, the Riemann ζ -function,
shifted truncated Gauss sums – in other words, deep connections exist between the
objects of analytic number theory and partial differential equations of Schrödinger
type with periodic initial data.

Kostya has explored the complexity features of solutions to the Schrödinger
equation which are related to the so-called curlicues studied by M. V. Berry and J. H.
Goldberg [77]. Curlicues represent a peculiar class of curves on the complex plane
C resulting from computing and plotting the values of incomplete Gauss sums. In
particular, the metric entropy of the Cornu spiral described by the incomplete Fres-
nel integral equals 4/3. Kostya’s result [43] demonstrates a very remarkable fact
that, although the Cauchy initial value problem with periodic initial value f (x) is
linear, the solutions may be chaotic even in the case of simple initial data.

These phenomena were enthusiastically received by the mathematical commu-
nity. In 2010, P. Olver published a paper [95] in the American Math. Monthly at-
tempting to attract the attention of young researchers to the subject.

Kostya also took a different direction of research related to the aforementioned
trigonometric sums in [59, 56, 53, 48]. In particular, in [56] he found an answer to
S.D. Chowla’s problem, which had been open since 1931. Along the way, Kostya
characterized the convergence sets for the series

S(t)∼ ∑
(n,m)∈N2

sin2πnmt
nm

, C(t)∼ ∑
(n,m)∈N2

cos2πnmt
nm

,

as well as for more general double series of the type
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E(λ , t,x,y)∼ ∑
(n,m)∈N2

λn,m
e2πi(nmt+nx+my)

nm
,

where λ is a bounded “slowly oscillating” multiplier, satisfying, say, the Paley con-
dition, t,x,y - independent real variables. Such series naturally arise in the study
of the discrepancy of the distribution of the sequence of fractional parts {nt}
(mod 1) and Wigner’s functions arising from the Schrödinger density |ψ|2.

We now turn our attention to some of Kostya’s earlier results, which highlight
his versatile contributions to harmonic analysis and approximation theory.

In 1973, E.M. Nikishin and M.Babuh [94] demonstrated that one could con-
struct a function of two variables whose rectangular Fourier series diverges almost
everywhere (the existence of such functions was proved by C. Fefferman [67] in
1971) with modulus of continuity ωC( f ,δ ) = O

(
log 1

δ

)−1
. One year later, Kostya

[9] proved that this estimate is close to being sufficient. If f ∈C(T2) and

ωC( f ,δ ) = o
(

log
1
δ

log loglog
1
δ

)−1

,

then the rectangular Fourier sums converge a.e.; the exact condition is still an open
question. Kostya’s proof used very delicate estimates of the majorant of the Fourier
series of a bounded function of one variable due to R. Hunt. In addition, Kostya
suggested a remarkable method for expressing the information about the smooth-
ness of a function in terms of a certain extremal sequence which we shall discuss
later. Thus, even Kostya’s earliest results are elegant and complete, although very
technical and far from trivial.

A natural counterpart of Carleson’s theorem is Kolmogorov’s example [85] of an
L1 function whose Fourier series diverges almost everywhere. Finding the optimal
integrability class in Kolmogorov’s theorem is an important open question. The first
step in this direction was made in 1966 by V.I. Prohorenko [97]. The best result
known today was obtained by S.V. Konyagin [90] in 1998. In his paper Konyagin
wrote, “The author expresses his sincere thanks to K. I. Oskolkov for a very fruitful
scientific discussion during his (the author’s) visit to the University of South Car-
olina, which stimulated the results of the present paper.”

One of Kostya’s earliest research interests was the quest for a.e. analogues of
estimates written in terms of norms. We shall take the liberty of drawing a parallel
to the Diophantine approximation. The classical Dirichlet-Hurwitz estimate∣∣∣∣x− p

q

∣∣∣∣≤ 1
q2
√

5

holds for for all real x and for infinitely many values of p and q with (p,q) = 1.

Moreover, for some values of x, (such as the “golden ratio”
√

5−1
2 ), the constant

√
5

cannot be increased. At the same time, as shown by A. Khinchin for almost all x,
the order of approximation can be greatly improved. For example, for almost all x
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there exist infinitely many p, q with (p,q) = 1 such that∣∣∣∣x− p
q

∣∣∣∣≤ 1
q2 logq

.

More generally, instead of logq, one can use any increasing function ϕ(q), where
the series ∑

1
qϕ(q) diverges. The divergence condition is sharp, which easily follows

from the Borel-Cantelli Lemma. Therefore, the Dirichlet-Hurwitz esimate can be
improved by a logarithmic factor almost everywhere.

In the same spirit, Kostya improved Lebesgue’s result on the approximation of
continuous functions with the partial sums of Fourier series. Unifrom estimates may
be substantially strengthened in the a.e. sense. More precisely, Lebesgue’s Theorem
[74] implies that if f ∈ Lipα , 0 < α < 1 then the following uniform estimate of the
rate of approximation is valid

| f (x)−Sn f (x)| ≤C
logn
nα

,

and there is a function f ∈ Lipα such that

limsup
n→∞

nα

logn
| f (0)−Sn f (0)|> 0.

In [14], using the exponential estimates on the majorants of the Fourier sums of
a bounded function due to R. Hunt [84], Kostya showed that for almost all x ∈ T,
where T = [0,2π), the estimate can be improved to

| f (x)−Sn f (x)| ≤Cx
log logn

nα

and there is a function f ∈ Lipα such that for almost all x ∈ T

limsup
n→∞

nα

log logn
| f (x)−Sn f (x)|> 0.

We would like to mention that the parallel with the Diophantine approximation is
more than just formal. In his later works, Kostya used continued fractions, the main
tool of Diophantine approximation, to obtain convergence theorems for trigonomet-
ric series. See for example [48, 53, 56, 59].

The proof of the aforementioned metric version of Lebesgue’s theorem was based
on a remarkable sequence δk, defined for a modulus of continuity ω(δ ) by the fol-
lowing rule

δ0 = 1, δk+1 = min
{

δ : max
(

ω(δ )
ω(δk)

;
δω(δk)
δkω(δ )

)
≤ 1

2

}
, k = 0,1, . . .

One can view this sequence as a discrete K-functional. Namely, it is well known,
that the modulus of continuity ω(δ ) controls the rate of convergence while the ratio
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ω(δ )/δ controls the growth of the derivative of a smooth approximation process
when δ → 0. So, the δk system controls both, which is similar to the idea of the
K-functional.

The idea of such partitions was already in the air, probably since the work of S.B.
Stechkin [75] in the early fifties. Simultaneous partition of a modulus of continuity
ω(δ ) and the function δ/ω(δ ) apparently was first used by V.A. Andrienko, [63].
As in the work of Stechkin, Andrienko used such partitions to construct counterex-
amples.

Kostya however was the first who wrote this sequence explicitly and employed it
to obtain positive results. Amazingly, this sequence turns out to be very useful in the
description of phenomena that are either close to or seemingly far from the rate of
a.e. approximations. For instance, the classical Bari-Stechkin-Zygmund condition
on the modulus of continuity just means that δk/δk+1 is bounded. Later on, this
method was widely used by many authors, see for example [86, 87].

Another example of application of δk sequence is the a.e. form of a Jackson-
type theorems from constructive approximation theory. Namely, let f ∈ Lp(T), 1≤
p < ∞; let ωp( f ,δ ) denote the Lp-modulus of continuity of a function f and let

Sδ ( f )(x) = δ
−1
∫ x+δ

x
f (y)dy. Then

‖ f −Sδ ( f )‖p ≤Cpωp( f ,δ ).

In [14] Kostya suggested an a.e. version of the above theorem. Let ω(t)/t, w(t)
and ω(t)/w(t) be increasing, and assume also that

∞

∑
k=0

(
ω(δk)
w(δk)

)p

< ∞. (3)

If ωp( f ,δ ) = O(ω(δ )), then

f (x)−Sδ ( f )(x) = Ox (w(δ )) a.e. on T.

If (1) diverges, then there is a function f such that ωp( f ,δ ) = O(ω(δ )) and

limsup
δ→0+

f (x)−Sδ ( f )(x)
w(δ )

= ∞ a.e. on T.

Further applications of the sequence δk include a quantitative characterization of
the Luzin C-property. By Luzin Theorem, an integrable function is continuous if
restricted to a proper subset of the domain whose complement has arbitrarily small
measure. It is then natural to ask the following: if the function has some smoothness
in the integral metric, what can be concluded about the uniform smoothness of this
restriction?

Kostya [25, 17] suggested the following sharp statement: let ω(δ ) be a modulus
of continuity, and let f be such that ωp( f ,δ )≤ ω(δ ). Let another modulus of con-
tinuity w(δ ) be as above (see (3)). Then for some measurable function C(t) ∈ Lp,∞
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| f (x)− f (y)| ≤ (C(x)+C(y))w(|x− y|).

The convergence of the series in (1) is a sharp condition. Since any Lp,∞ function
is bounded modulo a proper set of arbitrary small measure, the above inequality
provides the quantitative version of the Luzin C-property.

Later, that property was generalized to functions in H p, 0 < p≤ 1 and in Lp, p≥
0 by A. A. Solyanik [76]. Also V. G. Krotov and his collaborators have studied the
C-property in more general settings (see his paper in this volume).

Kostya’s interest in the convergence of Fourier series lead him to consider the
question of the best approximation of a continuous function f with trigonometric
polynomials. This problem has a long history and tradition, especially in the Russian
school. Here Kostya again used a combination of deep and simple ideas and obtained
optimal results.

To be specific, let f be a continuous periodic function with Fourier sums Sn( f ),
and let En( f ) = En be the best approximation of f by trigonometric polynomials of
order n. Classic estimates due to Lebesgue state that

‖ f −Sn( f )‖ ≤ (Ln +1)En( f ),

where Ln are Lebesgue constants. From this inequality it follows that

‖ f −Sn( f )‖ ≤C(logn)En( f ).

This inequality is sharp in many function classes defined in terms of a slowly de-
creasing majorant of best approximations. But the inequality is not sharp if the best
approximations decrease quickly.

The following estimate was proved by Kostya in [11] :

‖ f −Sn( f )‖ ≤C
2n

∑
k=n

Ek( f )
n− k +1

.

Here, C is an absolute constant and ‖ · ‖ is a norm in the space of continuous func-
tions. This estimate sharpens Lebesgue’s classical inequality for fast decreasing Ek.
The sharpness of this estimate is proved for an arbitrary class of functions having a
given majorant of best approximation. Kostya also investigated the sharpness of the
corresponding estimate for the rate of almost everywhere convergence of Fourier
series. See the note by V. Kolyada in this volume.

When f is continuous with no extra regularity assumptions, the partial Fourier
sums may not provide a good approximation of f . In a paper with D. Offin, [39]
Kostya constructed a simple and explicit orthonormal trigonometric polynomial ba-
sis in the space of continuous periodic functions by simply periodizing a well-known
wavelet on the real line. They obtained trigonometric polynomials whose degrees
have optimal order of growth if their indices are powers of 2. Also, Fourier sums
with respect to this polynomial basis have almost best approximation properties.

More recently, Kostya wrote an interesting series of papers on the approximation
of multivariate functions. He became interested in the ridge approximation (approx-



14 D. Bilyk, L. De Carli, A. Petukhov, A. Stokolos and B. D. Wick

imation by finite linear combination of planar waves) and the algorithms used to
generate such approximations. His interest in these problems was motivated by the
connections between the ridge approximation and optimal quadrature formulas for
trigonometric polynomials, which are discussed in [42]. In this paper Kostya also
studied the best ridge approximation of L2 radial functions in the unit ball of R2 and
showed that the orthogonal projections on the set of algebraic polynomials of degree
k are linear and optimal with respect to degree n ridge approximation. The proof of
this result uses, in particular, the inverse Radon transform and Fourier-Chebyshev
analysis.
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