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Abstract It is well known that, when α has bounded partial quotients, the lattices{(
k/N,{kα}

)}N−1
k=0 have optimal extreme discrepancy. The situation with the L2

discrepancy, however, is more delicate. In 1956 Davenport established that a sym-
metrized version of this lattice has L2 discrepancy of the order

√
logN, which is the

lowest possible due to the celebrated result of Roth. However, it remained unclear
whether this holds for the original lattices without any modifications. It turns out
that the L2 discrepancy of the lattice depends on much finer Diophantine properties
of α , namely, the alternating sums of the partial quotients. In this paper we extend
the prior work to arbitrary values of α and N. We heavily rely on Beck’s study of
the behavior of the sums ∑

(
{kα}− 1

2

)
.

1 Introduction

The present note is a sequel to the papers of the author with Temlyakov and Yu
[7, 8] – we continue the study of the L2 discrepancy of two-dimensional lattices

of the form LN(α) :=
{(

k/N,{kα}
)}N−1

k=0
. Historically these lattices play a very

important role in discrepancy theory. It has been known for a long time (cf., Lerch
[12, 1904]) that, when α has bounded partial quotients of the continued fraction
(α is badly approximable), the extreme discrepancy of these lattices satisfies the
inequality ∥∥DLN(α)

∥∥
∞
≤C1(α) logN, (1)

which is best possible in view of the famous result of Schmidt [16, 1972]. For
(x,y) ∈ [0,1)2, the discrepancy function is defined as
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DLN(α)(x,y) = #
(
LN(α)∩ [0,x)× [0,y)

)
−Nxy. (2)

Regarding the L2 discrepancy, Davenport [10, 1956] has shown that the sym-
metrized lattice L sym

N (α) := LN(α)∪LN(−α) consisting of 2N points satisfies
the inequality ∥∥DL sym

N (α)

∥∥
2 ≤C2(α)

√
log(2N), (3)

complementing the celebrated lower bound obtained by Roth [14, 1954] slightly
earlier. Similar inequalities also hold for the rational approximations of irrational
lattices (see [13, 7, 8]). Later Roth [15, 1979] established that random shifts of
lattices also achieve the optimal order of the L2 discrepancy.

Nevertheless, it still remained a mystery whether these modifications are indeed
necessary and whether the original lattices have asymptotically minimal L2 discrep-
ancy. At least a couple of standard references in discrepancy theory erroneously
stated without proof that

∥∥DLN(α)
∥∥

2 ≥C′′α logN.
The belief in this bound was partially justified by the fact that it holds for another

classical low-discrepancy distribution – the Van der Corput set, while its modifica-
tions (symmetrizations, translations, digit shifts) have L2 discrepancy of the order√

logN, i.e. in this case the modifications are really necessary.
However, in 1982 Sós and Zaremba [17] proved that if all the partial quotients

of the (finite or infinite) continued fraction are equal, then
∥∥DLN(α)

∥∥
2 ≤C′α

√
logN.

This result, in particular, applied to α = 1 +
√

2, the golden section α = 1+
√

5
2 , the

ratio of consecutive Fibonacci numbers α = Fn
Fn+1

. Unfortunately, the paper went
largely unnoticed in the subject and the generalizations of this result only appeared
recently. It turns out that the L2 discrepancy estimates for lattices depend on much
finer Diophantine properties than just boundedness of partial quotients.

We introduce some notation. For α ∈R consider its continued fraction expansion

α = [a0; a1, a2, ...] = a0 +
1

a1 + 1
a2+ 1

a3+...

(4)

with the partial quotients a0 ∈ Z, ak ∈ N, k ≥ 1. This expansion is finite if α is
rational, and infinite otherwise. We denote by pn/qn the nth order convergents of α ,
i.e. pn/qn = [a0; a1, ..., an]. We say that A≈ B if A = O(B) and vice versa.

In this note we prove the following theorem:

Theorem 1. Assume that α = [a0; a1, a2, ...] has bounded partial quotients and let
pn/qn be its nth order convergent. Then, for qn−1 < N ≤ qn we have

∥∥DLN(α)
∥∥

2 ≈max
{∣∣∣∣ n

∑
k=1

(−1)kak

∣∣∣∣,√logN
}

, (5)

in particular,

∥∥DLN(α)
∥∥

2 ≈
√

logN if and only if
∣∣ n

∑
k=0

(−1)kak
∣∣≤C(α)

√
n. (6)
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(If α = pn∗/qn∗ is rational, we additionally assume that N ≤ qn∗.)

The classical recurrence relation qn+1 = an+1qn + qn−1 easily implies that qn
grows exponentially and thus whenever qn−1 < N ≤ qn, we have n ≈ logN. There-
fore, the first expression in the estimate above is at most of the order logN.

We note that this theorem obviously includes the aforementioned result of Sós
and Zaremba. In addition, a partial case of this theorem has been obtained by the au-
thor with Temlyakov and Yu [8] – this case deals with the situation when the rational
α = pn/qn is the nth convergent of a badly approximable number θ and the num-
ber of points N = qn. This case, in particular, takes care of the famous Fibonacci
lattice Fn =

{
(k/Fn,{kFn−1/Fn})

}Fn−1
k=0 . Aicke Hinrichs (private communication)

conjectures that the Fibonacci lattice has the lowest L2 discrepancy among all lat-
tices with Fn points. For more information on the Fibonacci lattice and its relation
to discrepancy and numerical integration see [18, 19, 20, 7, 8].

We briefly mention some other values of α which yield a lattice with an optimal
order of L2 discrepancy. First of all, for any integer of the form m = p2 +1, we have√

m = [p;2p]. Hence it follows already from the Sós–Zaremba result that LN(
√

m)
has L2 discrepancy of order

√
N. Therefore, LN(

√
2) is optimal, while LN(

√
3) is

not, since
√

3 = [1;1,2] and the alternating sums grow linearly. We can also con-
struct other examples. It is well known that quadratic irrationalities have periodic
continued fraction expansions. Notice that if the length of the period is odd, then
the alternating sums ∑

n
k=1(−1)kak stay bounded and the L2 discrepancy is bounded

by
√

logN. We list the first few values of m (excluding m = p2 + 1) such that the
expansions of

√
m have periods of odd length: 13, 29, 41, 53, 58, 61, 73, 74, 85, 89,

97. Notice that the periodicity implies an interesting dichotomy: for any quadratic
irrational β , the L2 discrepancy of LN(β ) is either of the order logN or

√
logN. In

general, it is not had to construct α so that LN(α) has any intermediate rate of the
L2 discrepancy.

We add a few words about the methods. Both the original paper of Davenport
[10], and the work of Bilyk, Temlyakov, Yu [7, 8] used the Fourier series anal-
ysis of the discrepancy function. However, Davenport looked at discrepancy as a
function of y and obtained estimates independent of x, while the author and collab-
orators considered the two-dimensional Fourier series, which for a rational lattice
are supported on a very sparse set. In both cases, the main problem comes from the
zero-order term of the Fourier expansion (the integral); indeed, both Davenport’s
symmetrization and Roth’s translation are intended to handle this term. In this pa-
per, we revert to Davenport’s method.

2 Preliminaries

Consider the 1-periodic sawtooth function ψ(x) = {x}− 1
2 . It will be crucial for us

to understand the behavior of the sums
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Sm(α) =
m

∑
k=0

ψ(kα). (7)

These objects have been extensively studied by Beck [2, 3, 4] (I would like to thank
Nir Lev for pointing out these references to me). In particular, it turns out that the
Cesaro mean of these sums

TN(α) :=
1
N

N−1

∑
m=0

Sm(α) =
N−1

∑
m=0

(
1− m

N

)
ψ(mα) (8)

satisfies the following (see Theorem 3.2 in [3])

TN(α) =
1
12

n

∑
k=1

(−1)kak + O( max
1≤i≤n

ai), (9)

where n is the smallest index such that qn ≥ N. It can also be shown (see [3]) that
the second moment of these sums satisfy

VN(α) :=
1
N

N−1

∑
m=0

(
Sm(α)−TN(α)

)2 ≈ ∑
m:qm≤N

a2
m. (10)

In addition, the Central Limit Theorem holds for the sums Sn(α). The CLT takes
the following form (see Theorem 4.1 in [3])

1
N
· #
{

0≤ m≤ N−1 :
Sm(α)−TN(α)√

VN(α)
≤ λ

}
−→ 1√

2π

∫
λ

−∞

e−t2/2dt as N→ ∞

(11)
provided that a2

k/(∑k
i=1 a2

i )→ 0 as k→ ∞.
This statement is applicable, in particular, when ak’s are bounded. In this case it

follows from (10) that

VN(α)≤maxa2
k ·#{m : qm ≤ N} ≤Cα logN (12)

for some absolute constant Cα > 0, since, as noted earlier, qn−1 < N ≤ qn implies
n≈ logN.

Now the CLT easily implies that∥∥∥∥Sm(α)−TN(α)√
VN(α)

∥∥∥∥
`2(N)

= O(1) (13)

as N → ∞, where ‖x‖`2(N) =
(

1
N

N−1

∑
m=0
|x(m)|2

)1/2

. Indeed, if x satisfies the CLT

(11), then
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1
N

N−1

∑
m=0
|x(m)|2 ≤ ∑

k∈Z

#{m : 2k−1 < |x(m)| ≤ 2k}
N

·22k

≈ ∑
k∈Z

22k
√

2π

∫ 2k

2k−1
e−t2/2dt ≤ 4√

2π

∫
∞

0
t2 · e−t2/2dt

when N is large. Therefore,

TN(α)≤
(

1
N

N−1

∑
m=0

S2
m(α)

)1/2

≤ Kα

(
TN(α)+

√
logN

)
(14)

for some constant Kα > 0. The first inequality is obvious by Cauchy–Schwartz,
while the second one is a corollary of (13) and (12). This estimate will be crucial in
the proof of Theorem 1.

In the end we would like to note that the mean values of Sm(α) arise naturally
with respect to discrepancy. It is easy to check that

∫
[0,1)2

DLN(α)(x,y)dxdy =
N−1

∑
m=0

(
1− m

N

)(
1−{mα}

)
− N

4
=−TN(α)+

1
4
. (15)

This, together with Roth’s theorem, immediately implies the lower bound in (5)
since ‖ f‖2 ≥ |

∫
f |. Estimate (14) for the quadratic mean of Sm(α) will arise in the

proof of the upper bound.
In the case considered in [8] when α = p/q is rational and N = q, the integral

above equals D(p,q)+ 1
2 , where

D(p,q) =
q−1

∑
k=0

k
q
·ψ
(

k
p
q

)
(16)

is the Dedekind sum. The fact that its behavior is controlled by the alternating sums
of partial quotients of p/q has been known independently of Beck’s work (e.g. [1,
11]) and has been used in the present setting in [8].

3 The proof of Theorem 1 (upper bound)

We follow Davenport’s approach. For a moment, let us fix x ∈ [0,1) and set U =
U(x) = dNx−1e. It is well known (see [10, 15]) that the discrepancy function may
be approximated as DLN(α)(x,y) = MU (y)+O(1), where

MU (y) =
U

∑
k=0

(
ψ(kα− y)−ψ(kα)

)
=

1
2πi ∑

m 6=0

1
m

( U

∑
k=0

e2πimkα

)(
1− e−2πimy),

(17)
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where the equality is understood in the L2 sense. We have used the Fourier expansion

ψ(x)∼− ∑
m 6=0

e2πimy

2πim
. Using Parseval’s identity one obtains:

∥∥MU
∥∥2

L2(dy) ≤ |M̂U (0)|2 +C
∞

∑
m=1

1
m2

∣∣∣∣ U

∑
k=0

e2πimkα

∣∣∣∣2. (18)

The sum above is bounded by a constant multiple of logU ≤ logN (see [10, 9] for
details – this estimate was the heart of Davenport’s proof). The zero-order Fourier
coefficient (the constant term) is

M̂U (0) =
1

2πi ∑
m6=0

1
m

( U

∑
k=0

e2πimkα

)
=−

U

∑
k=0

ψ(kα) =−SU (α). (19)

We thus arrive to ∥∥MU
∥∥2

L2(dy) ≤ S2
U (α)+C′α logN. (20)

We now integrate estimate (20) over x ∈ [0,1). Notice that as x runs over [0,1), the
discrete parameter U = U(x) changes between 0 and N − 1, hence the first term
results in

1
N

N−1

∑
U=0

S2
U (α)≤C′′α(T 2

N (α)+ logN) (21)

according to (14). Putting together these estimates and (9) we find that

∥∥MU(x)(y)
∥∥2

L2(dxdy) ≤ K1(α) logN +K2(α)
∣∣∣∣ ∑

k:qk≤N
(−1)kak

∣∣∣∣2, (22)

for some constants K1(α) and K2(α), which yields the upper bound in (5) and fin-
ishes the proof of Theorem 1. ut

We would like to make a concluding remark. It seems to be a recurrent feature
that whenever a well-distributed set fails to meet the optimal L2 discrepancy bounds,
the problem is always already in the constant term, i.e. the integral of the discrep-
ancy function [10, 15, 6, 5, 8]. We conjecture that this should be true in general,
in other words the following statement should hold: there exist constans C1, C2,
C3 > 0 such that whenever PN ⊂ [0,1)2, #PN = N satisfies

∥∥DPN

∥∥
∞
≤ C1 logN

and
∥∥DPN

∥∥
2 ≥C2 logN, it should also satisfy∣∣∣∣∫[0,1)2

DPN (x,y)dxdy
∣∣∣∣≥C3 logN. (23)
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