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ABSTRACT
Weighted ensemble (WE) is an enhanced sampling method based on periodically replicating and pruning trajectories generated in parallel.
WE has grown increasingly popular for computational biochemistry problems due, in part, to improved hardware and accessible software
implementations. Algorithmic and analytical improvements have played an important role, and progress has accelerated in recent years. Here,
we discuss and elaborate on the WE method from a mathematical perspective, highlighting recent results that enhance the computational
efficiency. The mathematical theory reveals a new strategy for optimizing trajectory management that approaches the best possible variance
while generalizing to systems of arbitrary dimension.
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I. INTRODUCTION

Weighted ensemble (WE)1 is an enhanced sampling method
employing multiple trajectories of a stochastic process to estimate
mean first passage times (MFPTs) and related statistics. WE can
be applied to any stochastic dynamics model,2 such as Langevin
dynamics in a molecular system1 or continuous-time jump dynam-
ics in a reaction network.3 In biomolecular systems, WE has enabled
the estimation of MFPTs that are orders of magnitude larger than
the combined lengths of the individual WE trajectories.4–7 WE has
also recently been used to elucidate the spike opening dynamics in
the SARS CoV-2 virus.8

WE is based on splitting and merging, as shown in Fig. 1.
During splitting, “favorable” or “interesting” trajectories, accord-
ing to a user definition, are replicated. During merging, the “less
favorable” or “redundant” trajectories are randomly eliminated from
the ensemble. Trajectories are then re-weighted to preserve the
statistics of the path ensemble.2

The first splitting and merging algorithm was reported in the
1950s and attributed to von Neumann.9 In 1996, Huber and Kim1

modified von Neumann’s approach by grouping the trajectories
into bins and applying splitting and merging in each of the bins

separately, while preserving the bin weights. It was recently shown
that WE with fixed bin weights leads to convergent estimates; in con-
trast, von Neumann’s original method can become unstable in the
large time limit.10,11

Applications of WE have blossomed, and the method is now
implemented in the widely used WESTPA software package12,13

and the more recent wepy14 and WeightedEnsemble.jl15 packages.
Meanwhile, a growing community of researchers is promoting the
method and developing it in different directions.4,5,16–24

In modern biochemical applications, WE is often used to esti-
mate the MFPT for a stochastic process to transition from a source
state A into a target state B.25 In addition, WE has been used to
estimate other transition path statistics, including the distribution
of reaction times from A to B,4,5 the distribution of entry points
into B,16,26 and the characteristics of paths leading from A to B.4,17,27

Here, we focus on the estimation of MFPTs, which is a significant
and challenging application because the inverse of the MFPT is the
reaction rate constant.28

Alternative methods for estimating MFPTs include Markov
state models,29 forward flux sampling,30 adaptive multilevel
splitting,31–34 diffusion Monte Carlo,35–37 exact milestoning,38,39

non-equilibrium umbrella sampling,40 and transition interface
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FIG. 1. An illustration of splitting and merging of weighted trajectories. It shows
two splitting and merging steps in which the top trajectory is split and the bottom
trajectories are merged, with merges indicated by arrows. Merging combines the
individual trajectory weights, while splitting divides the weights. The weights are
represented by the widths of trajectories.

sampling.41 Like WE, these approaches use large numbers of short
unbiased trajectories to compute the MFPT. However, the following
combination of features makes WE especially attractive:

● WE only requires simulation of the stochastic model for-
ward in time, never backward. Thus, WE can be applied to a
wide variety of stochastic models arising in chemistry1,3 and
other fields, including astronomy,42 climate science,43,44 and
systems biology.3,45

● WE is fully parallelizable over the time intervals of length
τ between splitting/merging events.12,13,46 Since the tra-
jectories are simulated for the same time interval, the
parallelization is straightforward.

● WE provides asymptotically unbiased, convergent esti-
mates in the limit of many time steps for any choice of
parameters.2,10,11

● WE has been observed to provide more accurate MFPT
estimates than Markov state models47 and similar or better
convergence than non-equilibrium umbrella sampling.48

Despite progress over the last three decades, theoretical ques-
tions about WE have remained unanswered until recently. WE’s
performance is highly dependent on the choice of parameters,4
including the definition of the bins and the desired number of tra-
jectories in each bin. For a long time, it was unclear what the optimal
parameter choices would be.

Recent work in the mathematical literature sheds new light on
the optimal parameter choices for WE.10,11,49,50 Indeed, the optimal
merging coordinate is the local MFPT to B, given the current state.
The optimal splitting coordinate is the local variance of the MFPT
to B, given the current state and the evolution time interval τ. There
is a theoretical limit on the variance reduction achievable through
WE, and bins based on the optimal merging and splitting coordi-
nates ensure the optimal variance in the limit of many trajectories
and many time steps.

TABLE I. Definitions of symbols used in this work.

Symbol Definition

Xt Underlying Markovian dynamics
x Position in phase space
τ Evolution time interval or lag time
ξi

sτ Position of the ith WE trajectory at time sτ
wi

sτ Weight of the ith WE trajectory at time sτ
β Inverse thermal energy (1/kBT)
U Potential energy
A Initial (source) set
B Target (sink) set
ρA Initial (source) distribution inside A
TB First passage time to B
Nt Number of arrivals in B by time t
q Committor function from A to B
J Steady-state flux into B
π Steady state of source-sink dynamics
⟨⟩ Mean or average for source-sink dynamics
⟨⟩x Ensemble average starting at point x
⟨⟩π Ensemble average starting at distribution π
h (flux) discrepancy function
v2 (flux) variance function
Ĵt WE estimate of steady-state flux up to time t
π̃, h̃, ṽ τ → 0 limits of π, h, v2

In this article, we aim to communicate these recent mathe-
matical advances in a brief, accessible way. We identify the optimal
splitting and merging coordinates in one- and two-dimensional
examples. We propose optimized bins based on these coordinates,
which differ from more traditional WE bins that employ a user-
defined distance to some target structure, e.g., the (minimum)
root-mean-squared distance in atomic coordinates. Our examples
show that binning based on the distance to a target can encour-
age transitions along a physically inconsistent pathway and produce
catastrophically wrong results. In such cases, more effective bins are
needed, and optimized bins can help WE to approach the minimal
possible variance. Table I summarizes notation used throughout.

The rest of this article is organized as follows. Section II dis-
cusses the computation of mean first passage times, Sec. III intro-
duces the WE method, Sec. IV identifies the optimal merging and
splitting coordinates for WE, Sec. V evaluates variance reduction
strategies for WE, and Sec. VI concludes.

II. MEAN FIRST PASSAGE TIMES
AND THE HILL RELATION

In this work, we study the MFPT of a Markovian stochastic
process Xt from a source state A to a sink state B. In the biochem-
istry context, Xt could represent Langevin dynamics or constant-
temperature dynamics generated with a stochastic thermostat. The
MFPT could correspond to the characteristic time for the folding,
binding, or conformational change of a simulated protein. Through-
out, we write x for a particular location in phase space or a particular
position of the stochastic process Xt .
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To define the MFPT precisely, we must specify the distribution
of starting points ρA within the source state A. The distribution ρA
and the dynamics of Xt fully determine the MFPT, which is defined
as the averaged length of the trajectories initiated from the source
distribution ρA and absorbed upon reaching B. We do not address
here the issue of choosing the “correct” ρA; for details on this, see
Refs. 51 and 52.

When computing the MFPT, we “recycle” Xt according to the
source distribution ρA upon arrival at the sink state B. This means
that the position immediately changes from B to A, but the time
index t continues to increase as usual. We assume that the distribu-
tion of positions for the source–sink dynamics converges as t →∞
to a unique steady-state distribution, denoted by π.

Under these recycling boundary conditions, the Hill relation53

expresses the MFPT as the inverse of the steady-state flux into B. To
state the Hill relation more precisely, write J for the steady-state flux
into B, TB for the first passage time to B, and Nt for the number of
arrivals in B by time t. The Hill relation then dictates that the MFPT
of Xt from A to B is the inverse of the steady-state flux into B, i.e..,

⟨TB⟩A = J−1 = ( d
dt
⟨Nt⟩π)

−1

. (1)

Here and elsewhere, all averages are ensemble averages with respect
to the source–sink dynamics, and we use subscripts to indicate
the starting distribution for the dynamics at time 0. For exam-
ple, ⟨⋅⟩π denotes an ensemble average with starting distribution π
and ⟨⋅⟩A denotes an ensemble average with starting distribution ρA.
Equation (1) holds for any t ≥ 0 since π is the steady state.

The application of the Hill relation transforms the computa-
tion of a long expected time (the MFPT) into the computation of a
small rate (the steady state flux into B). This transformation makes it
possible, in principle, to compute the MFPT using trajectories with
lengths much shorter than the MFPT. However, while these short

FIG. 2. A first passage event out of a local minimum of U. The first entry into
the set B = {x > 1} occurs at time TB after a long waiting period. The dynamics
satisfies the Smoluchowski equation [Eq. (2)] with βU(x) = 5(x − 1)2(x + 1)2

and D = 1/5 (inverse time units).

trajectories can be run in parallel to reduce the wall-clock time, a
large number of trajectories may be required for estimating small
fluxes.

Fortunately, the Hill relation can be combined with enhanced
sampling approaches, such as WE, to accurately estimate the small
flux into B. A requirement is that the trajectories approximate the
steady-state distribution π, but this requirement can frequently be
satisfied as the timescale for relaxation to steady state can be much
shorter than the MFPT in problems of interest.54

Figure 2 shows a simple system for which the steady-state flux
from A into B is small. Like all the examples and Figs. 1–10 pre-
sented in this paper, the data come from the overdamped Langevin
(“Brownian”) dynamics,

dXt = [∇D(Xt) − βD(Xt)∇U(Xt)]dt +
√

2D(Xt)dWt , (2)

associated with the Smoluchowski equation,

∂tp(x, t) = ∇ ⋅ [D(x)(β∇U(x)p(x, t) +∇p(x, t))]. (3)

Here, β > 0 is an inverse temperature constant, U : Rn → R is a
scalar potential, D : Rn → R is a diffusion coefficient, W is a stan-
dard Brownian motion, and p(x, t) is the probability density at
location x at time t. For simplicity, we assume a dimensionless con-
figuration coordinate x, giving the diffusion coefficient D units of
inverse time.

For exposition, many of our examples are in one or two spatial
dimensions. We emphasize, however, that the WE method and the
core mathematical analysis (Secs. IV A, IV B, and V A) apply to any
Markovian stochastic dynamics in any spatial dimension.

The continuous-time Smoluchowski equation needs to be dis-
cretized for numerical simulation. Therefore, we assume that Xt is
evolved as a discrete time series X0, Xτ , X2τ , . . ., and Xt is only recy-
cled when occupying state B at a multiple of the time interval τ. The
difference between discrete- and continuous-time flux into B will be
small if τ is small or the trajectories in B are slow to escape. We
reserve variables t and τ for the “physical time,” i.e., the time index
for the original continuous-time dynamics Xt .

III. WEIGHTED ENSEMBLE: SPLITTING AND MERGING
Throughout this article, we consider a simple version of WE

in which the splitting and merging of trajectories are formulated
as resampling.2,10,11,50 For a more general discussion of WE, see
Ref. 25. The simple WE algorithm is described below and illustrated
in Fig. 3.

1. Initialization. Select starting points in phase space ξ1
0 , . . . , ξN

0
for N trajectories, and assign weights w1

0, . . . , wN
0 to the trajec-

tories with∑N
i=1 wi

0 = 1. Here, the subscripts are physical time,
and the superscripts are trajectory labels.

2. Resampling. At each multiple sτ of the lag time, partition
the trajectories ξ1

sτ , . . . , ξN
sτ into bins, or groupings of trajecto-

ries. Select the desired number of trajectories within each bin,
called the allocation. The bins and allocation can change with
time, but we constrain the total number of trajectories to be N.
Next, resample trajectories within each bin, i.e., sample tra-
jectories ξi

sτ with replacement using selection probabilities
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FIG. 3. An example of WE resampling and dynamics. The illustration shows six WE
trajectories, which undergo evolution, resampling, and another round of evolution.
During evolution, the trajectories travel between bins and the resampling enforces
two trajectories in each bin. Circles indicate trajectories that are continued and
possibly replicated during resampling; crosses indicate trajectories that are pruned
during resampling. Here, trajectory weight is represented by linewidth, and the bins
are based on the coordinate x1.

proportional to the weights wi
sτ . Continue until reaching the

desired number of trajectories for each bin.
Last, divide the bin weights evenly among the resam-

pled trajectories within each bin.10 Each resampled trajectory
receives weight equal to the total weight in the bin (before
resampling) divided by the number of resampled trajectories.

3. Dynamics. Evolve the trajectories independently for time τ
according to the underlying dynamics, and label the trajecto-
ries ξ1

(s+1)τ , . . . , ξN
(s+1)τ . The trajectories keep the same weights

w1
(s+1)τ , . . . , wN

(s+1)τ that were assigned during resampling.
4. Convergence. Repeat steps 2–3 as long as desired or possible.

Estimate the steady-state flux J as the average WE probability
flux into B from a burn-in time t0 up to a final time t,

ĴWE =
1

t − t0

t/τ−1

∑
s=t0/τ

N

∑
i=1

wi
sτ𝟙B(ξi

sτ), (4)

where 𝟙B is the characteristic function of B. The estimate J ≈
ĴWE in turn yields a MFPT estimate via the Hill relation (1).

The crucial step in WE is the resampling step, which leads
to the splitting and merging of trajectories. Splitting replicates tra-
jectories that are “valuable,” while merging combines trajectories
that are “similar.” Splitting and merging were traditionally applied
separately, but in the simple WE algorithm above, these steps are
combined via resampling.2 Resampling is easier to formulate and
implement than the traditional splitting and merging. Moreover,
resampling is statistically optimal when trajectories within a given
bin are aside from their weights, indistinguishable.46

Splitting and merging must be carefully balanced, and a main
contribution of our recent work10,11,49,50 has been identifying the
regions of state space where either splitting or merging should be
encouraged. Identifying such regions naturally leads to variance
reduction strategies for WE. We discuss these developments in
Secs. IV and V.

Given sufficient resources, the WE method terminates when
the estimated flux converges to a near-constant value. However,
if the steady state cannot be reached during the available simula-
tion time, enhanced WE initialization methods are needed.55 For
example, adjusting the burn-in time t0 can reduce transient relax-
ation effects,56 and adjusting the initial weights can also improve
convergence.57

WE can be used to estimate other transition path statistics, in
addition to the steady-state flux. For instance, the WE-generated
paths and the associated weights can be used to estimate the distri-
bution of reaction times (i.e., event durations) and the distribution
of mechanistic pathways.4 Our optimality theory extends to a wide
range of transition path statistics. See Appendix 1 for a discussion.

In the subsequent analysis, we compare WE with a brute-force
approach involving only dynamics steps with no resampling, which
leads to a flux estimator,

ĴBF =
1

N(t − t0)

t/τ−1

∑
s=t0/τ

N

∑
i=1

𝟙B(ξi
sτ). (5)

The flux estimators ĴWE and ĴBF implicitly depend on the number of
trajectories N, the time index t, and the burn-in time t0.

IV. OPTIMAL SPLITTING AND MERGING COORDINATES
Recent mathematical analysis has revealed the existence of opti-

mal reaction coordinates for merging and splitting in WE.10,11,50

Sections IV A and IV B provide general formulas for these optimal
reaction coordinates, independent of both the dynamics and dimen-
sion, while Sec. IV C provides more explicit formulas in the case of
Smoluchowski dynamics.

A. Optimal merging and splitting coordinates
Optimal merging. Merging trajectories, i.e., pruning some

members of a chosen set, is most beneficial and least harmful when
the groups of trajectories to be merged are suitably “similar.” For the
MFPT problem, the scalar reaction coordinate that characterizes this
similarity is the flux discrepancy function,50

h(x) = lim
t→∞
[⟨Nt⟩x − ⟨Nt⟩π]. (6)

Here, Nt counts the number of crossings into B at times τ, 2τ, . . . , t,
while ⟨⟩π and ⟨⟩x indicate ensemble averages starting from the dis-
tribution π or a particular location x. The flux discrepancy function
h(x) is the difference in expected future flux between trajectories
started at x and trajectories started from π. Trajectories with similar
h values make similar expected contributions to the flux estimate, so
merging trajectories with similar h values is appropriate.10,50

Using the Hill relation, the flux discrepancy function can be
rewritten in terms of MFPTs initiated from two different starting
distributions (Appendix 2). The flux discrepancy function satisfies

h(x) = ⟨TB⟩π − ⟨TB⟩x
⟨TB⟩A

, (7)

where we recall that TB is the first passage time into B, excluding the
time t = 0. Equation (7) allows us to reinterpret the optimal merging
function as a normalized difference between the local MFPT to B
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starting from x and the MFPT for trajectories initiated from π. Iden-
tity (7) also shows that the flux discrepancy function and the local
MFPT are equivalent optimal coordinates for merging.

Optimal splitting. Splitting—the duplication of certain WE
trajectories—increases local sampling and is of high benefit in spe-
cific regions of state space. Allocating a greater proportion of tra-
jectories to such regions reduces the variance in the flux and MFPT
estimates.

We now introduce the scalar reaction coordinate that describes
optimal splitting behavior for the MFPT calculation, the flux
variance function,50

v(x)2 = τ−1Varx[h0(Xτ)]. (8)

Here, h0(x) = 𝟙B(x) + h(x) is a modified flux discrepancy function
that includes the flux at time t = 0, and Varx denotes the variance for
the source–sink dynamics started at x. The flux variance function
quantifies the changes in the expected flux over a time interval τ for
trajectories initiated at x. It is a local function that can guide WE
trajectory allocation.

A heuristic strategy to optimize the MFPT estimate is to balance
the variance contributed from each region, so a favorable allocation
should satisfy10,49,50

# trajectories near x ∝ π(x)v(x). (9)

Compared to the steady state π, the proposed WE allocation (9)
involves upsampling near x by a factor proportional to v(x) to
bring down the flux variance accordingly. Allocating in this way
minimizes the contribution to the flux variance, assuming that WE
is in the steady state.10,49,50 We refer to this as the optimal allo-
cation distribution and provide a brief sketch of the derivation in
Appendix 3.

Optimality theorem. The following theorem shows that bins
based on h and v minimize the variance in the WE flux estimate, up
to an arbitrarily small tolerance ε > 0.

Theorem (Ref. 11). Assume that the recycled process Xt is
geometrically ergodic. Then, the WE method has the following
properties:

1. For any choice of bins and allocations, the WE flux estimate
ĴWE given in (4) converges with probability one to the inverse
MFPT,

lim
t→∞

ĴWE =
1
⟨TB⟩A

. (10)

2. For any tolerance ε > 0 and any choice of bins and allocations,
the WE variance satisfies

Var (ĴWE) ≥
1 − ε
Nt
(∫ v(x)π(x)dx)

2
(11)

when t is sufficiently large.
3. For any tolerance ε > 0, if the bins are sufficiently small rect-

angles in h and v coordinates and each bin allocation is
proportional to ∫ binv(x)π(x)dx, the WE variance satisfies

Var (ĴWE) ≤
1 + ε
Nt
(∫ v(x)π(x)dx)

2
(12)

for sufficiently large t and N. ◻

We emphasize that the theorem holds regardless of dimension,
temperature, evolution time τ, and type of Markovian dynamics.
It highlights the following WE strategy that is optimal in the limit
of large N and t: we merge trajectories with similar h and v val-
ues and split to generate Const × π(x)v(x) trajectories near x. The
theorem supports the interpretation (9) of π(x)v(x) as the optimal
distribution for trajectory allocation.

B. Maximum gain of WE over direct dynamics
The above mathematical theory enables a quantitative com-

parison between WE and direct or “brute force” (BF) sampling of
first-passage events using the system’s underlying dynamics. The
variance for N brute-force trajectories satisfies11

Var(ĴBF) ∼
1

Nt ∫ v(x)2π(x)dx (13)

in the limit t →∞, where ĴBF is defined in (5). In this formula, the
flux variance function v2 quantifies the variance in the flux estimates
as trajectories are evolved forward over a time interval τ.

Dividing (13) by (12) and taking the tolerance ε→ 0, the ratio
of the brute-force variance to the optimal WE variance, which we
call the gain over brute force sampling, is then given by11

Var(ĴBF)
Var(ĴWE)

= ∫ v2(x)π(x) dx
(∫ v(x)π(x) dx)2 . (14)

This ratio quantifies the maximal possible variance reduction
achievable by WE for any number of trajectories in the large time
limit.

The optimal gain over direct, brute-force sampling has impor-
tant implications. Analytical and numerical investigation of this
quantity can yield insights into how much benefit is possible from
using WE in a given problem. Additionally, knowing the optimal
gain over direct simulation as a reference enables quantitative com-
parisons of practical WE binning strategies against the theoretically
optimal performance.

C. Optimal WE for one-dimensional Smoluchowski
dynamics

To make the preceding mathematical theory more explicit,
we consider the Smoluchowski (overdamped Langevin) dynamics
in a one-dimensional domain with a source state A = {x ≤ a} and
a sink state B = {x ≥ b}, where a < b. The recycling distribution
is a delta function at the edge of A, i.e., ρA = δ(x − a). We con-
sider the continuous-time limit, τ → 0, which leads to simpler, more
interpretable mathematical expressions.

In the limit τ → 0, the process Xt is observed at all times and
recycling occurs immediately upon entry into B. The steady-state
distribution π̃ can be calculated using the relation58

π̃(x)∝ [1 − q̃(x)]e−βU(x). (15)
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Here and elsewhere, we use symbols with tildes to express the τ → 0
limit. q̃ is the committor function, the probability for Xt to reach B
before A starting from x, which is given by59

q̃(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, x ≤ a,

∫ x
a eβU(y)/D(y) dy

∫ b
a eβU(y)/D(y) dy

, x < a < b,

1, x ≥ b.

(16)

Using (15) and (16), the steady-state distribution is supported on
{x < b}, and it satisfies

π̃(x)∝ e−βU(x)∫
b

max{x,a}

eβU(y)

D(y) dy. (17)

See Fig. 4 for an illustration.
The flux discrepancy function h = hτ and the flux variance

function v = vτ depend implicitly on the evolution interval τ, and
they converge to well-defined limits as τ → 0,

h̃(x) = lim
τ→0

hτ(x), ṽ 2(x) = lim
τ→0

vτ(x)2. (18)

As a result of (7), the discrepancy function h̃ satisfies

h̃(x) = ⟨T̃B⟩π̃ − ⟨T̃B⟩x
⟨T̃B⟩A

. (19)

Here, T̃B is the exact MFPT function to the target state B, which is
given for x ≤ b by59

⟨T̃B⟩x = ∫
b

x

eβU(z)

D(z) ∫
z

−∞
e−βU(y) dy dz. (20)

As a result of (8), the variance function ṽ satisfies

ṽ 2(x) = lim
τ→0

Varx[h̃(Xτ)]
τ

= 2D(x)∣ d
dx

h̃(x)∣
2

, (21)

FIG. 4. The steady state of the source-sink dynamics. Pictured are the steady
state π̃ of the Smoluchowski dynamics with recycling from b to a, a diffu-
sion coefficient D = 1, and β = 4. In Figs. 4–7, U(x) = 5(x − 1)2x2(x + 1)2

+ 0.5x2 − 0.2x.

where the second equality comes from applying Itô’s lemma59 for the
drift and diffusion of a smooth function of Brownian dynamics. For-
mula (21) suggests that there should be more splitting in regions of
high h̃ variability or, equivalently, high variability in the local MFPT
⟨T̃B⟩x.

Note that the committor q̃ is usually understood to be the
relevant coordinate for computing the MFPT.60 We have shown,
however, that two different scalar coordinates, namely, h̃ and ṽ 2,
are the relevant ones for merging and splitting in the WE method.
The difference between these coordinates is exhibited in the model
problem with an asymmetric two-barrier system in Fig. 5. In this
problem, the committor q̃ would not be an ideal reaction coordinate
since it poorly resolves the largest barrier on the forward path from
A to B. In contrast, h̃ and ṽ resolve the largest forward barrier,
making them appropriate for WE.

A simple formula for the optimal WE allocation holds in the
low-temperature limit as β→∞. We assume that the largest energy
increase on the forward path to B occurs over an interval [x−, x+],
that is,

U(x+) −U(x−) = ΔU = max
a≤y≤b, x<y

(U(y) −U(x)). (22)

Note that the interval [x−, x+] can include multiple energy bar-
riers. Then, as β→∞, an application of Laplace’s method (see
Appendix 4) yields

π̃(x)ṽ(x)
∫ π̃(y)ṽ(y)dy

→

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, x ≤ x−,
D−1/2(x)

∫ x+
x−

D−1/2(y)dy
, x− < x < x+,

0, x ≥ x+.

(23)

The optimal allocation is proportional to 1/
√

D over the interval
[x−, x+], and it is vanishingly small elsewhere, as illustrated in Fig. 6.

FIG. 5. The ideal reaction coordinates for WE. Pictured are the committor q̃, the
variance function ṽ, and the discrepancy function h̃ for the Smoluchowski dynam-
ics with recycling from b to a. The discrepancy and variance functions, but not the
committor, resolve the largest forward barrier to b. Here, D = 1 and β = 10.
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FIG. 6. The optimal allocation distribution at low temperature. Pictured is the (nor-
malized) optimal allocation distribution π̃ṽ for the Smoluchowski dynamics with
recycling from b to a and with increasing values of β when D = 1. In the limit
β→∞, the optimal allocation distribution is constant along the interval of the
largest energy increase; see (23).

In the low-temperature limit β→∞, the optimal gain over
direct sampling grows exponentially with the size of the largest
energy increase (see Appendix 4),

Gain over brute force sampling

β→∞∼ π/β
(∫ x+

x−

√
D(x+)/D(x) dx)

2
eβΔU

√
∣U′′(x−)U′′(x+)∣

. (24)

This provides a formal explanation of earlier numerical findings4,61

that WE’s advantage over direct simulation grows dramatically as
βΔU increases.

V. AN OPTIMIZED WE STRATEGY
The theoretical results above can guide the optimization of WE.

We describe one optimized WE strategy called “MFPT binning” in
Sec. V A, and we compare it to a more traditional WE binning
strategy in Sec. V B.

A. MFPT binning
From the theory in Sec. IV A, merging has a low cost when

applied to trajectories with similar h values. This makes h a nat-
ural coordinate for WE binning. We propose the following MFPT
binning strategy, in which bins are comprised of similar h values or
equivalently based on (7), similar values of the local MFPT to B.

1. Define the bins to be intervals in the h coordinate, as follows: If
there are K bins, choose the endpoints h0 < h1 < . . . < hK such
that

∫
hk≤h(x)≤hk+1

π(x)v(x)dx = constant. (25)

FIG. 7. Illustration of the MFPT binning strategy. Pictured are six bins, each one
consisting of equal mass of πv; see (25). The model system is the same one
pictured in Fig. 4.

2. Following the optimal allocation rule (9), allocate trajectories
uniformly so that approximately N/K trajectories are assigned
to each bin.

In the MFPT binning strategy, the bins are intervals in the optimal
merging coordinate h so that merging is low cost. The bin bound-
aries are based on the optimal splitting coordinate v2 so that each bin
makes an equivalent small contribution to the WE variance. We allo-
cate the same number of trajectories to each bin, which is consistent
with the optimal allocation rule (9). See Fig. 7 for an illustration.

The MFPT binning strategy requires an approximation to func-
tions h and v2. As a concrete strategy,50,57 we can partition the
state space of Xt into a discrete set of “microbins.” Then, we can
estimate the Markov transition matrix between microbins using tra-
jectories evolved over a lag time τ. Conceptually, this is similar to
using Markov state models29,47 to estimate a coarse-grained transi-
tion matrix. Based on this transition matrix, we can obtain estimates
for the flux discrepancy function h and the flux variance function v2

in each microbin i using the formulas in Appendix 5.

B. Numerical comparison
In this section, we numerically compare two strategies for

binning and allocation within WE:

1. The MFPT binning strategy discussed in Sec. V A.
2. WE bins based on the distance to B, with allocations

proportional to ∫ binv(x)π(x)dx.

The latter strategy, which we call “radial binning,” is based
on the common WE approach25 of defining bins based on the dis-
tance to B in some feature space. However, our results below show
that radial binning can fail when the direct transition from the
source set A to the target set B is not the same as the physical
transition.
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FIG. 8. Different binning strategies in a two-dimensional model. Clockwise from top left: the potential U, the optimal allocation distribution πv from (9), MFPT bins, and
radial bins. Different shades indicate different bins in the bottom panels. Radial bins encourage a direct transition from the source set A to the target set B, while MFPT bins
encourage the physical transition pictured at top left. The microbins used to define the MFPT bins are the small rectangles visible in the panels on the right.

We apply the MFPT and radial binning strategies to the two-
dimensional Smoluchowski model system pictured in Fig. 8. The
landscape is given by the expression

U(x, y) = U1(x, y) +U2(x, y) + 0.5U3(x, y), (26)

where

log U1(x, y) = −c1(x − 0.25)2 − c1(y − 0.75)2

− 2c2(x − 0.25)(y − 0.75), (27)

log U2(x, y) = −c3x2(1 − x)2y2(1 − y)2, (28)

log U3(x, y) = −c4x2 − c4y2 + 2c5xy, (29)

and the constants are given by

(c1, c2, c3, c4, c5) = (50.5, 49.5, 105, 51, 49). (30)

We set the diffusivity to D = 1 and the inverse temperature to β = 30.
To simulate the Smoluchowski dynamics, we apply the

Euler–Maruyama integration with an integration step of size 0.001.
Each evolution step is composed of ten integration steps so that
τ = 0.01. We constrain the trajectories to reside in [0, 1]2. When
a trajectory attempts to exit this region, we project it back into
the box by setting the position as x = max(min(x, 1), 0) and
y = max(min(y, 1), 0). We perform these computations using the
WeightedEnsemble.jl package.15

We begin our study of this system by constructing a fine-
grained approximation of functions π, h, and v, following the pro-
cedures given in Appendix 5. We define microbins using Voronoi
cell centers that are spaced Δx = Δy = 0.02 units apart on a regu-
lar Cartesian grid. This spacing results in a total of 49 × 49 = 2401
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microbins, which are the small rectangles visible in Fig. 8. We
emphasize that the MFPT bins pictured in the bottom right panel
resolve the largest energy barriers on the forward path from A to B,
whereas the radial bins pictured in the bottom left have concentric
circle bin boundaries that do not account for the energy landscape.

To evaluate the precision—and hence, efficiency—of the flux
estimates, we define the normalized variance as

Normalized Variance = Nt × Var(Ĵ). (31)

Here, the variance of the estimated flux has been scaled to account
for total simulation cost Nt. We compare the normalized variance
for MFPT and radial binning in Fig. 9. We also show the normal-
ized variance for direct (brute force) sampling without any splitting
or killing, and we compare against the lowest possible normalized
variance for WE, (∫ πv)2, evaluated using Eq. (11) together with the
fine-grained model. We use N = 104 trajectories and average over
102 independent runs to produce the normalized variance estimates.

Figure 9 reveals a dramatic difference between MFPT and
radial binning. Radial binning leads to worse-quality results than
brute-force simulation for this non-trivial model. Meanwhile, MFPT

FIG. 9. Comparison of binning strategies for MFPT estimation. It shows estimates
of the normalized variance (31) using MFPT and radial binning strategies. The
normalized variance is 3–5 orders of magnitude smaller with MFPT binning. For
this problem, the flux value is ∼10−6.

binning leads to a major improvement over BF simulation, particu-
larly, when the number of bins is large (20–40 bins). With only five
bins, we already see a modest gain with the MFPT binning strategy.
Increasing the number of bins with MFPT binning systematically
improves the output such that with 40 bins, we are within an order
of magnitude of the estimated optimal constant. We achieve two
and a half orders of magnitude of variance reduction over direct BF
simulation.

In both radial and MFPT binning strategies, the allocations
enforce the heuristic strategy (9) of having ∝ π(x)v(x) trajectories
near x, which is derived mathematically in Sec. IV. However, anal-
ogous numerical experiments (not shown) demonstrate that radial
binning with uniform allocation results in substantially higher vari-
ance. This comparison suggests that it is preferable to use the opti-
mal allocation rule (9), even given an imperfect choice of WE bins.
The MFPT binning method described here, with bins defined by
(25), also outperforms the variance reduction strategies introduced
in our previous work.50

We have generated the data in Fig. 9 using N = 104 trajectories,
which may exceed the computational resources available for prob-
lems of interest. Figure 10 represents comparisons for 102, 103, and
104 trajectories, indicating that the normalized variance has no more

FIG. 10. Normalized variance for different numbers of trajectories. The six curves
on the bottom show that the normalized variance of MFPT binning is not highly
dependent on the number of WE trajectories.
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than an order of magnitude in variability. In particular, the results
for MFPT binning with 103 trajectories are nearly indistinguishable
from those obtained with 104 trajectories.

VI. CONCLUSION
This work has attempted to assemble, expand upon, and

make accessible to a chemical physics audience recent mathematical
results of fundamental importance to weighted ensemble simula-
tion. The mathematical theory exposes the fundamental capabilities
of WE and guiding principles behind WE optimization. It leads to
the identification of optimal reaction coordinates for merging and
splitting, as well as the optimal gain over direct brute force sam-
pling, which can be used to measure the benefit of WE for a given
problem.

To illustrate these results in a physically intuitive way, we have
derived explicit formulas in the case of the Smoluchowski dynamics
(3) in one dimension. These formulas, presented for the first time
here, demonstrate that the variance reduction from WE can be expo-
nentially large in the size of the largest forward energy barrier from
A to B.

The mathematical theory can guide variance reduction strate-
gies for WE. We have introduced a simple binning strategy called
MFPT binning, which approaches the minimal WE variance in
a two-dimensional model problem. After pilot runs that estimate
h and v (or equivalently, the local MFPT to B and its variance), we
define the bins to be intervals in the h coordinate, with endpoints
chosen so that each bin contributes an equal share of the variance.
In numerical experiments, MFPT binning significantly outperforms
a naive WE approach that constructs bins using the radial distance
to B, and these results remain robust even for relatively small N.

A number of theoretical and practical challenges remain. A
practical priority involves testing the MFPT binning approach in
complex systems under limited-data conditions, given the present
study’s restriction to one- and two-dimensional model problems.
We have begun to estimate h and v on the fly in complex systems
using space-discretized Markov models built from available data and
hope to report on these efforts in the future. On the theoretical side,
our analysis has focused on reducing variance in MFPT computa-
tions, but the optimization needs to be extended other observables,
e.g., correlation functions and pathway distributions. When target-
ing a single observable, we can optimize using a local discrepancy
function and a local variance function, similar to the construc-
tion presented here.11,50 Yet, it remains unclear how to optimize
when targeting multiple observables simultaneously. Last, a theoret-
ical and practical goal involves optimizing WE during the transient
relaxation to the steady state (rather than within the steady state as
was done here), given that many complex systems may not reach the
steady state using traditional WE without interventions.57
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APPENDIX: DETAILS AND DERIVATIONS
1. Computing other statistics using WE

WE can be used to compute other statistics, in addition to the
MFPT from A to B. Namely, any integral ∫ f (x)π(x)dx involving
an observable f can be estimated using WE trajectories. In the long
time limit, the trajectories satisfy

∫ f (x)π(x)dx = lim
t→∞

τ
t

t/τ−1

∑
s=0

N

∑
i=1

wi
sτf (ξi

sτ), (A1)

where (ξi
sτ , wi

sτ)1≤i≤N denotes the position and weight of trajectory i
at a multiple s of lag time τ. Therefore, as a practical estimator, we
can terminate the simulations at a finite time t and approximate

∫ f (x)π(x)dx ≈ τ
t − t0

t/τ−1

∑
s=t0/τ

N

∑
i=1

wi
sτf (ξi

sτ), (A2)
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where t0 > 0 is a suitable burn-in time. Here, we have assumed that
f is recorded only at τ intervals although WE permits saving points
more frequently.

Estimator (A2) is readily extended to history-dependent
observables, such as transition-path times or mechanistic pathways
from A to B. This requires defining the trajectories as paths start-
ing from A, which are recycled upon reaching B, and defining π
as a stationary measure on path space. The recent mathematical
literature10,11,49,50 provides a set of error bounds and convergence
guarantees for estimator (A2).

2. Relationship between flux discrepancy and MFPT
To establish the relationship

lim
t→∞
[⟨Nt⟩x − ⟨Nt⟩π] =

⟨TB⟩π − ⟨TB⟩x
⟨TB⟩A

, (A3)

we first introduce the following terminology:

● Tx
B is the first passage time into B for a process started at

X0 = x.
● Tπ

B is the first passage time into B for a process started at
X0 ∼ π, i.e., started at a point chosen randomly from the
steady-state distribution.

● NA
t is the number of arrivals into B by time t for a process

started at X0 ∼ ρA.

Next, we recall the renewal theorem from classical probability,62

which states that for any s > 0,

lim
t→∞
[⟨NA

t ⟩ − ⟨NA
t−s⟩] =

s
⟨TB⟩A

. (A4)

Last, we verify

lim
t→∞
[⟨Nt⟩x − ⟨Nt⟩π] = lim

t→∞
[⟨NA

t−Tx
B
⟩ − ⟨NA

t−Tπ
B
⟩]

= lim
t→∞
[⟨NA

t ⟩ − ⟨NA
t−Tπ

B
⟩] − lim

t→∞
[⟨NA

t ⟩ − ⟨NA
t−Tx

B
⟩]

= ⟨T
π
B⟩ − ⟨Tx

B⟩
⟨TB⟩A

, (A5)

where we have applied the renewal theorem after conditioning on
s = Tπ

B and s = Tx
B.

3. Derivation of optimal allocation rule
In this section, we sketch the derivation of the optimal

allocation rule,

# trajectories near x ∝ π(x)v(x). (A6)

We use the following notation:

● weightbin and allocbin indicate a bin weight and bin
allocation.

● ⟨⟩bin and Varbin denote the mean and variance with
respect to the weighted trajectory distribution in a bin, so
Varbin( f ) = ⟨ f 2⟩bin − ⟨ f ⟩2bin.

● Finally, ⟨⟩t denotes the average over the WE ensemble up to
time t.

In the limit as t →∞, the following formula10,11 describes the WE
variance:

t Var(ĴWE) ∼ ⟨∑
bins

weight2
bin

allocbin
[Varbin(h) +Varbin(v) + ⟨v⟩2bin]⟩

t

.

(A7)

We consider a greedy minimization strategy10,50 for minimizing the
variance formula (A7). The variance terms Varbin(h) and Varbin(v)
are minimized by choosing bins in which h and v values are nearly
constant. The other term, namely,

weight2
bin

allocbin
⟨v⟩2bin,

is minimized when the allocation is chosen using10,49,50

allocbin ∝ weightbin × ⟨v⟩bin, (A8)

which reduces to (A6) in the limit of many trajectories.

4. Low temperature limit
Here, we derive the optimal splitting and merging coordi-

nates in the low-temperature limit β→∞. First, we combine the
expression for the steady state,

π̃(x)∝ e−βU(x)∫
b

max{x,a}

eβU(y)dy
D(y) , (A9)

with the expression for the flux variance function,

ṽ(x) =
√

2eβU(x)

D(x)1/2⟨T̃B⟩A∫
x

−∞

dy
eβU(y) , (A10)

to obtain the optimal allocation rule,

π̃(x)ṽ(x)∝ 1
D(x)1/2∫

b

max{x,a}

eβU(y)dy
D(y) ∫

x

−∞

dy
eβU(y) . (A11)

Next, we assume that the pair of points (x−, x+) is the unique
solution to the maximization

max
a≤y≤b, x<y

(U(y) −U(x)), (A12)

and U′′(x+) < 0 < U′′(x−). Using Laplace’s method63 on (A11), we
obtain, for any x− < x < x+,

1
D(x)1/2∫

b

max{x,a}

eβU(y)dy
D(y) ∫

x

−∞

dy
eβU(y)

β→∞∼ C
D(x)1/2

eβU(x+)

βeβU(x−)
,

(A13)

where the prefactor C is explicitly given by

C = 2π
D(x+)U′′(x−)1/2∣U′′(x+)∣1/2

. (A14)
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For x outside of the interval [x−, x+], Laplace’s method dic-
tates that the optimal allocation π(x)v(x) is exponentially smaller
as β→∞, whence we recover the optimal allocation (23).

From the above calculations, we find that the optimal gain from
using WE takes the form

Gain over brute force sampling = QR
S2 , (A15)

where

Q = ∫
b

−∞

eβU(x)

D(x) ∫
b

max{x,a}

eβU(y)dy
D(y) (∫

x

−∞

dy
eβU(y) )

2

dx, (A16)

R = ∫
b

−∞
e−βU(x)∫

b

max{x,a}

eβU(y)dy
D(y) dx, (A17)

S = ∫
b

−∞

1
D(x)1/2∫

b

max{x,a}

eβU(y)dy
D(y) ∫

x

−∞

dy
eβU(y) dx. (A18)

Applying the Laplace principle to (A16)–(A18) verifies the
expression

Gain over brute force sampling

∼ π/β
(∫ x+

x−

√
D(x+)/D(x) dx)

2
eβ(U(x+)−U(x−))
√
∣U′′(x−)U′′(x+)∣

. (A19)

5. Estimation of h and v 2

Here, we explain how to infer estimates for π, h, and v2 based on
a Markov transition matrix P between microbins. The steady-state
distribution π is invariant under the dynamics, and it integrates to 1.
Therefore, to obtain a coarse-grained estimate πi of the probability
mass for each microbin, we solve the eigenvalue problem

πTP = πT , ∑
i

πi = 1. (A20)

From definition (6), the flux discrepancy function h associated with
the transition matrix P satisfies

h =
∞

∑
t=1

Pt(f − (πT f )1), (A21)

where 1 is the vector of all ones, and

fi =
⎧⎪⎪⎨⎪⎪⎩

0, microbin i is not in B,

1, microbin i is in B.
(A22)

Multiplying both sides of (A21) by I − P + 1πT and invoking the
relation πTP = πT , we find that h solves the linear system

(I − P + 1πT)h = Pf − (πT f )1. (A23)

The left-hand side of (A23) is invertible, so h can be obtained using
a direct linear solver. Last, from definition (8), the flux variance
function v2 associated with the transition matrix P satisfies

v2 = P(h2
0) − (Ph0)2, h0 = h + f , (A24)

where the squares are defined entrywise. The amount of resolu-
tion needed in this microbinning approach is a topic for future
investigation.
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