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ANALYSIS AND OPTIMIZATION OF WEIGHTED ENSEMBLE SAMPLING ?

David Aristoff1,∗

Abstract. We give a mathematical framework for weighted ensemble (WE) sampling, a binning and
resampling technique for efficiently computing probabilities in molecular dynamics. We prove that WE
sampling is unbiased in a very general setting that includes adaptive binning. We show that when WE
is used for stationary calculations in tandem with a coarse model, the coarse model can be used to
optimize the allocation of replicas in the bins.
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1. Introduction

This article concerns a resampling procedure, called weighted ensemble (WE), for Markov chains. WE consists
of simulating some replicas of a Markov chain (Xp)p≥0 and resampling from the replicas at certain time intervals.
In the literature, WE sampling [5,8,18,23,24,29] usually refers to a resampling technique designed so that the
replicas of (Xp)p≥0 are evenly distributed throughout state space. This is usually achieved by dividing state
space into bins and resampling in each bin so that the number of replicas therein remains roughly constant. The
replicas carry probabilistic weights so that the resulting statistical distribution is unbiased. This distribution
can be used, in principle, to estimate any function of (Xp)p≥0 at a fixed time [29]. In practice, the quality of such
estimates depends on the choice of bins and number of replicas maintained in each bin, among other factors.
Below, we will usually refer to a replica as a particle and to resampling as selection, following convention in the
mathematical literature.

Since WE is simply a resampling technique, it can be understood in a framework similar to that of par-
ticle filters or sequential Monte Carlo (SMC). For a review of standard SMC methods, see for instance the
textbook [10], the articles [11, 12] or the compilation [13]. (See also [6, 7] for a related method). We empha-
size that WE does not fall into the SMC framework of [10], as there are no underlying potential functions or
Gibbs-Boltzmann measures defining the selection step. We consider a very general framework for WE in which,
contrary to the SMC/Feynman-Kac formalism (see [10]), the rule for killing or splitting replicas is essentially
arbitrary. This means that WE requires an independent analysis.

The main contributions of this article are as follows. First, we give a definition of WE sampling that is bin-
free and generalizes descriptions currently in the literature (Sect. 2). We prove WE is unbiased in this setting,
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which allows for adaptive selection procedures [29] (Sect. 3). Then, we give simple formulas for the variance of
WE and show how, in principle, the variance can be minimized under a constraint on the number of particles
(Sects. 3−4). In practice, the variance formula contains terms that may not be efficiently computable. However,
we show how a coarse model can be used to guide WE sampling to minimize variance in computations of fixed
time as well as stationary averages of (Xp)p≥0 (Sects. 5− 8).

Our interest in WE arises from longstanding problems in computational chemistry. In this setting, (Xp)p≥0 is
obtained from a discretization of some stochastic molecular dynamics (MD). MD simulations have proven useful
for understanding many chemical and biological processes; see [22] for an overview. However, such simulations are
limited by time scale separation. Many phenomena of interest occur at the laboratory time scale of microseconds,
while MD simulations have time steps that correspond to femtoseconds. In this case, straightforward MD
simulations are not practical. Many methods exist for extending the time scale of MD simulations; we do
not attempt to give a review of them here. WE is one of several methods for extending the time scale of
simulations in models with rough energy landscapes. Methods that are related in scope and design include Exact
Milestoning [4, 15], Non-Equilibrium Umbrella Sampling [25, 28], Trajectory Tilting [26], Transition Interface
Sampling [27], Forward Flux Sampling [1], and Boxed Molecular Dynamics [16]. See for instance [2,9] for review
and comparison of these methods. We will comment on Exact Milestoning in the Appendix below.

While WE can be used with a broad range of stochastic processes, when the process is time homogenous and
Markovian – as in many models of MD, such as Langevin dynamics – WE may be used to efficiently compute
dynamical quantities like reaction rates using a long time or stationary average [5,24]. These computations rely
on Hill’s relation [17], which we generalize in the Appendix below. From Hill’s relation, obtaining reaction rates
requires a calculation using the stationary distribution of a nonreversible process.

To speed up the stationary calculation, WE is combined with a preconditioning step [5,8] in which a Markov
state model (MSM) [20, 21] is used to approximate the stationary distribution. This is sometimes called ac-
celerated WE [8]. Accelerated WE begins with particles evenly distributed in space, with weights chosen to
match the stationary distribution of the MSM. The particles are then allowed to relax according to their exact
dynamics, with WE sampling ensuring that the particles remain evenly distributed in state space. We show
below that information from the MSM can be used to optimize the WE sampling in this relaxation step, in the
sense that the variance in the appropriate stationary calculation is minimized. This optimization requires an
adaptive number of particles per bin, in contrast with traditional WE sampling. We show in a simple model
that this adaptive sampling can be significantly better than traditional WE sampling.

This article is organized as follows. In Section 2, we define a WE process in a general setting and give an
algorithm for WE sampling. In Section 3, we introduce a martingale framework for WE sampling in this setting.
We use the framework to prove the sampling is unbiased and obtain formulas for the variance. In Section 4, we
show how to minimize the variance under a constraint on the total number of particles. In Section 5 we consider
WE sampling based on binning techniques. In Section 6 we show how adapting the binning to a coarse model
for (Xp)p≥0 can be used to minimize variance, and in Section 7 we apply these ideas to computing stationary
averages. In Appendix A, we use a simple model to compare adaptive WE to traditional WE and naive sampling.
In the Appendix, we prove a generalization of the Hill relation and discuss connections to Exact Milestoning.

2. Notation and assumptions

Throughout, (Xp)p≥0 is a time homogeneous Markov chain with values in a measurable space (E, E) and
transition kernel K. We write ∼ to denote equality in law of random variables or processes, and E and P
for various expectations and probabilities. When ζ is a probability measure on (E, E), superscripts such as
Eζ or Pζ represent processes with initial distribution ζ, with Ex or Px indicating the processes start at the
point x. Sets and functions will be assumed measurable without explicit mention. For a measure ζ on (E, E)
and bounded f : E → R, we write ζ(f) =

∫
f dζ for the integral of f with respect to ζ. We also write

ζK(dy) =
∫
K(x, dy)ζ(dx) for left action of K, and Kf(x) =

∫
K(x, dy)f(y) for the right action. In particular,
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ζKnf = Eζ [f(Xn)] (2.1)

where throughout K is the Markov transition kernel of (Xp)p≥0. If S is a set, we write #S for the number of
elements of S.

We study a certain class of sequential Monte Carlo (SMC) methods for sampling (Xp)p≥0 described in
Definition 2.1 below. We begin with an informal description of the procedure. Consider a process consisting of
particles in E and weights in R+ = [0,∞). The initial particles all have the same distribution as X0. At each
time p, some of the particles are selected, or copied, and others are thrown away, or killed. The selected particles
then mutate according to the evolution law of (Xp)p≥0. (We often refer to selected particles as children and
the particles from which they were copied as parents). The selected particles and weights are chosen to yield
unbiased estimators for the law of (Xp)p≥0. This is ensured by setting a child’s weight to be its parent’s weight
divided by the expected number of times the parent is selected. Writing ξjp and ωjp for the particles and weights
at time p, and using the symbol “ˆ” to indicate selected particles and weights, we make this precise as follows.

Definition 2.1. A weighted ensemble (WE) consists of particles and weights

(ξjp, ω
j
p)
j=1,...,Np

p≥0 , (ξ̂ip, ω̂
i
p)
i=1,...,N̂p

p≥0

with values in ∪∞n=1(E × R+)n, selection rules

(Cjp)j=1,...,Np

p≥0

with values in ∪∞n=1(N ∪ {0})n, and associated filtrations

Fp = σ
(

(ξjq , ω
j
q)
j=1,...,Nq

0≤q≤p , (Cjq )j=1,...,Nq

0≤q≤p−1 , (ξ̂
i
q, ω̂

i
q)
i=1,...,N̂q

0≤q≤p−1

)
F̂p = σ

(
(ξjq , ω

j
q)
j=1,...,Nq

0≤q≤p , (Cjq )j=1,...,Nq

0≤q≤p , (ξ̂iq, ω̂
i
q)
i=1,...,N̂q

0≤q≤p

)
which together satisfy (A1)−(A4) below for each p ≥ 0.

(A1) N0 > 0 is constant, and for j = 1, . . . , N0, ξj0 ∼ X0, ωj0 = 1/N0.

(A2) Each child ξ̂ip is associated to a parent ξα(i)
p . With

Cjp = #{i : α(i) = j}

the number of children of ξjp, we have E[Cjp|Fp] > 0,

N̂p =
Np∑
j=1

Cjp, and ω̂ip =
ωjp

E
[
Cjp|Fp

] , if α(i) = j.

(A2’) Conditionally on Fp, C1
p , . . . , C

Np
p are uncorrelated.

(A3) Np+1 = N̂p and ωip+1 = ω̂ip for i = 1, . . . , N̂p.

(A4) Conditionally on F̂p, ξ1p+1, . . . , ξ
Np+1
p+1 are independent with

P[ξip+1 ∈ dx] = K(ξ̂ip,dx).
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It is convenient to view a WE through the following diagram:

{ξjp}j=1,...,Np
selection−−−−−→ {ξ̂ip}i=1,...,N̂p

mutation−−−−−−→ {ξjp+1}j=1,...,Np+1 ,

{ωjp}j=1,...,Np
selection−−−−−→ {ω̂ip}i=1,...,N̂p

mutation−−−−−−→ {ωjp+1}j=1,...,Np+1 .

The filtration Fp (resp. F̂p) represents the information from the WE process up to time p, not including the
selection step (resp. up to time p, including the selection step). We write α(i) for the index of the parent particle
of the ith selected particle. Thus,

α(i) = j =⇒ ξ̂ip = ξjp.

(Of course α depends on p, but we do not make this explicit). Also,

Cjp = #{i : α(i) = j} = number of times ξjp is selected.

The Cjp, j = 1, . . . , Np, can depend on the entire history of the process. We assume in (A2’) that they are
uncorrelated conditionally on the past so that we can obtain a relatively simple explicit formula for variance in
Theorem 3.1 below. This assumption is only needed for the variance. Indeed, the proof of Theorem 3.1 below
shows that (A2’) is not required for unbiased WE sampling; see the remarks after the proof of Theorem 3.1.

Note that, by (A2), the weight of a selected particle is simply the weight of its parent particle divided by the
expected number of times the parent is selected. We assume the expected number of times a parent is selected
is positive, so that each particle has a positive probability to survive.

Assumption (A1) says that the initial collection of particles and weights is chosen according to the distribution
of X0. Notice we do not require that the ξi0’s are independent, so they can be generated by, for example, Markov
chain Monte Carlo or other sequential samplers.

Algorithm 1. A WE sampler.
Choose initial particles (ξj

0, ω
j
0)j=1,...,N0 according to the distribution of X0 in the sense of (A1). Then iterate over p ≥ 0

until time τkill := inf{p ≥ 0 : Np = 0}:

(1) For j = 1, . . . , Np, choose a number Cj
p of times to select particle ξj

p. Let ξ̂i
p, i = 1, . . . , N̂p be the collection of selected

particles, with N̂p =
∑Np

j=1 C
j
p.

(2) Assign the weight ω̂i
p =

ωj
p

E[C
j
p|Fp]

to ξ̂i
p, if α(i) = j.

(3) Set Np+1 = N̂p and ωp+1 = ω̂i
p for i = 1, . . . , N̂p.

(4) Evolve the particles ξ̂i
p, i = 1, . . . , N̂p, independently according to the law of (Xp)p≥0 to get the next generation

ξj
p+1, j = 1, . . . , Np+1 of particles.

Steps 1−2 correspond to selection, and 3−4 to evolution. In the above, the Cj
p’s are usually independent of each other,

given the current state of the algorithm, and they can depend on the entire history of the algorithm up to time p. In
Step 2, E[Cj

p|Fp] represents the expected value of Cj
p given that history. We assume E[Cj

p|Fp] > 0, that is, every particle
has a positive survival probability.

Assumption (A3) says that the weights defined in the selection step will be assigned to the particles in the
next generation. The condition (A4) states that the next generation of particles mutates from the selected
particles using the evolution law of (Xp)p≥0, where these particles evolve independently from each other.

For clarity, we give an algorithm for sampling a WE process; see Algorithm 1.
We will show in Theorem 3.1 below that a WE in the sense of Definition 2.1 is an unbiased estimator for the

law of (Xp)p≥0. To make this precise we introduce the following notation. At time p, a WE defines empirical
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distributions

ηp =
Np∑
j=1

ωjpδξj
p
, η̂p =

N̂p∑
i=1

ω̂ipδξ̂i
p
. (2.2)

These definitions make sense only up until the first time all the particles have been killed, τkill = inf{p ≥ 0 :
Np = 0} = inf{p ≥ 0 : N̂p−1 = 0}. We adopt the convention that ηp ≡ 0 and η̂p−1 ≡ 0 if p ≥ τkill. It is
important to note that ηp(1) 6= 1 in general; that is, the total weight is not conserved exactly.

Remark 2.2. Often it is desirable to fix the average total number of particles, or simply the total number of
particles. Below we consider mostly the former case, but here we comment briefly on the latter.

A simple population control step can be added to guarantee Np ≡ N for each p, with N fixed, as follows.
First, assume the population control has been applied up to time p, so that Np = N . Suppose furthermore that
the selection is done so that E[Np+1|Fp] = N . Then

N = E[N̂p|Fp] = E

 Np∑
j=1

Cjp

∣∣∣∣∣∣Fp
 =

N∑
j=1

E[Cjp|Fp].

It follows that E[Cjp|Fp] ≥ 1 for some j. For this j we may assume Cjp ≥ 1 with probability 1, conditional on Fp.
Thus, we can assume there is no extinction in the selection step. Then, after the selection step, we can kill or
copy particles uniformly at random to enforce Np+1 = N , and adjust weights accordingly. Note that this extra
step would introduce correlations between the number of children of each particle, which would violate (A2’).
So that we can obtain simple variance formulas, below we will focus on the case of uncorrelated Cjp’s.

3. Martingale framework and variance

Recall that K is the transition kernel of (Xp)p≥0, and recall the definitions of ηp and η̂p from (2.2). In this
section and below, n ≥ 0 and a bounded function f : E → R are fixed. For 0 ≤ p ≤ n define

Mp = ηpK
n−pf, M̂p = η̂pK

n−pf,

where by convention K0f = f . Since f is bounded, both (Mp)0≤p≤n and (M̂p)0≤p≤n are integrable and square
integrable. Intuitively, Mp represents starting at the distribution ηp, evolving forward n− p time steps using K,
and then evaluating f ; see (2.1). Our analysis below is based on the following result.

Theorem 3.1. Let assumptions (A1), (A2), (A3), and (A4) hold. Then (Mp)0≤p≤n is a Fp-martingale and

E[M2
n] = E[M2

0 ] + E

[
n−1∑
p=0

(
E
[
(Mp+1 − M̂p)2|F̂p

]
+ E

[
(M̂p −Mp)2|Fp

])]
. (3.1)

If in addition (A2’) holds, then with gp = Kn−pf ,

E
[

(Mp+1 − M̂p)2
∣∣∣ F̂p] =

N̂p∑
i=1

(ω̂ip)
2[Kg2

p+1(ξ̂ip)− gp(ξ̂ip)2]

E
[

(M̂p −Mp)2
∣∣∣Fp] =

Np∑
j=1

(ωjp)
2

[
E[(Cjp)2|Fp]
E[Cjp|Fp]2

− 1

]
gp(ξjp)

2 (3.2)

for 0 ≤ p ≤ n− 1.

Proof. Consider a WE as in Definition 2.1. From (A4),

E
[
gp+1(ξip+1)

∣∣ F̂p] = Kgp+1(ξ̂ip) = gp(ξ̂ip). (3.3)
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If in addition (A2’) holds, then

E
[
gp+1(ξip+1)gp+1(ξkp+1)

∣∣ F̂p] =

{
gp(ξ̂ip)gp(ξ̂

k
p ), i 6= k

Kg2
p+1(ξ̂ip), i = k

. (3.4)

Suppose (A1), (A2), (A3) and (A4) hold. We show that then

M0, M̂0,M1, M̂1, . . . , M̂n−1,Mn

is a martingale with respect to the filtration

F0 ⊆ F̂0 ⊆ F1 ⊆ F̂1 ⊆ . . . ⊆ F̂n−1 ⊆ Fn.

That is, we show that for 0 ≤ p ≤ n− 1,

E[Mp+1|F̂p] = M̂p, E[M̂p|Fp] = Mp.

The fact that Mp is a martingale then follows from

E[Mp+1|Fp] = E[E[Mp+1|F̂p]|Fp] = E[M̂p|Fp] = Mp,

and equation (3.1) follows from the Doob decomposition. Since gp = Kn−pf ,

Mp =
Np∑
j=1

ωjpgp(ξ
j
p), M̂p =

N̂p∑
i=1

ω̂ipgp(ξ̂
i
p).

So by (A3) and (3.3),

E[Mp+1|F̂p] = E

Np+1∑
i=1

ωip+1gp+1(ξip+1)

∣∣∣∣∣∣ F̂p


=
N̂p∑
i=1

ω̂ipE[gp+1(ξip+1)|F̂p]

=
N̂p∑
i=1

ω̂ipgp(ξ̂
i
p) = M̂p.

Also, by (A2),

E[M̂p|Fp] = E

 N̂p∑
i=1

ω̂ipgp(ξ̂
i
p)

∣∣∣∣∣∣Fp


=
Np∑
j=1

E

 ∑
i:α(i)=j

ω̂ipgp(ξ̂
i
p)

∣∣∣∣∣∣Fp


=
Np∑
j=1

ωjp

E[Cjp|Fp]
E

 ∑
i:α(i)=j

gp(ξ̂ip)

∣∣∣∣∣∣Fp


=
Np∑
j=1

ωjpgp(ξ
j
p) = Mp.
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It remains to establish (3.2). Suppose in addition (A2’) holds. By (3.4) and (A3),

E[M2
p+1|F̂p] = E

Np+1∑
i,k=1

ωip+1ω
k
p+1gp+1(ξip+1)gp+1(ξkp+1)

∣∣∣∣∣∣ F̂p


=
N̂p∑
i,k=1

ω̂ipω̂
k
pE
[
gp+1(ξip+1)gp+1(ξkp+1)

∣∣ F̂p]

=
N̂p∑
i,k=1
i 6=k

ω̂ipω̂
k
pgp(ξ̂

i
p)gp(ξ̂

k
p ) +

N̂p∑
i=1

(ω̂ip)
2Kg2

p+1(ξ̂ip).

Subtracting M̂2
p from this gives

E[(Mp+1 − M̂p)2|F̂p] = E[M2
p+1|F̂p]− M̂2

p =
N̂p∑
i=1

(ω̂ip)
2[Kg2

p+1(ξ̂ip)− gp(ξ̂ip)2].

Next, notice that, with βjp = E[Cjp|Fp], by (A2),

E[M̂2
p |Fp] = E

 N̂p∑
i,k=1

ω̂ipω̂
k
pgp(ξ̂

i
p)gp(ξ̂

k
p )

∣∣∣∣∣∣Fp


=
Np∑
j,`=1

ωjpω
`
p

βjpβ`p
E

 ∑
i,k:α(i)=j,α(k)=`

gp(ξ̂ip)gp(ξ̂
k
p )

∣∣∣∣∣∣Fp
 ,

Summing over j 6= ` and using (A2’), we get

Np∑
j,`=1
j 6=`

ωjpω
`
p

βjpβ`p
E

 ∑
i,k:α(i)=j,α(k)=`

gp(ξ̂ip)gp(ξ̂
k
p )

∣∣∣∣∣∣Fp
 =

Np∑
j,`=1
j 6=`

ωjpω
`
pgp(ξ

j
p)gp(ξ

`
p),

and summing over j = `, with γjp = E[(Cjp)2|Fp], we have

Np∑
j=1

(
ωjp

βjp

)2

E

 ∑
i,k:α(i)=j,α(k)=j

gp(ξ̂ip)gp(ξ̂
k
p )

∣∣∣∣∣∣Fp
 =

Np∑
j=1

(
ωjp

βjp

)2

γjpgp(ξ
j
p)

2.

Combining the last three displays,

E[M̂2
p |Fp] =

Np∑
j,`=1
j 6=`

ωjpω
`
pgp(ξ

j
p)gp(ξ

`
p) +

Np∑
j=1

(
ωjp

βjp

)2

γjpgp(ξ
j
p)

2.

Subtracting M2
p , we get

E[(M̂p −Mp)2|Fp] = E[M̂2
p |Fp]−M2

p =
Np∑
j=1

(ωjp
βjp

)2

γjp − (ωjp)
2

 gp(ξjp)2. �
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Below, we will repeatedly refer to the functions

gp = Kn−pf

from the proof above, so we record the definition here again for convenience. We note that Theorem 3.1 shows
WE is unbiased, as follows. Since (Mp)0≤p≤n is a martingale, E[Mn] = E[M0]. Moreover, (A1) implies E[M0] =
E[f(Xn)]. This means that

E

Nn∑
j=1

ωjnf(ξjn)

 = E [Mn] = E[f(Xn)].

The proof of Theorem 3.1 shows that this equation does not require assumption (A2’). Notice also that (3.1)
leads to a formula for the L2 sampling error, or variance, via

E


Nn∑
j=1

ωjnf(ξjn)− E[f(Xn)]

2
 = E

[
(Mn − E[f(Xn)])2

]
= E[M2

n]− E[f(Xn)]2. (3.5)

By Theorem 3.1, the expression in (3.5) consists of a term corresponding to the variance from the initial
condition, namely E[M2

0 ] − E[f(Xn)]2 = Var(M0), added to another term corresponding to the variance from
the evolutions and selections, namely

E

[
n−1∑
p=0

(
E
[
(Mp+1 − M̂p)2|F̂p

]
+ E

[
(M̂p −Mp)2|Fp

])]
.

If we assume (A2’), we can get nice expressions for the latter variances; see (3.2). In (3.2), we can think of the
first equation as the variance due to mutation, and the second equation as the variance from selection. Indeed
we can understand these as “local variances” associated to particle evolution and selection since we can rewrite

E
[

(Mp+1 − M̂p)2
∣∣∣ F̂p] =

N̂p∑
i=1

(ω̂ip)
2VarK(ξ̂i

p,·)
(gp+1)

and

E
[

(M̂p −Mp)2
∣∣∣Fp] =

Np∑
j=1

(ωjp)
2

Var(Cjp|Fp)
E[Cjp|Fp]2

gp(ξjp)
2.

In the following sections we will attempt to minimize these terms to produce a near optimal sampling strategy.

4. Minimizing variance

The main idea in the sections that follow is to use information available at time p – that is, the Fp-measurable
random variables – to decide how to make the selections. We want to minimize the variance from both selection
and mutation, subject to a constraint on the average total number of particles. Instead of trying to simultaneously
minimize both variances, we will minimize in two steps: first, we minimize the variance from mutation, and then,
subject to the constraints thereby imposed, we minimize the variance from selection.
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For the variance from mutation, we have to condition on Fp to get an expression that depends only on
Fp-measurable random variables. Thus, using (3.2) and (A2),

E
[

(Mp+1 − M̂p)2
∣∣∣Fp] = E

[
E
[

(Mp+1 − M̂p)2
∣∣∣ F̂p]∣∣∣Fp]

= E

 N̂p∑
i=1

(ω̂ip)
2[Kg2

p+1(ξ̂ip)− gp(ξ̂ip)2]

∣∣∣∣∣∣Fp


=
Np∑
j=1

(
ωjp

E[Cjp|Fp]

)2

E

 ∑
i:α(i)=j

[Kg2
p+1(ξ̂ip)− gp(ξ̂ip)2]

∣∣∣∣∣∣Fp


=
Np∑
j=1

(ωjp)
2

E[Cjp|Fp]
[Kg2

p+1(ξjp)− gp(ξjp)2]. (4.1)

Minimizing this expression is only interesting if we limit the total number of particles. In principle, we can
choose Cjp’s such that this variance is minimized, given a fixed target number, N , of total particles. More
precisely, if we demand that

Np∑
j=1

E[Cjp|Fp] = N,

then a Lagrange multiplier calculation shows (4.1) is minimized by Cjp’s with

E[Cjp|Fp] =
Nωjp

√
Kg2

p+1(ξjp)− gp(ξjp)2∑Np

j=1 ω
j
p

√
Kg2

p+1(ξjp)− gp(ξjp)2
· (4.2)

(provided the denominator above is nonzero). Note that from Jensen’s inequality,

Kg2
p+1(ξ)− gp(ξ)2 = VarK(ξ,·)(gp+1) ≥ 0

for all ξ ∈ E, and indeed this expression can be understood as a “local variance” associated with mutating a
particle ξ. Recall the variance due to selection is

E
[

(M̂p −Mp)2
∣∣∣Fp] =

Np∑
j=1

(ωjp)
2

[
E[(Cjp)2|Fp]
E[Cjp|Fp]2

− 1

]
gp(ξjp)

2. (4.3)

Our minimization strategy is as follows. First, we choose Cjp’s satisfying (4.2). Note that this step only determines
their average values

βjp = E[Cjp|Fp].

To minimize (4.3) over these Cjp’s, we take E[(Cjp)2|Fp] as small as possible. This is done as follows. Let bxc be
the integer part of x. Then conditionally on Fp, set each Cjp to equal either bβjpc or bβjpc+ 1, with probabilities
chosen so that the mean is βjp.

The problem with the above strategy is that, in (4.2), the quantities

Kg2
p+1(ξjp)− gp(ξjp)2

are not easily computable. Indeed, if they were, then (Xp)p≥0 would be simple enough that WE is not needed. We
have found that nonetheless a version of the above strategy can be made useful if we obtain coarse approximations
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for these quantities. The basic idea is to construct a coarse model, for instance a Markov State Model [20, 21],
for (Xp)p≥0 from which the Kg2

p+1(ξjp)− gp(ξjp)2 can be approximated. The coarse model will have states that
correspond to bins that partition E, and the WE process will be adapted to the same bins, in the sense that
the resampling rules are tailored to the bin structure. We pursue these ideas in the following sections.

Remark 4.1. It is interesting to consider the limits where the time or the number of particles become infinite.
We briefly comment on the latter. If we substitute the minimizing equation (4.2) into (4.1), and set

F (ξ) :=
√
Kg2

p+1(ξ)− gp(ξ)2,

then we get

NE
[

(Mp+1 − M̂p)2
∣∣∣Fp] =

 Np∑
j=1

ωjpF (ξjp)

2

= (ηp(F ))2. (4.4)

Intuitively, under appropriate conditions on F , the following particle approximation result is suggested by a
version of the law of large numbers for sufficiently weakly dependent random variables:

ηp(F ) a.s.−−→ E[F (Xp)] as N →∞.

We leave this question for future work; see however Section 7.4 of [10] for analogous results in the SMC/Feyman-
Kac framework. Taking this result for granted and using (4.4), we expect E[F (Xp)]2 to be the normalized
asymptotic variance from mutation for the strategy described above. We compare this to naive simulation
(Cjp ≡ 1 for all p and j and Np ≡ N for all p) where by the law of large numbers,

NE
[

(Mp+1 − M̂p)2
∣∣∣Fp] =

1
N

N∑
j=1

F (ξjp)
2 a.s.−−→ E[F (Xp)2] as N →∞,

so that E[F (Xp)2] is the normalized asymptotic variance from mutation.

5. Binning

In traditional WE, the number of times Cjp we select particle ξjp is based on a binning technique. At each time
step p, state space E is divided into disjoint bins Br, r = 1, . . . , R. That is, E = ∪Rr=1B

r where the union is
disjoint. In general, the bins can be chosen adaptively; see Remark 5.1. However, we will focus on fixed bins here
and below. In this setting, the selection step proceeds as follows. First, a target number of particles Nr

p is set
for each bin at time p. In many applications (see for instance [5, 23, 24, 29] and references), the target numbers
are chosen so that the resulting particles cover space uniformly in some sense, which usually means Nr

p ≈ N/R.
We will take a different approach in the next section. The Cjp’s are chosen such that either∑

j:ξj
p∈Br

E[Cjp|Fp] = Nr
p , (5.1)

or, conditionally on Fp, ∑
j:ξj

p∈Br

Cjp = Nr
p . (5.2)

In the latter case (5.2), the number of particles in a given bin has a fixed deterministic value, while in the
former (5.1), only the average number of particles in each bin is fixed. See Remark 2.2 above. In (5.1), as
discussed above, the Cjp’s are usually chosen to have small variance, so the number of particles in a given bin



ANALYSIS AND OPTIMIZATION OF WEIGHTED ENSEMBLE SAMPLING 1229

has small variance. Throughout we will focus only on the case (5.1). Note that number of selected particles in
bin Br, namely ∑

j:ξj
p∈Br

Cjp,

can equal zero. However, under assumption (A2), whenever there are particles in Br at time p, the expected
number Nr

p of selected particles in Br must be strictly positive. It is okay if there are no particles in a bin before
selection – that bin will just remain empty after the selection step.

Remark 5.1. We will use bins that are fixed in time. This stance allows us, in principle at least, to define a
Markov state model [20,21] on the bins. This model can, in turn, be useful for minimizing the variance in (3.1).
We note, however, that the bins can be chosen adaptively and still fit the framework of Definition 2.1. For
example, the bins can be deterministic functions of the particles and weights up to and including the current
time. Theorem 3.1 then demonstrates that WE samping is unbiased even when the bins are adaptively chosen.

Algorithm 2. Constructing a coarse model.
Choose bins B1, . . . , BR forming a partition of E, a sampling measure ζ on (E, E), and a bounded function f : E → R.
Then do the following.

(1) Estimate the probability Prs for (Xp)p≥0 to go from Br to Bs in one step:

Prs = ζ(Br)−1

∫

Br

P [Xp+1 ∈ Bs|Xp = x] ζ(dx).

Estimate the value of f inside bin Br by ur:

ur = ζ(Br)−1

∫

Br

f(x) ζ(dx).

(2) Let vr
p be the rth entry of the vector P (Pn−p−1u)2 − (Pn−pu)2, where u = (ur) is considered a column vector and

the squaring operations are entrywise.
(3) Let µ be the stationary distribution for the transition matrix P = (Prs). That is, µ = (µr) is the normalized left

eigenvector of P with eigenvalue 1.

P and u in Step 1 can be obtained sampling many one-step trajectories starting at ζ. A simple choice for ζ in a general
setting would be the uniform (Lebesgue) measure. See also the Appendix for comments on another possibility for ζ.

6. Adapting to a coarse model

Suppose we have a coarse model for (Xp)p≥0 and we want to use it to guide our sampling. As above, we fix
n ≥ 0 and a bounded function f : E → R. The coarse model will be adapted to some fixed choice of bins; we
assume again that E is divided into disjoint bins Br, r = 1, . . . , R. We think of the coarse model as a Markov
state model, where the states are the bins. More precisely, the coarse model will consist of approximations of the
probability Prs that Xp+1 ∈ Bs, given that Xp ∈ Br, as well as estimates ur of the value of f on Br. Thinking
of P as a matrix and u a column vector, let

vrp = rth entry of the vector P (Pn−p−1u)2 − (Pn−pu)2,

where the squaring operations are entrywise. Then vrp estimates the value in Br of

Kg2
p+1 − g2

p ≡ K(Kn−p−1f)2 − (Kn−pf)2.
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Below we show how to use the coarse model to define a WE sampler so that ηn(f) estimates E[f(Xn)] with
small variance, using an approximate version of the strategy described in Section 4. Because we are using a
coarse model that does not distinguish between particles in a given bin, it is reasonable to take all the selected
weights ω̂ip of particles in a given bin Br to have the same value ω̄rp:

ω̂ip = ω̄rp, if ξ̂ip ∈ Br. (6.1)

This type of weighting scheme is simply a choice of the practitioner. In particular, it leads to a class of WE
samplers satisfying Definition 2.1, as follows. In light of Definition 2.1, the number of times ξjp ∈ Br is selected
is

E[Cjp|Fp] =
ωjp
ω̄rp
, if ξjp ∈ Br. (6.2)

Setting the average number of particles in Br as Nr
p as in (5.1), we obtain

ω̄rp =

∑
j:ξj

p∈Br ωjp

Nr
p

· (6.3)

Thus, the weighting scheme in (6.1), together with a choice of target particle numbers Nr
p , leads to unique

formulas for the selected weights and the expected number of children of each particle.
From (4.2), the variance from mutation is minimized when

Nr
p ≡

∑
j:ξj

p∈Br

E[Cjp|Fp]

=
∑

j:ξj
p∈Br

Nωjp

√
Kg2

p+1(ξjp)− gp(ξjp)2∑Np

`=1 ω
`
p

√
Kg2

p+1(ξ`p)− gp(ξ`p)2

≈
N
√
vrp
∑
j:ξj

p∈Br ωjp∑R
r=1

√
vrp
∑
j:ξj

p∈Br ω
j
p

· (6.4)

In Algorithms 3−4, the Cjp’s are independent with

Cjp =

{
bωjp/ω̄rpc, w.p. 1−

(
ωjp/ω̄

r
p − bωjp/ω̄rpc

)
bωjp/ω̄rpc+ 1, w.p. ωjp/ω̄

r
p − bωjp/ω̄rpc

, if ξjp ∈ Br, (6.5)

where bxc denotes the integer part of x, and the Nr
p ’s are defined by

Nr
p :=

(N − ÑR)
√
vrp
∑
i:ξi

p∈Br ωip∑R
r=1

√
vrp
∑
i:ξi

p∈Br ωip
+ Ñ , (6.6)

where Ñ ∈ (0, N/R) is a lower threshold for the target number of particles per bin, and by convention Nr
p = Ñ

if the denominator in (6.6) is zero. The Cjp’s in (6.5) have been chosen to minimize the variance due to selection
over all possible choices satisfying (6.2). See Algorithms 3 and 4 for implementations of these ideas.

Why did we set a lower threshold Ñ in (6.6)? If Ñ = 0 and vrp is zero in a bin that contains particles, then
no particles can be selected in this bin and so (A2) does not hold. Taking Ñ > 0 eliminates this problem by
ensuring Nr

p > 0 in each bin so that each particle has a positive survival probability.
Moreover, if vrp is very small in some bins and large in others, if Ñ = 0 then some selected particles can

have very large weights due to a tiny value of Nr
p in (6.3). While this is fine in principle – the method is still
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Algorithm 3. A WE sampler adapted to a coarse model.
Choose bins Br, r = 1, . . . , R forming a partition of E, a target total number of particles N , a lower threshold Ñ , a final
time n, and a bounded function f : E → R. Let vr

p be obtained as in Algorithm 2. Choose initial particles and weights
with the distribution of X0 in the sense of (A1). For 0 ≤ p ≤ min{n, τkill}, iterate the following:

(1) Select Nr
p according to (6.6) and define ω̄r

p as in (6.3).

(2) Let Cj
p be random variables defined by (6.5), and select ξj

p exactly Cj
p times. Let ξ̂i

p, i = 1, . . . , N̂p be the selected

particles, with N̂p =
∑Np

j=1 C
j
p.

(3) Set Np+1 = N̂p and assign the weight ωi
p+1 = ω̄r

p if ξ̂i
p ∈ Br.

(4) Evolve the particles ξ̂i
p, i = 1, . . . , N̂p, independently according to the law of (Xp)p≥0 to get the next generation

ξi
p+1, i = 1, . . . , Np+1 of particles.

When p = min{n, τkill}, stop and output ηn(f), an estimate of E[f(Xn)].

unbiased – we observed numerically that it is better to keep a target number of particles per bin that is bounded
significantly away from zero. Note that, as desired, the expected number of selected particles is

R∑
r=1

Nr
p = N,

unless vrp = 0 in every bin that contains particles, in which case we instead have

R∑
r=1

Nr
p = ÑR.

If
∑R
r=1N

r
p < Np, then it is possible that E[Cjp|Fp] < 1 for all j. If in addition the Cjp’s are independent

conditional on Fp, then there is a strictly positive probability that all particles are killed in selection, that is,
τkill = p + 1. However, we believe extinction is a remote possibility with an appropriate choice of parameters.
Indeed in our simulations we did not observe any events where all the particles were killed so long as N was
kept reasonably large and Ñ not too close to zero; see Appendix A below.

7. Stationary averages

In this section, let (Xp)p≥0 have a unique stationary distribution π. Suppose we want to sample π(f), where
f : E → R is bounded. Assume we have bins Br, r = 1, . . . , R, and a coarse model for (Xp)p≥0 as in the
last section. This model consists of a coarse transition matrix P which can be used to estimate variances as
discussed above. Note that P can also be used to estimate π. That is, the stationary vector µ of P – namely,
the normalized left eigenvector for eigenvalue 1 – is a coarse estimate of π.

To sample π(f), we can begin with points approximately distributed according to π in the some sense. Using
the coarse model, and beginning with N points roughly uniformly distributed in space, we take initial particles
and weights with

#{j : ξj0 ∈ Br} ≈
N

R
, ωj0 =

µr
#{` : ξ`0 ∈ Br}

, if ξj0 ∈ Br. (7.1)

The final time n should be large enough to allow the WE sampler to relax to the true stationary distribution π.
Techniques which employ a coarse model to estimate π, and use this as an initial condition for WE, have appeared
recently in [5, 8]. However, using the coarse model to minimize the variance in the above fashion appears to be
new, to the best of our knowledge. In this context, minimizing the variance requires minimal additional work,



1232 D. ARISTOFF

since we already have the coarse transition matrix P which can be used to estimate the quantities needed to
minimize variance.

The question of how to choose the final time n is difficult in general. Note, however, that we have some prior
information from our coarse model. In particular, the second-largest (in absolute value) eigenvalue λ2 of P can
give us some idea of how fast convergence can be, from the heuristic

E[ηn(f)]− π(f) ≈ O(λn2 ).

Moreover the constant associated with the big O may be small due to the initial condition (7.1), though this is
difficult to quantify without prior information about how close the initial condition is to π.

Remark 7.1. We comment briefly on two other possibilities for sampling π(f).
First, we could build the coarse model adaptively, using a Monte Carlo estimator of vrp. That is, we update

vrp at each time p using the WE trajectory. One advantage of this is that, if we are using ηn(f) to estimate π(f),
the most important contributions to the variance come from the final steps (p near n), at which vrp is the most
accurate.

Another possibility is, instead of estimating π(f) from ηn(f), we could use a time average via π(f) ≈
(n + 1)−1(η0(f) + . . . + ηn(f)). In this setting, it is natural to adaptively build estimates vr of Kf2 − (Kf)2

in Br, and plug them into (6.6) in place of the vrp at each step. We do not test these strategies here, but leave
them as interesting problems for future work.

8. Numerical example

In this section (Yt)t≥0 is an Markov chain designed to mimic MD in a simple one dimensional energy landscape,
and Xp = Ypδt. In the context of WE, this means we resample from (Yt)t≥0 at each time interval δt. Our goal
is to show that the adaptive sampling from the last section potentially can be better than naive sampling or
traditional WE sampling. Applying these ideas to more “realistic” models in computational chemistry will be
the focus of another work.

Algorithm 4. A WE sampler for stationary averages.
Choose bins Br, r = 1, . . . , R, a target total number of particles N , a final time n, and a bounded function f : E → R.
Construct a coarse model as in Algorithm 2.

1. Choose initial particles and weights as in (7.1).
2. For 0 ≤ p ≤ min{n, τkill}, proceed through Algorithm 3.

The output ηn(f) is an estimate of π(f), the stationary average of f .

More precisely, let Yt have values in E = {1, 2, . . . , 90} and transition matrix

Q(i, i+ 1) =
2
5

+
m(i)

5
, i = 1, . . . , 89,

Q(i, i− 1) =
2
5
− m(i)

5
, i = 2, . . . , 90,

where

m(j) := sin
(

6πj
90

)
,
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Figure 1. Values of ηn(f) vs. n from the example in Appendix A from adaptive, traditional
and naive sampling. Data for adaptive, traditional and naive sampling is obtained from 103, 104,
and 5× 104 independent simulations, respectively. The crosses are exact values corresponding
to ν0K

nf , and the dotted line is the stationary value π(f). Bottom right: sample standard
deviations σ(ηn(f)) of ηn(f), computed from the independent simulations. (The error bars in
the other plots are these standard deviations divided by the square roots of the number of
independent simulations).

Q(i, j) = 0 if |i− j| > 1 and Q(i, i) is chosen so that Q is stochastic. This is a discrete state space which mimics
a one dimensional potential energy landscape with 3 energy wells; see the bottom right of Figure 2. We take
resampling intervals δt = 4, so

Xp := Y4p

and the transition matrix of (Xp)p≥0 is K = Q4. The resampling intervals are chosen so that a sufficiently large
fraction of particles can change bins in each resampling time. The bins will be

Br = {3r − 2, 3r − 1, 3r}, r = 1, . . . , 30.

Thus, there are R = 30 bins. Let π be the stationary distribution of (Xp)p≥0, and

f(i) =

{
1, 28 ≤ i ≤ 33
0, else

.

We also let f̄ = f/6 be its normalized version, which is useful for comparing with sampling distributions; see
Figure 2 below.

We will obtain empirical approximations ηn(f) of π(f) for relaxation times n = 5, 10, 15, 20, 25, 30, using
three types of sampling described below. In all our simulations, we set a target number N = 150 of particles,
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Figure 2. Average distribution of particles ξjp at time n = 30, compared to f̄ , the normalized
version of f . Here,Ntot ≡ Nn is the total number of particles at time n. Bottom right: Stationary
distribution π.
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Figure 3. The estimates vrp vs. p for the example in Appendix A. Here, we take p = 0 and
p = n− 1, where n = 30 is the final time.

Our initial particles and weights are the same for all simulations. They are chosen by constructing a coarse
model as in Algorithm 2 with ζ the uniform measure on E, ζ(i) = 1/90 for all i ∈ E. Thus, our initial particles
and weights are chosen according to the distribution

ν0(i) =
µr
3
, if i ∈ Br.

In all our simulations we had τkill > n.
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The first type of sampling uses Algorithm 4, the procedure described above for adapting WE to a coarse
model. We call this adaptive WE sampling. We construct a coarse model using Algorithm 2 with the uniform
sampling measure ζ described above. We use the parameters N = 150 and Ñ = 1.

In the second type of sampling we used a fixed target number of particles per bin. We call this traditional
WE sampling. It is the sampling method described in [5, 8]. We use Algorithm 4 again, but instead of using a
coarse model to define Nr

p via (6.6), we set Nr
p = 5 constant. This corresponds to distributing the N = 150

particles uniformly among the bins.
The third type of sampling does not use selection at all. We call this naive sampling. Here, we choose N = 150

initial particles and weights according to (7.1), and then we simply evolve these particles independently until
time n, without changing the weights.

Results comparing adaptive WE sampling, traditional WE sampling and naive sampling are in Figures 1-2.
In Figure 1, we plot ηn(f) vs. n for various values of n, showing convergence to the stationary value π(f). We
compute error bars using empirical standard deviations from 103, 104 and 5× 104 independent simulations for
adaptive, traditional, and naive sampling respectively. (We had to run more simulations for traditional WE and
naive sampling to get the numerics to converge). The sample standard deviation for adaptive WE sampling is
significantly smaller than that of traditional WE and naive sampling.

In Figure 2, we plot histograms representing the average distribution of the particles ξin at time n. Note
that traditional WE sampling distributes the particles roughly uniformly in space, as expected, while adaptive
WE sampling guides the particles towards the region in state space relevant for computing f . Meanwhile, naive
sampling distributes the particles approximately according to the stationary distribution π.

In Figure 3, we plot the estimates vrp from the adaptive sampling strategy for p = 0 and p = n − 1 where
n = 30 is the relaxation time. Note that by time n− 1, the sampling is focused near the support of f .

When f is a function with large values in regions of low π probability, as in this example, naive sampling
performs poorly compared to both traditional and adaptive WE sampling. When state space is very large
compared to the region S where f has large values (or is non-negligible), we expect adaptive WE sampling to
perform much better than traditional WE sampling, due to the fact that traditional WE sampling will distribute
the particles very thinly throughout space, including in S, while adaptive WE sampling will push most of the
particles towards S.

A possible drawback of adaptive WE sampling is that it requires more computations at the resampling times,
compared to traditional WE sampling. However, in practice the resampling times may be large enough so that
this extra effort contributes little to the overall computational cost.

Finally, we note that the adaptive sampling above can also be used more generally to estimate time marginals
of (Xp)p≥0, that is, expectations of the form E[f(Xn)] at fixed finite times n, from an arbitrary initial distri-
bution of X0. This is Algorithm 3. In this case, a MSM is still required to guide the sampling. One of the
advantages of the adaptive sampling in the stationary case is that a MSM has already been computed as part
of a preconditioning step.

Appendix A. Computing dynamics from stationary averages

In this Appendix we show how to compute certain dynamical averages of (Xp)p≥0 from stationary calculations.
As above, (Xp)p≥0 is a time homogeneous Markov chain with values in E. The Hill relation [17] shows that a
mean hitting time can be reformulated as a certain stationary average. Similar ideas have recently been adapted
to the time inhomogeneous setting; see [25]. Here we focus on the time homogeneous case.

By way of motivation, suppose we have a Markov chain with a (perhaps time reversible) transition kernel K0.
Suppose we are interested in averages of the Markov chain, starting at a distribution ρ and up to the hitting time
τF of some set F disjoint from the support of ρ. To compute such averages, we consider a modified, non-time
reversible transition kernel K constructed by setting K = K0 outside F and K = ρK0 inside F . Clearly, if
we can sample from K0, then we can also sample from K, simply by sampling from K0 outside F and then
instantaneously restarting at ρ each time we reach F . The following result recasts an average of the Markov
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chain with kernel K0 starting at ρ and up to time τF as a stationary average of the nonreversible Markov chain
with kernel K.

Theorem A.1. Suppose there is a set F ⊆ E and a probability measure ρ on E with support disjoint from F
such that:

(B1) The transition kernel K of (Xp)p≥0 satisfies 1F (x)K(x, dy) = ρK(dy),
(B2) With τF = inf{p > 0 : Xp ∈ F}, Eρ[τF ] <∞ and Px[τF <∞] = 1 ∀x ∈ E.

Then for any bounded g : E → R,

Eρ
[
τF∑
p=1

g(Xp)

]
=

π(g)
π(F )

, (A.1)

where π is the unique stationary distribution of (Xp)p≥0.

Proof. Assumptions (B1)−(B2) show that (Xp)p≥0 has a unique stationary distribution π. Indeed, it can be
checked (see [14], Sect. 5.6) that

π(A) =
Eρ
[∑τF

p=1 1A(Xp)
]

Eρ[τF ]
.

Thus,

π(g)
π(F )

=
Eρ
[∑τF

p=1 g(Xp)
]

Eρ
[∑τF

p=1 1F (Xp)
] = Eρ

[
τF∑
p=1

g(Xp)

]
.

�

In practice, we are interested in the left hand side of (A.1). Assumption (B1) can be understood as introducing
a source ρ and sink at F , while (B2) is an additional technical condition which ensures π exists and is unique.
In the context of the discussion above, (B1) corresponds to modifying the kernel K0 of some underlying process
to get the nonreversible kernel K. This modification is only a computational tool, as it does not affect the LHS
of (A.1).

Thus, though the process we are interested in usually does not satisfy (B1), we can modify it in F so that
(B1) holds, and meanwhile the left hand side of (A.1) is the same for both the original and modified process. In
this setting, if the original process is reversible, it is natural to take the sampling measure ζ in Algorithm 2 to
be its stationary distribution, provided it can be efficiently calculated by Markov chain Monte Carlo or other
common sampling techniques for reversible processes. It is important to note that such techniques cannot be
used to directly sample π, since the modified process is nonreversible.

Two special cases of (A.1) are of particular interest. First, suppose F = A ∪ B is a disjoint union, g = 1B ,
and τS = inf{p > 0 : Xp ∈ S} is the first time to hit S. Then

Pρ [τB < τA] =
π(B)

π(A ∪B)
· (A.2)

Next, suppose g ≡ 1. Then

Eρ[τF ] =
1

π(F )
· (A.3)

Equation (A.3) is known as the Hill relation [17]. Equations (A.2) and (A.3) show how stationary calculations
can be used to compute hitting probabilities and hitting times. We can compute the right hand side of (A.2)
by applying Algorithm 4 above to f = 1B and then f = 1A∪B . Similarly, we can compute the right hand side
of (A.3) by applying Algorithm 4 with f = 1F . A simple choice for ρ would be ρ = δx, the delta distribution
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at a point x /∈ F . A more complicated but important case is the so-called equilibrium hitting time between an
initial set I and final set F ; see for instance [3] for definitions and discussion. In this case, ρ is the distribution
of endpoints of trajectories under the original kernel K0 stopped upon hitting I and which last came from F .
Sampling this distribution can be difficult in general [3].

We conclude by briefly connecting the discussion above to Exact Milestoning [2, 4], an algorithm mentioned
in the Introduction for sampling dynamical quantities like mean hitting times. Consider the following seemingly
more general framework. Suppose that (Yt)t≥0 is some underlying process and (τp)p≥0 are increasing stopping
times for (Yt)t≥0 such that (Xp)p≥1 defined by

Xp = (Yτp−1+1, . . . , Yτp
)

is a time homogeneous Markov chain in ∪∞n=1E
n. For instance, if (Yt)t≥0 is a time homogeneous Markov chain, we

could take τp = pδt with δt a deterministic time, as in the example in Appendix, or τp = inf{t > τp−1 : Yt ∈ S}
for some set S ⊆ E, and τ0 = 0. The latter choice corresponds to Exact Milestoning, in which S corresponds to
the union of all the milestones, except the one currently visited. In this setting, if we take g(Xp) = τp − τp−1,
F = ∪∞n=1(En−1 ×R), and

TR = inf{τp > 0 : Yτp
∈ R},

then from (A.1),

Eρ[TR] =
Eπ[τ1]
π(F )

· (A.4)

This is the equation on which Exact Milestoning is based; see for instance Theorem 3.4 of [2]. Thus in Exact
Milestoning, we can find the time TR for Yt to first reach R starting at ρ by computing π(F ) along with short
trajectories of Yt starting at π up to the first time to hit S.
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