
Week 5: Operads and iterated loop spaces

October 25, 2015

Operads

For a thorough introduction to the basic language regarding operads, take a look at Peter
May’s “Definitions: operads, algebras and modules" at

http://math.uchicago.edu/~may/PAPERS/handout.pdf

In our language, the operad we called Assoc is the operadM of Example 6, and the
operad Com is N of Example 7.

The little disks operads

For each positive integer k, a TD-map f : Dk → Dk is the composite of a translation and
a (positive) dilation1:

f(x) = ax+ b, a ∈ R>0, and b ∈ Rk.

Definition 1. The k-dimensional little disks operads Ck is defined by the spaces

Ck(n) := {(f1, . . . , fn) | fi are TD-maps, and fi Int(Dk) ∩ fj Int(Dk) = ∅ if i 6= j}.

We may topologize Ck(n) as a subspace of (R>0 × Rk)×n via the map which carries
(fi)

n
i=1 to (ai, bi)

n
i=1 The action of Sn on Ck(n) is by permutation of the fi.

To define the operad composition γ, we note that an element (f1, . . . , fn) ∈ Ck(n)
defines a function F :

∐
nD

k → Dk whose value on the ith copy of Dk is given by
fi. By assumption, this map is injective on the interior of the domain. For elements
G(i) = (g

(i)
1 , . . . , g

(i)
ji

) ∈ Ck(ji), we may define

γ(F ;G(1), . . . , G(n)) = F ◦ (G(1) t · · · tG(n)) :
∐
∑
ji

Dk → Dk.

1If we additionally allow rotations, we obtain the notion of a TDR-map; the associated operad is called
the framed little disks operad.
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The unit of the operad is the identity map idDk ∈ Ck(1). We leave it to the reader to verify
that this does indeed define an operad of topological spaces.

Consider the map p : Ck(n) → PConfn(Dk) which carries a collection of little k-disks
to their centers; that is, p[(fi)ni=1] = (bi)

n
i=1.

Proposition 2. The map p : Ck(n)→ PConfn(Dk) is a homotopy equivalence.

Proof. For a configuration x ∈ PConfn(Dk), define

d(x) = inf{1

2
|xi − xj|, i 6= j; |xi − z|, z ∈ ∂Dk}

Then d : PConfn(Dk) → R>0 is a continuous function. Define s : PConfn(Dk) → Ck(n)
by s(x) = (f1, . . . , fn), where

fi(z) = d(x)z + xi.

It is immediate that p◦ s = id. In the other direction, if fi(z) = aiz+ bi, the ith component
of s(p(f1, . . . , fn)) is the map z 7→ d(b)z + bi. A homotopy s ◦ p ' id on Ck(n) is given by
the straightline homotopy from ai to d(b).

Define a map q : C1(n) → Assoc(n) which carries a configuration (f1, . . . , fn) of little
disks in D1 to the unique permutation σ ∈ Sn with the property that bσ(1) < · · · < bσ(n). It
is not hard to show that q is a map of operads.

Corollary 3. The map q : C1 → Assoc is a homotopy equivalence of operads.

Proof. We have shown that C1(n) ' PConfn(D1). In the previous lecture, we showed2 that
PConfn(D1) is homeomorphic to Int(∆n)× Sn. The projection map from this space onto
Sn = Assoc(n) is precisely q, and is clearly a homotopy equivalence.

It is worth mentioning that while q has a homotopy inverse in the category of (sequences
of) spaces, there is no homotopy inverse which is a map of operads. If A is an algebra for
Assoc (that is, a strictly associative, unital H-space), then the composite

q : C1 → Assoc→ EndA

makes A an algebra for C1. On the other had, the non-existence of an operadic section of
q ensures that there are C1-algebras that are not strictly associative H-spaces. However, we
will see in the future that every C1-algebra is homotopy equivalent to an Assoc-algebra.

2Or rather, we showed the corresponding statement for the unordered configuration space; the same proof
holds here.
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The operadic point of view underscores a general philosophy in “homotopy coherent
mathematics:" equalities between operations often must be replaced by homotopies. How-
ever, homotopies themselves are usually too unstructured a notion to be of much use. If,
however, those homotopies are encoded as paths in a structured object like an operad, a
more useful3 notion arises.

Example 4. The projection map p : Ck → Com which collapses everything in Ck(n) to a
point is trivially a map of operads. For k > 1, it is an isomorphism in π0. Consequently,
every Ck-algebra has a homotopy commutative multiplication. This may be seen explicitly
as follows for k = 2: an arbitrary element µ ∈ C2(2) defines a multiplication on a C − 2-
algebra A. A Dehn twist around the midpoint of the centers of the little disks in µ gives
a path from µ to µ ◦ σ, where σ = (12) is the permutation swapping the two inputs. This
yields a homotopy between a ? b = µ(a, b) and b ? a = µ ◦ σ(a, b).

The recognition theorem

The recognition theorem asserts that connected4 Ck-algebras and k-fold loop spaces are
essentially the same thing. Half of this is straightforward.

Proposition 5. For any based space (X, ∗) and integer k > 0, ΩkX = Map((Dk, ∂), (X, ∗))
is a Ck-algebra.

Proof. Let g1, . . . , gn ∈ ΩkX and f = (f1, . . . , fn) ∈ Ck(n) (so that the fi are TD-maps).
Define the action of Ck on ΩkX as follows: for d ∈ Dk, the value of θ(f ; (g1, . . . , gn)) on d
is

θ(f ; (g1, . . . , gn))(d) :=

{
∗, d /∈ im (fi) for any i.
gif
−1
i (d), d ∈ im (fi).

An enthralling computation verifies that this does indeed satisfy the axioms of an operad
action.

This has a sort of converse, which is much less straightforward, and will require some
substantial work:

Theorem 6 (Recognition, [May72]). If Y is a connected Ck-algebra, there exists a space X and
a weak equivalence of Ck-algebras ΩkY ' X .

3For instance, a homotopy associative, homotopy unital H-space does not have a well-structured category
of modules, whereas an algebra over C1 does.

4In the disconnected case, look forward to the group completion theorem in the near future.
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Free algebras and the approximation theorem

Definition 7. Let (Z, ∗) be a pointed topological space and k > 0 an integer. The free
Ck-algebra on (Z, ∗) is the quotient space

Ck[Z] :=

(∐
n≥0

Ck(n)×Sn Z
×n

)
/ ∼

where ((f1, . . . , fn), (z1, . . . , zn−1, ∗)) ∼ ((f1, . . . , fn−1), (z1, . . . , zn−1)).

One thinks of this as the space of little k-disks in the unit k-disk, decorated by points
in Z . Further, when a little disk is decorated by the basepoint of Z , one may drop it and
its label. This is in fact a Ck-algebra: the algebra structure is induced by the operadic
composition in Ck (the decorations get carried along for the ride). In fact, Ck[Z] is the free
Ck-algebra on Z in the following sense:

Proposition 8. There exists a natural bijection

MapCk−alg(Ck[Z],W ) = MapTop∗
(Z,W ).

Proof. The map from left to right restricts a Ck-algebra map Ck[Z]→ W to the subspace

Z = {id} × Z ⊆ Ck(1)× Z ⊆ Ck[Z].

In the other direction, for h : Z → W an arbitrary continuous, pointed map, define
H : Ck[Z]→ W by H(f, (z1, . . . , zn)) = θ(f ; (h(z1), . . . , h(zn))).

Define e : Ck[Z]→ ΩkΣkZ as the free map generated by Z → ΩkΣkZ which is adjoint
to the identity on ΣkZ . More prosaically, e carries ((f1, . . . , fn), (z1, . . . , zn)) to the map
Sk → ΣkZ which wraps the little disk fi ⊆ Dk around Sk = Σk{∗, zi} ⊆ ΣkZ , and carries
the rest of Sk = Dk/∂ to the basepoint ∗.
Theorem 9 (Approximation [May72]). If Z is connected, then e is a weak equivalence.

We will prove this result in the next lecture. It is needed to prove the recognition
theorem. Historically, this result was used to investigate the homology of iterated loop
spaces, since Ck[Z] is more geometrically tractable than ΩkΣkZ . One may also reverse the
flow of information: from knowledge of the homology of function spaces, we may come to
an understanding of the homology of (decorated) configuration spaces.
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