## Homework #2 for MATH 8307: Algebraic Topology

April 7, 2015

Due Date: Wednesday 22 April in class.

- 1. Let X and Y be connected topological spaces.
  - (a) If X and Y are CW complexes, recall that  $X \times Y$  may be given the structure of a CW complex with a (p+q)-dimensional cell of the form  $e^p \times e^q$  for each pair consisting of a p-cell  $e^p$  in X and q-cell  $e^q$  in Y. Show that if X and Y each have a single 0-cell which we will take to be the basepoint, there is a cell structure on  $X \wedge Y$  with a single 0-cell, and a p+q-dimensional cell for each pair consisting of a p-cell in X and q-cell in Y, where neither p nor q is allowed to be 0.
  - (b) Under the previous assumptions, if X has no cells of dimension less than n, and Y has no cells of dimension less than m (other than the single 0-cell in each), show that  $\pi_q(X \wedge Y) = 0$  for q < m + n.
  - (c) Now let X and Y be arbitrary (n-1)-connected based topological spaces. Show, using some form of the homotopy excision theorem, that the homotopy groups of  $X \vee Y$  vanish in degrees less than n, and that  $\pi_n(X \vee Y) \cong \pi_n(X) \oplus \pi_n(Y)$ . Don't use the Hurewicz theorem in your argument; this fact (for spheres) is required for the proof of Hurewicz.
- 2. Let  $\mathbb{H}$  denote the division algebra of quaternions, and write  $\mathbb{H}^{\times} = \mathbb{H} \setminus \{0\}$  for the group of units with the operation of multiplication. Define

$$\mathbb{H}P^n := (\mathbb{H}^{n+1} \setminus \{0\})/\mathbb{H}^{\times}$$

where the action of  $\mathbb{H}^{\times}$  on nonzero vectors in  $\mathbb{H}^{n+1}$  is by:

$$\lambda \cdot (x_0, \dots, x_n) = (\lambda x_0, \dots, \lambda x_n)$$

- (a) Show that  $\mathbb{H}P^n$  is homeomorphic to the quotient space  $S^{4n+3}/S^3$ , where  $S^{4n+3} \subseteq \mathbb{H}^{n+1} \setminus \{0\}$  is the subset of norm 1, and  $S^3 \subseteq \mathbb{H}^{\times}$  is the subgroup of norm 1.
- (b) Show that  $\mathbb{H}P^1$  is homeomorphic to  $S^4$ .
- (c) Show that the quotient map  $S^{4n+3} \to \mathbb{H}P^n$  is a principal  $S^3$ -fibre bundle.
- (d) Show that  $\pi_k S^3 \cong \pi_{k+1} S^4$  when  $k \leq 5$ . Can you use the Freudenthal suspension theorem for this result?
- (e) Take as given Serre's theorem:  $\pi_k S^{2n-1}$  is finite for  $k \neq 2n-1$ . Show that in contrast,  $\pi_7 S^4$  contains an element of infinite order.
- (f) Let  $G \leq \mathbb{H}^{\times}$  be a discrete subgroup, and define  $X_n := (\mathbb{H}^{n+1} \setminus \{0\})/G$ , where the action of G is via  $\mathbb{H}^{\times}$ . Let  $X = \cup_n X_n$  be the union of  $X_n$  induced by the inclusions  $\mathbb{H}^{n+1} \setminus \{0\} \subseteq \mathbb{H}^{n+2} \setminus \{0\}$ . Compute the homotopy groups of X.