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Abstract. We consider modified Zolotarev’s ideal metrics for probability distributions on
the real line and explore their connections with Lévy’s, total variation, and transport dis-
tances. In particular, E. Rio’s upper bound on the power transport (Kantorovich) distances
is reversed under (necessary) moment assumptions and is sharpened for compactly supported
measures. We also explain the role of such metrics in the study of the central limit theorem.

1. Introduction

Denote by Pp the collection of all Borel probability measures µ on the real line R with finite
absolute moments of order p > 0, i.e. such that

∫∞
−∞ |x|

p dµ(x) <∞.
If two random variables X and Y have distributions µ and ν in Pp, the ideal Zolotarev

distance of order p > 0 between µ and ν is defined as

ζp(X,Y ) = ζp(µ, ν) = sup

∣∣∣∣ ∫ ∞
−∞

u dµ−
∫ ∞
−∞

u dν

∣∣∣∣. (1.1)

Putting p = m+α with m ≥ 0 integer and 0 < α ≤ 1, here the supremum is taken over all m
times differentiable functions u : R → R whose m-th derivatives have Lipschitz semi-norms
‖u(m)‖Lip(α) ≤ 1, i.e.

|u(m)(x)− u(m)(y)| ≤ |x− y|α, x, y ∈ R. (1.2)

If p is a positive integer (and then m = p − 1), this condition is equivalent to the pointwise

bound |u(p)(x)| ≤ 1, x ∈ R, assuming that u(x) is p times differentiable.
Motivated by the problems of continuity and stability of stochastic models (such as ap-

proximation for distributions of sums of independent random vectors), these distances were
introduced and studied by Zolotarev in a series of papers in the mid 70’s [12], [13] (cf. also
[14], [15]). They were considered for probability measures on an arbitrary Banach space using
the notion of Frechet derivatives. Let us however focus on the one dimensional setting.

The ideal distances ζp have a number of remarkable properties, especially the following
two properties. They are homogeneous with respect to (X,Y ) of order p, i.e.

ζp(cX, cY ) = |c|p ζp(X,Y ), c ∈ R. (1.3)

Secondly, they are subadditive with respect to the convolution operation in the sense that

ζp

( n∑
i=1

Xi,
n∑
i=1

Yi

)
≤

n∑
i=1

ζp(Xi, Yi), (1.4)

which holds for any two collections of independent random variables (Xi) and (Yi) with finite
absolute moments of order p.
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In particular, if Xi represent independent copies of a random variable X with mean zero
and variance one, an application of (1.3)-(1.4) with p = 3 to the normalized sum Zn =

1√
n

(X1 + · · ·+Xn) yields a Berry-Esseen-type bound

ζ3(Zn, Z) ≤ 1√
n
ζ3(X,Z), (1.5)

where Z is a standard normal random variable. If additionally EX3 = 0, the standard rate
is improved by involving the next index p = 4, in which case

ζ4(Zn, Z) ≤ 1

n
ζ4(X,Z). (1.6)

Similar relations hold true in the high dimensional situation. It is therefore not surprising
that these distances have attracted a considerable attention in many respects, including the
study of the relationship between ζp and other canonical metrics in the space of probability
distributions. For example, it was shown by Senatov that ζp dominate the Lévy distance
(and more generally – the Lévy-Prokhorov distance in high dimensions for the class of convex
subsets of the Euclidean space, cf. [8], [9]). Similar assertions are proved by Rio [6], [7] for
the power transport distances for probability distributions on the real line.

Note that any function u satisfying the Lipschitz property (1.2) admits a pointwise bound
|u(x)| ≤ c(1 + |x|p) with a constant c depending on u, so that the integrals in (1.1) are
finite for all µ, ν in Pp. However, for the finiteness of ζp(µ, ν) with p > 1 it is necessary and
sufficient that the first m moments of µ and ν coincide:∫ ∞

−∞
xk dµ(x) =

∫ ∞
−∞

xk dν(x), k = 1, . . . ,m. (1.7)

This is a negative point in applications of Zolotarev distances, which motivates to modify
ζp in order to deal with a real metric on Pp possessing analogous properties like (1.3)-(1.4).
Here is one natural choice to resolve the issue in the spirit of the original Zolotarev’s approach
to the class of the ideal distances.

Definition 1.1. Let s > 0. Given µ and ν in Pp, p > 0, put

ζ(s)
p (µ, ν) = sup

u∈Up(s)

∣∣∣∣ ∫ ∞
−∞

u dµ−
∫ ∞
−∞

u dν

∣∣∣∣, (1.8)

where the supremum is taken over the collection Up(s) of all m times differentiable functions
u on the real line satisfying the Lipschitz property (1.2) and such that

|u(k)(x)| ≤ sp−k, x ∈ R, k = 1, . . . ,m. (1.9)

The latter is not a condition for the range 0 < p ≤ 1, and thus ζ
(s)
p (µ, ν) = ζp(µ, ν) for all

s > 0. If p > 1, the situation is different, although

ζ(s)
p (µ, ν) ↑ ζ(∞)

p (µ, ν) = ζp(µ, ν) as s→∞.

The aim of this note is to explore basic properties of the distances ζ
(s)
p , including the

influence of the parameter s in applications to the central limit theorem and their connec-
tions with the Lévy metric, characteristic functions, weighted total variation, and especially
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transport distances. The power transport (also called Kantorovich or minimal) distance of
order p ≥ 1 is defined to be

Wp(µ, ν) = inf
π

(∫ ∞
−∞

∫ ∞
−∞
|x− y|p dπ(x, y)

)1/p

, p ≥ 1, (1.10)

where the infimum is taken over all Borel probability measures π on the plane R × R with
marginal distributions µ and ν. For the range 0 < p ≤ 1, it is defined similarly as

Wp(µ, ν) = inf
π

∫ ∞
−∞

∫ ∞
−∞
|x− y|p dπ(x, y), 0 < p ≤ 1. (1.11)

The quantity Wp is finite and represents a metric in the space Pp. For a comprehensive dis-
cussion of this metric for probability measures on general spaces with abstract cost functions
we refer the interested reader to [11], [1].

By the Kantorovich duality theorem (cf. e.g. [5]), applied on the real line with metric
d(x, y) = |x− y|p, the definition (1.11) leads to the identity

ζp(µ, ν) = Wp(µ, ν), 0 < p ≤ 1.

As for the range p ≥ 1, the main known tool connecting these two quantities is the following
remarkable observation due to Rio (Theorem 3.1 in [7]).

Theorem 1.2. Given µ and ν in Pp, p ≥ 1, we have

Wp(µ, ν) ≤ Cp
(
ζp(µ, ν))1/p (1.12)

with some constant Cp depending on p only.

It was also shown in [7] that the best constant in (1.12) satisfies Cp ≤ π√
e
p for any integer

p ≥ 4. Actually, the assertion Cp ≤ Cp remains to hold for all real p ≥ 1. Using the ideas
in the original argument of E. Rio, one may replace the moment constraint (1.7) with the
assumption on the support of the involved measures, and then we have:

Theorem 1.3. If the measures µ, ν are supported on a finite interval of length s, then,
for any p ≥ 1,

W p
p (µ, ν) ≤ 2 (8p)p ζ(s)

p (µ, ν). (1.13)

Letting s → ∞ in (1.13), we return to the relation (1.12). In this step, the assumption
on the support of the measures can be relaxed to µ, ν ∈ Pp. It is in this sense (1.13) may be
viewed as a sharpening of (1.12). On the other hand, the relations (1.12)-(1.13) can be easily
reversed in a certain form.

Theorem 1.4. Given µ and ν in Pp, p ≥ 1,

ζ(s)
p (µ, ν) ≤ sp−1Wp(µ, ν). (1.14)

Moreover, if µ, ν are supported on a finite interval of length s and have equal moments up to
order m, then

ζp(µ, ν) ≤ sp−1

Γ(p)
Wp(µ, ν). (1.15)
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In particular, ζ
(s)
p (µ, ν) ≤W p

p (µ, ν) for the range s ≤Wp(µ, ν) which is opposite to (1.13).
Returning to the scheme of i.i.d. copies of a random variable X with mean zero and

variance one, let us also state the following sharpening of the central limit theorem (1.5)-
(1.6) in terms of the Zolotarev-type distances.

Theorem 1.5. If X has a finite absolute moment of order p > 2, then for any s > 0,

ζ(s)
p (Zn, Z) ≤

m∑
k=3

sp−k

n
k−2
2 k!

|EXk − EZk|+ 1

n
p−2
2

Γ(α+ 1)

Γ(p+ 1)
(E |X|p + E |Z|p). (1.16)

For the range 2 < p ≤ 3, the sum in (1.16) is vanishing, and this bound is simplified to

ζ(s)
p (Zn, Z) ≤ 1

2n
p−2
2

(E |X|p + E |Z|p).

In the case p > 3, and if the moments of X and Z coincide up to order m, one may strengthen
(1.16) by letting s→∞, and then we arrive at

ζp(Zn, Z) ≤ 1

n
p−2
2

Γ(α+ 1)

Γ(p+ 1)
(E |X|p + E |Z|p).

The paper is organized as follows. Basic properties of ζ
(s)
p including analogues of the

relations (1.3)-(1.4) are recorded in Section 2. Then we turn to lower bounds for these
metrics in terms of characteristic functions and the Lévy distance (which imply in particular

the separation property for the Zolotarev-type distances). Upper bounds on ζ
(s)
p in terms

of the weighted total variation distances are considered in Section 4, where we also include
the derivation of the upper bound (1.16) in Theorem 1.5. In Section 5 we recall several
representations for the one-dimensional formula (1.10) defining the transport distance Wp

and then prove Theorem 1.4. Theorem 1.3 is proved in Section 6 except for a technical
Lemma 6.2, which is proved in several steps in Sections 7-9.

2. Basic Properties of ζ
(s)
p

Here we collect a few basic properties of Zolotarev-type distances. As before, write p = m+α
with m ≥ 0 integer and 0 < α ≤ 1.

First let us note that in the case p ≥ 1 Definition 1.1 may be extended to all probability
measures with finite first absolute moment (although the space Pp is more natural in the
study of various relations). Indeed, the condition (1.9) with k = 1 ensures that |u(x)−u(0)| ≤
sp−1|x| for all x ∈ R. Hence the integrals in (1.8) are finite, and we have a uniform upper
bound

ζ(s)
p (µ, ν) ≤ sp−1 (E |X|+ E |Y |),

where we assume that the random variables X and Y have distributions µ and ν respectively.
Hence, we obtain:

Proposition 2.1. ζ
(s)
p represents a metric on Pmin(p,1) for any parameter s > 0.

The separation property follows from the lower bounds in Propositions 3.1-3.2.
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The metrics ζ
(s)
p are equivalent to each other. If p ≤ 1, there is no dependence on s, while

for p ≥ 1, it follows from (1.8) that

ζ(s1)
p (µ, ν) ≤ ζ(s2)

p (µ, ν) ≤
(s2

s1

)p−1
ζ(s1)
p (µ, ν), s1 < s2. (2.1)

Proposition 2.2. Let the random variables X and Y have distributions in Pmin(p,1). For
any b, c ∈ R, c 6= 0,

ζ(s)
p (X + b, Y + b) = ζ(s)

p (X,Y ),

ζ(s)
p (cX, cY ) = |c|p ζ(s/|c|)

p (X,Y ). (2.2)

This is a modified variant of the homogeneity property (1.3), which in turn follows from
(2.2) by letting s→∞.

Proof. For the first relation, just note that the class Up(s) is closed under the shifts

u→ u(x+b). Also, given u in Up(s), the function uc(x) = c−p u(cx) has derivatives u(k)(x) =

c−(p−k) u(cx) which are bounded in absolute value by (s/|c|)p−k for k = 1, . . . ,m. In addition,

‖u(m)
c ‖Lip(α) = c−(p−m) cα ‖u(m)‖Lip(α) = ‖u(m)‖Lip(α) ≤ 1.

Hence uc belongs to Up(s/|c|). By the same argument, if uc belongs to Up(s/|c|), then u must
belong to Up(s). This proves (2.2) according to (1.8). �

Proposition 2.3. For any two collections of independent random variables (Xi)1≤i≤n
and (Yi)1≤i≤n with finite absolute moments of order min(p, 1),

ζ(s)
p

( n∑
i=1

Xi,

n∑
i=1

Yi

)
≤

n∑
i=1

ζ(s)
p (Xi, Yi). (2.3)

Proof. Arguing by induction, one may assume that n = 2. Let µi and νi denote the
distributions of Xi and Yi, respectively, and let µ = µ1 ⊗ µ2, ν = ν1 ⊗ ν2. Given a function
u in Up(s), we have∫ ∞

−∞
u d(µ− ν) =

∫ ∞
−∞

[ ∫ ∞
−∞

u(x1 + x2) d(µ1 − ν1)(x1)

]
dµ2(x2)

+

∫ ∞
−∞

[ ∫ ∞
−∞

u(x1 + x2) d(µ2 − ν2)(x2)

]
dν1(x1).

Since Up(s) is closed under the shifts, the inner integrals inside square brackets do not exceed

ζ
(s)
p (µ1, ν1) and ζ

(s)
p (µ2, ν2). Hence∫ ∞

−∞
u d(µ− ν) ≤ ζ(s)

p (µ1, ν1) + ζ(s)
p (µ2, ν2).

It remains to take the supremum over all admissible u. �
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3. Lower Bounds

Introduce the Fourier-Stieltjes transforms (characteristic functions)

f(t) =

∫ ∞
−∞

eitx dµ(x), g(t) =

∫ ∞
−∞

eitx dν(x) (t ∈ R),

associated to probability measures µ and ν in Pmin(p,1). The Zolotarev-type distances may
be bounded from below in terms of these functions as follows.

Proposition 3.1. For all t ∈ R and s > 0,

ζ(s)
p (µ, ν) ≥ sup

t6=0

|f(t)− g(t)|
2 |t|p

, 0 < p ≤ 1, (3.1)

ζ(s)
p (µ, ν) ≥ sup

t6=0

|f(t)− g(t)|
2A

(s)
p (t)

, p > 1, (3.2)

where

A(s)
p (t) = max

{ |t|m
sα

,
|t|
sp−1

, |t|p
}
.

Therefore, ζ
(s)
p (µ, ν) = 0 implies that f(t) = g(t) for all t ∈ R, and thus µ = ν.

Letting s→∞ in (3.1)-(3.2), we obtain a simpler lower bound on the Zolotarev distance

ζp(µ, ν) ≥ sup
t6=0

|f(t)− g(t)|
2 |t|p

, p > 0,

which makes sense when µ and ν have equal moments up to order m (in the case p > 1).

Proof. Let t 6= 0. If 0 < p ≤ 1, the function ut(x) = 1
A cos(tx) has a Lipschitz semi-norm

‖u‖Lip(p) ≤ 1, if A ≥ |t|p. Choosing A = |t|p, we obtain that

1

A
|Re(f(t)− g(t))| =

∣∣∣ ∫ ∞
−∞

ut d(µ− ν)
∣∣∣ ≤ ζ(s)

p (µ, ν). (3.3)

Similarly
1

A
| Im(f(t)− g(t))| =

∣∣∣ ∫ ∞
−∞

ut d(µ− ν)
∣∣∣ ≤ ζ(s)

p (µ, ν), (3.4)

thus proving (3.1). If p > 1, testing the conditions (1.2) and (1.9), we see that ut belongs to

Pp, if A ≥ A(s)
p (t). Applying (3.3)-(3.4) with A = A

(s)
p (t), we arrive at (3.2). �

There is a similar relationship of ζ
(s)
p (µ, ν) with the Lévy distance L(µ, ν), which is defined

as the infimum over all ε ≥ 0 such that

G(x− ε)− ε ≤ F (x) ≤ G(x+ ε) + ε for all x ∈ R. (3.5)

Here

F (x) = P{X ≤ x} = µ
(
(−∞, x]

)
, G(x) = P{Y ≤ x} = ν

(
(−∞, x]

)
denote the distribution functions of random variables X and Y with distributions µ and ν.
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Proposition 3.2. We have

ζ(s)
p (µ, ν) ≥ c(s)

p Lp+1(µ, ν) (3.6)

with constants c
(s)
p depending on (p, s) only. One may take c

(s)
p = 1 for 0 < p ≤ 1.

Proof. Fix x ∈ R, ε > 0, and consider a non-decreasing function u : R → R such that
u(y) = 0 for y ≤ x and u(y) = 1 for y ≥ x+ ε. If 1

A u belongs to Up(s) for a number A > 0,
then

Aζ(s)
p (µ, ν) ≥

∫ ∞
−∞

u d(ν − µ) ≥
∫ ∞
x+ε

u(y) dν(y)−
∫ ∞
x

u(y) dµ(y)

≥ (1−G(x+ ε))− (1− F (x)).

Hence F (x) ≤ G(x+ ε) +Aζ
(s)
p (µ, ν). One can interchange F and G, thus leading to

G(x− ε)−Aζ(s)
p (µ, ν) ≤ F (x) ≤ G(x+ ε) +Aζ(s)

p (µ, ν). (3.7)

If 0 < p ≤ 1, we choose the function

u(y) =
1

εp
(x− y)p, x ≤ y ≤ x+ ε,

in which case ‖u‖Lip(p) ≤ ε−p. The condition (1.2) is then fulfilled for the function u/A with

A = ε−p. Hence (3.7) holds with A = ε−p, and we obtain (3.5) with ε = (ζ
(s)
p (µ, ν))

1
p+1 . As

a result, we obtain (3.6) with c
(s)
p = 1.

In the case p > 1, let us take a C∞-smooth non-decreasing function h : R → [0, 1] such
that h(t) = 0 for t ≤ 0, h(t) = 1 for t ≥ 1, and define

u(y) = h
(y − x

ε

)
, y ∈ R.

Putting

Bp = max
1≤k≤m+1

max
0≤t≤1

|h(k)(t)|,

we have that the derivatives

u(k)(y) =
1

εk
h(k)

(y − x
ε

)
, 1 ≤ k ≤ m,

are bounded in absolute value by Bp ε
−p for 0 < ε ≤ 1. Hence the condition (1.9) is fulfilled

for the function u/A, if

A ≥ Bp ε−p max
{ 1

sp−1
,

1

sα

}
.

Turning to the condition (1.2), let us note that

‖u(m)‖Lip(α) =
1

εm
‖h(m)((y − x)/ε)‖Lip(α)

=
1

εm
1

εα
‖h(m)‖Lip(α) ≤

1

εp
‖h(m)‖Lip(1) ≤ Bp ε

−p.

Hence the condition (1.2) is fulfilled for u/A, if A ≥ Bp ε
−p. Consequently, this function

belongs to Up(s) for

A = Bp ε
−p max

{ 1

sp−1
,

1

sα
, 1
}
,
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in which case we obtain (3.7). Hence we also obtain (3.5) by requiring that

εp+1 = Bp max
{ 1

sp−1
,

1

sα
, 1
}
ζ(s)
p (µ, ν). (3.8)

If the right-hand side does not exceed 1, we then arrive at the desired inequality (3.6) with

c(s)
p =

(
Bp max

{ 1

sp−1
,

1

sα
, 1
})− 1

p+1
.

In the other case where the quantity in (3.8) is greater than 1, there is nothing to prove
since L(µ, ν) ≤ 1. �

4. Upper Bounds in Terms of Weighted Total Variation

We now turn to upper bounds for the Zolotarev-type distances. Write p = m+α with m ≥ 0
integer and 0 < α ≤ 1.

Proposition 4.1. Let s > 0. If the random variables X and Y have distributions µ and
ν in Pp, then

ζ(s)
p (X,Y ) ≤

m∑
k=1

sp−k

k!
|EXk − EY k|+ Γ(α+ 1)

Γ(p+ 1)

∫ ∞
−∞
|x|p |µ− ν|(dx). (4.1)

In particular, if X and Y have equal moments up to order m, then

ζp(X,Y ) ≤ Γ(α+ 1)

Γ(p+ 1)

∫ ∞
−∞
|x|p |µ− ν|(dx). (4.2)

Here |µ− ν| denotes the total variation measure for the signed measure µ− ν, so that the
integral in (4.1) describes the weighted total variation distance between µ and ν with weight
|x|p. In particular, it follows from (4.1) that

ζ(s)
p (X,Y ) ≤

m∑
k=1

sp−k

k!
|EXk − EY k|+ Γ(α+ 1)

Γ(p+ 1)
(E |X|p + E |Y |p). (4.3)

Note that the sum in (4.1) and (4.3) is vanishing for 0 < p ≤ 1.

Proof. We follow a simple argument by Zolotarev [12], where the upper bound (4.2) is
derived. Let u be an arbitrary function participating in the supremum (1.8). First suppose
that 0 < p ≤ 1. In this case, m = 0, p = α, and the class Up(s) is described by the Lipschitz
condition (1.2),

|u(x)− u(y)| ≤ |x− y|α, x, y ∈ R.
Choosing here y = 0, we get∣∣∣∣ ∫ ∞

−∞
u d(µ− ν)

∣∣∣∣ ≤ ∫ ∞
−∞
|u| d|µ− ν| ≤

∫ ∞
−∞
|x|α d|µ− ν|(x).

Taking the supremum over all u, we obtain (4.1).
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In the case p > 1, we apply the integral Taylor formula around zero

u(x) = u(0) +

m∑
k=1

xk

k!
u(k)(0) +

xm

(m− 1)!

∫ 1

0
(1− t)m−1

(
u(m)(tx)− u(m)(0)

)
dt.

This gives∫ ∞
−∞

u d(µ− ν) =
m∑
k=1

u(k)(0)

k!
(EXk − EY k)

+
1

(m− 1)!

∫ 1

0
(1− t)m−1

(∫ ∞
−∞

xm
(
u(m)(tx)− u(m)(0)

)
d(µ− ν)(x)

)
dt. (4.4)

By the Lipschitz condition (1.2), |u(m)(tx) − u(m)(0)| ≤ |tx|α. Hence, the inner integral in
(4.4) does not exceed in absolute value

tα
∫ ∞
−∞
|x|m+α d|µ− ν|(x).

As a result, using the condition (1.9), we get∣∣∣∣ ∫ ∞
−∞

u d(µ− ν)

∣∣∣∣ ≤ m∑
k=1

sp−k

k!
|EXk − EY k|

+
1

(m− 1)!

∫ 1

0
(1− t)m−1tα dt

∫ ∞
−∞
|x|p d|µ− ν|(x),

where the second last integral is equal to Γ(α+1)/Γ(p+1). It remains to take the supremum
over all admissible functions u. �

We are prepared to apply these results to the central limit theorem.

Proof of Theorem 1.5. First, we appeal to Propositions 2.2-2.3 with c = 1/
√
n and

with (Yi) being independent copies of a standard normal random variable Z. By (2.2)-(2.3),
we then get

ζ(s)
p (Zn, Z) = n−p/2 ζ(s

√
n)

p

( n∑
i=1

Xi,

n∑
i=1

Yi

)
≤ n−p/2

n∑
i=1

ζ(s
√
n)

p (Xi, Yi) = n−
p−2
2 ζ(s

√
n)

p (X,Z).

It remains to apply (4.3) which gives

ζ(s
√
n)

p (X,Z) ≤
m∑
k=1

n
p−k
2

k!
|EXk − EZk|+ Γ(α+ 1)

Γ(p+ 1)
(E |X|p + E |Z|p).

5. Upper Bounds in Terms of Power Transport Metrics

Turning to the transport distances, first let us give a few remarks about the one-dimensional
formula (1.10). In the case of the real line, the distance Wp may be related to the distribution
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functions

F (x) = µ
(
(−∞, x]

)
, G(x) = ν

(
(−∞, x]

)
(x ∈ R)

associated to probability measures µ and ν. In particular, the definition of W1 is simplified
to

W1(µ, ν) =

∫ ∞
−∞
|F (x)−G(x)| dx,

which is also called the mean or L1-distance. This formula was first obtained by Dall’Aglio
[4] and later rediscovered by Vallander [10]. In the case p = 2, there is the following repre-
sentation, apparently due to del Barrio (cf. [B-L], p. 13),

W 2
2 (µ, ν) =

∫ ∞
−∞

∫ ∞
−∞

(
F (x ∧ y)−G(x ∨ y)

)+
dx dy

+

∫ ∞
−∞

∫ ∞
−∞

(
G(x ∧ y)− F (x ∨ y)

)+
dx dy,

where we adopt the standard notations x∧y = min{x, y}, x∨y = max{x, y}, x+ = max{x, 0}
for real numbers x, y.

But, if p ≥ 1 is arbitrary, one has to use the inverse functions F−1(t) = inf{x ∈ R :
F (x) ≥ t}, which allow one to give an explicit expression

Wp(µ, ν) =
(∫ 1

0
|F−1(t)−G−1(t)|p dt

)1/p
. (5.1)

The latter implies (cf. [2])

Wp(µ, ν) = sup

∫ ∞
−∞
|u(F (x))− u(G(x))| dx, (5.2)

where the supremum is taken over all smooth functions u : R→ R such that∫ ∞
−∞
|u′(t)|q dt ≤ 1,

1

p
+

1

q
= 1.

The formula (5.2) may be extended to all functions F and G of bounded total variation
such that F (−∞) = G(−∞) = 0 and F (∞) = G(∞) = 1. This turns out to be useful in
the study of rates in the central limit theorem with respect to Wp, where for G one takes a
Chebyshev-Edgeworth approximation of the distribution of the sum of independent random
variables (and then in general the function G does not correspond to a positive measure).
The representation (5.2) also provides a general upper bound

Wp(µ, ν) ≤
∫ ∞
−∞
|F (x)−G(x)|1/p dx.

One can also mention another dual representation

W p
p (µ, ν) = sup

[ ∫ ∞
−∞

u dµ−
∫ ∞
−∞

v dν

]
,

where the supremum is running over all couples of µ-integrable functions u, v such that
u(x)− v(y) ≤ |x− y|p for all x, y ∈ R (cf. [1]).

Let us finally turn to the upper bounds (1.14)-(1.15) on ζ
(s)
p and ζp in terms of the transport

distances.
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Proof of Theorem 1.4. In order to bound Wp from below for the range p > 1 in terms
of Zolotarev-type distances, one may enlarge the class Up(s) in Definition 1.1 by requiring
that the condition (1.9) is fulfilled for k = 1 only. In this case,

ζ(s)
p ≤ sup

|u′|≤sp−1

∣∣∣ ∫ ∞
−∞

u dµ−
∫ ∞
−∞

u dν
∣∣∣

= sp−1 sup
|u′|≤1

∣∣∣ ∫ ∞
−∞

u dµ−
∫ ∞
−∞

u dν
∣∣∣ = sp−1ζ1(µ, ν).

On the other hand,

ζ1(µ, ν) = W1(µ, ν) ≤Wp(µ, ν).

This leads to the relation (1.14): ζ
(s)
p ≤ sp−1Wp.

Turning to the next relation, one may assume that the measures µ and ν are supported on
the finite interval [a.b] containing the origin, with s = b− a. Let p = m+ α with an integer
m ≥ 1 and 0 < α ≤ 1, and let u be a function participating in the supremum (1.8). By the
moment assumption, the difference of the integrals in (1.1) will not change, if we subtract
from u any polynomial of degree at most m. Hence

ζp(µ, ν) = sup

∣∣∣∣ ∫ ∞
−∞

u dµ−
∫ ∞
−∞

u dν

∣∣∣∣, (5.3)

where the supremum is taken over all m times differentiable functions u : R→ R whose m-th
derivatives have Lipschitz semi-norms

‖u(m)‖Lip(α) ≤ 1 (5.4)

and such that

u(k)(0) = 0, k = 1, . . . ,m. (5.5)

First consider the case 1 < p ≤ 2. Since u′(0) = 0, for all a ≤ y < x ≤ b,

|u(x)− u(y)| =
∣∣∣ ∫ x

y
(u′(z)− u′(0)) dz

∣∣∣ ≤ ∫ x

y
|z|α dz ≤ sα (x− y).

where we used (5.4) with m = 1. This means that ‖u‖Lip ≤ sα. Since α = p− 1, we get∣∣∣ ∫ ∞
−∞

u dµ−
∫ ∞
−∞

u dν
∣∣∣ ≤ sp−1ζ1(µ, ν) ≤ sp−1Wp(µ, ν).

By (5.3), we therefore obtain (1.14) noting that Γ(p) ≤ 1 for 1 ≤ p ≤ 2.
In the case p > 2 when m ≥ 2, we apply the integral Taylor formula to the derivative u′

up to the order m− 1. By the assumption (5.5), it implies that

u′(x) =
xm−1

(m− 2)!

∫ 1

0
(1− t)m−2

(
u(m)(tx)− u(m)(0)

)
dt.

Hence, by (5.4),

|u′(x)| ≤ |x|m−1

(m− 2)!

∫ 1

0
(1− t)m−2 |tx|α dt ≤ sp−1 Γ(α+ 1)

Γ(p)
≤ sp−1

Γ(p)
.

This means that ‖u‖Lip ≤ sp−1

Γ(p) , and as before, we get∣∣∣ ∫ ∞
−∞

u dµ−
∫ ∞
−∞

u dν
∣∣∣ ≤ sp−1

Γ(p)
ζ1(µ, ν) ≤ sp−1

Γ(p)
Wp(µ, ν).
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By (5.3), we therefore obtain (1.15). �

6. Proof of Theorem 1.3

For the proof of Theorem 1.3, one needs to construct functions on [0, 1] with special properties.
As before, we represent a given number p ≥ 1 as p = m+α with m ≥ 0 integer and 0 < α ≤ 1.

Definition 6.1. Let us call a non-decreasing function h : [0, 1]→ [0,∞) a p-function with

constant c > 0, if it is m times differentiable, h(0) = 0, h(k)(x) = 0 at x = 0 and x = 1,

|h(k)(x)| ≤ 1 (0 ≤ x ≤ 1, k = 1, . . . ,m), (6.1)

and if for all 0 ≤ x ≤ y ≤ 1,

h(m)(y)− h(m)(x) ≤ (y − x)α, (6.2)

h(y)− h(x) ≥ c (y − x)p. (6.3)

If h is m + 1 times differentiable, and the derivative h(m+1) is continuous, the condition
(6.2) is equivalent to |h(m+1)(x)| ≤ 1 on [0, 1] similarly to (6.1) with k = m+ 1.

For p = 1 (m = 0), the conditions (6.1)-(6.3) are simplified to

c (y − x) ≤ h(y)− h(x) ≤ y − x, 0 ≤ x ≤ y ≤ 1.

One may choose h(x) = x with c = 1 (which is best possible). As for larger values of p, we
employ the following assertion whose proof is postponed to the next sections (Lemma 9.1).

Lemma 6.2. For any p > 1, there exists a p-function with constant c ≥ (8p)−p.

Proof of Theorem 1.3. Suppose that both µ and ν are supported on the interval [a, b]
of length s = b− a. One may assume that these measures have smooth densities on the real
line, positive on (a, b) and vanishing on the endpoints of this interval.

The increasing bijection T (x) = G−1(F (x)) from this interval onto itself pushes forward
µ to ν. Moreover, as follows from (5.1),

W p
p (µ, ν) =

∫ b

a
|T (x)− x|p dµ(x).

Hence, if there is a function u ∈ Up(s) such that

|T (x)− x|p ≤ C (u(T (x))− u(x)), x ∈ [a, b], (6.4)

with some constant C, then after integration of this inequality over dµ(x) we would obtain

the desired relation W p
p (µ, ν) ≤ C ζ(s)

p (µ, ν).
The required function u can be constructed with the help of any p-function h. Note that

T (a) = a and T (b) = b. Without loss of generality, assume that the equation T (x) = x, that
is, F (x) = G(x), has finitely many solutions a = x0 < x1 < · · · < xn = b, n = 1, 2, . . .

Let us say that the intervals ∆l = (xl−1, xl), l = 1, . . . , n, is of type (A) if T (x) > x for
x ∈ ∆l, and it is of type (B) if T (x) < x for x ∈ ∆l. Then (6.4) holds true, as long as

(y − x)p ≤ Cεl (u(y)− u(x)), x < y, x, y ∈ ∆l, (6.5)
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where

εl =

{
1, if ∆l is of type (A),
−1, if ∆l is of type (B).

Using a p-function h, put u(x) = 0 for x ≤ a,

u(x) =
1

2
h(1)

l−1∑
i=1

εi(xi − xi−1)p +
1

2
εl(xl − xl−1)p h

( x− xl−1

xl − xl−1

)
(6.6)

for x ∈ ∆l, 1 ≤ l ≤ n, and u(x) = u(b−) for x ≥ b. By Definition 6.1, u is m-times
differentiable, its derivatives up to order m are vanishing outside [a, b], with

u(k)(x) =
1

2
εl(xl − xl−1)p−k h(k)

( x− xl−1

xl − xl−1

)
, x ∈ ∆l (1 ≤ l ≤ n),

for k = 1, . . . ,m. By the property (6.1), we have

|u(k)(x)| ≤ 1

2
(xl − xl−1)p−k ≤ 1

2
(b− a)p−k.

Now,

u(m)(x) =
1

2
εl(xl − xl−1)α h(m)

( x− xl−1

xl − xl−1

)
, x ∈ ∆l (1 ≤ l ≤ n).

If x, y ∈ ∆l, then, by the property (6.2),

|u(m)(x)− u(m)(y)| ≤ 1

2
|x− y|α. (6.7)

If these points belong to different intervals, say if x ∈ ∆i, y ∈ ∆j , 1 ≤ i < j ≤ n, then, by

(6.7), and since u(m)(xl) = 0 for all l = 1, . . . , n, we get

|u(m)(x)− u(m)(y)| ≤ |u(m)(x)− u(m)(xi)|+ |u(m)(xj−1)− u(m)(y)|
+ |u(m)(xi)− u(m)(xj−1)|

≤ 1

2
|x− xi|α +

1

2
|y − xj−1|α ≤ |x− y|α.

This means that u belongs to Up(s).
Finally, note that

u(y)− u(x) =
1

2
εl (xl − xl−1)p

(
h
( y − xl−1

xl − xl−1

)
− h
( x− xl−1

xl − xl−1

))
.

In particular, let x ∈ ∆l, y = T (x). If ∆l is of type (A), then T (x) > x, εl = 1, so, by (6.3),

u(T (x))− u(x) =
1

2
(xl − xl−1)p

(
h
(T (x)− xl−1

xl − xl−1

)
− h
( x− xl−1

xl − xl−1

))
≥ c

2
(T (x)− x)p,

where c is the parameter of the function h. In the other case where ∆l is of type (B), we
have T (x) < x, εl = −1, so that once more by (6.3),

u(T (x))− u(x) =
1

2
(xl − xl−1)p

(
h
( x− xl−1

xl − xl−1

)
− h
(T (x)− xl−1

xl − xl−1

))
≥ c

2
(x− T (x))p.
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In both cases

|T (x)− x|p ≤ 2

c
(u(T (x))− u(x)), (6.8)

which means that the required relation (6.4) is fulfilled with C = 2/c on the interval ∆l. Since
x and T (x) belong to one of such intervals, this relation is fulfilled on the whole interval [a, b].
It remains to apply Lemma 6.2. �

A similar proof also yields a quantitative variant of Theorem 1.2.

Theorem 6.3. For all µ, ν ∈ Pp, p > 1, we have

Wp(µ, ν) ≤ 8p
(
2ζp(µ, ν))1/p.

Proof. As before, we may assume that µ and ν are supported on a finite interval (a, b),
where these measures have smooth positive densities, vanishing on the endpoints of this
interval. One may also assume that the equation F (x) = G(x) has finitely many solutions
a = x0 < x1 < · · · < xn = b, n = 1, 2, . . . The remaining argument is based on the same
p-function h and the function u(x) as in (6.6). This function has the m-th derivative satisfying

|u(m)(x)− u(m)(y)| ≤ |x− y|α

for all x, y ∈ R. In addition, (6.8) is fulfilled, and we obtain the relation (6.4) with C = 2/c.
It remains to apply Lemma 6.2. �

7. Construction of p-functions

As before, we write the number p > 1 as p = m+ α with m ≥ 1 integer and 0 < α ≤ 1. One
may look for a good p-function in the form

h(x) =
1

A

∫ x

0
w(z)p−1 dz, 0 ≤ x ≤ 1 (A > 0). (7.1)

As a preliminary step towards Lemma 6.2, we first prove:

Lemma 7.1. Suppose that the function w has m continuous derivatives on [0, 1] and
possesses the following two properties:

1) w is increasing on [0, 1
2 ], symmetric about 1

2 , and w(0) = w(1) = 0;
2) w(t)/t is non-increasing in [0, 1] (for example, if w is concave).

Then the function h defined in (7.1) is a p-function with constant

c =
1

A

∫ 1

0
w(z)p−1 dz, (7.2)

where

A = max
{

max
1≤k≤m−1

∥∥(wp−1)(k)
∥∥
∞,
∥∥(wp−1)(m−1)

∥∥
Lip(α)

}
. (7.3)
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Proof. According to (7.1), the function h has the first m derivatives

h(k)(x) =
1

A

(
w(x)p−1

)(k−1)
, k = 1, . . . ,m,

which are vanishing at the endpoints of [0, 1] and satisfies the conditions (6.1)-(6.2) with
optimal constant (7.3).

Let us now see that the condition (6.3) is met with the parameter c given by (7.2). Since
w(x) is symmetric about the point x = 1

2 and is increasing on [0, 1
2 ], we have that, for each

fixed t ∈ (0, 1), the function v(x) = h(x + t) − h(x) is defined for 0 ≤ x ≤ 1 − t and has
derivative satisfying

v′(x) =
1

A

(
w(x+ t)p−1 − w(x)p−1

)
= 0⇐⇒ x =

1− t
2

.

Since v′(0) = 1
A w(t)p−1 > 0, necessarily v attains maximum at x = 1−t

2 and minimum at
x = 0 or at x = 1− t. Thus,

min
0≤x≤1−t

v(x) = min{v(0), v(1− t)} = min{h(t), h(1)− h(1− t)}.

But, by the symmetry of w about the point 1/2,

h(1)− h(1− t) =
1

A

∫ 1

1−t
w(z)p−1 dz =

1

A

∫ t

0
w(z)p−1 dz = h(t),

so that

h(x+ t)− h(x) ≥ h(t), 0 ≤ x ≤ 1− t.
Now, by the assumption 2), w(tz)/t is non-increasing in t ∈ [0, 1] for any fixed z ∈ (0, 1),

so is the function
1

tp
h(t) =

1

A

∫ 1

0

(w(tz)

t

)p−1
dz.

Hence it is minimized at t = 1, that is, h(t) ≥ h(1) tp. In other words, the worst situation in
the inequality (6.3) corresponds to x = 0 and y = 1, so that it is fulfilled with the optimal
value c = h(1). �

Let us simplify the assertion of Lemma 7.1 for the range 1 < p ≤ 2, when m = 1. In this
case, (7.3) yields

A = ‖wα‖Lip(α) = sup
0≤x<y≤1

|w(y)α − w(x)α|
(y − x)α

≤ sup
0≤x<y≤1

|w(y)− w(x)|α

(y − x)α
= ‖w‖αLip,

where we used a simple inequality (a+ b)α ≤ aα + bα (a, b ≥ 0). That is, we arrive at:

Corollary 7.2. Given p = 1+α, 0 < α ≤ 1, suppose that the function w has a continuous
derivative on [0, 1] and possesses the properties 1−2 from Lemma 7.1. Then h is a p-function
with constant (7.2), where

A = max
0≤x≤1

|w′(x)|α. (7.4)
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In the sequel, we follow Lemma 7.1 and are interested in the construction of p-functions h
whose constants c as large as possible. To see what could be a good choice, especially when
p is large, let us give a simple upper bound.

Proposition 7.3. If h is a p-function with constant c, then necessarily

c ≤ Γ(α+ 1)

Γ(p+ 1)
≤ 1

Γ(p+ 1)
.

Proof. Since h(k)(0) = 0 for k = 0, 1, . . . ,m, by the integral Taylor formula, we have

h(y) =
1

(m− 1)!

∫ y

0
h(m)(z)(y − z)m−1 dz, y ∈ [0, 1].

Applying in this formula the inequalities (6.2)-(6.3) with x = 0, we then get

c ≤ h(1) =
1

(m− 1)!

∫ 1

0
h(m)(z)(1− z)m−1 dz

≤ 1

(m− 1)!

∫ 1

0
zα(1− z)m−1 dz =

Γ(α+ 1)

Γ(p+ 1)
.

It remains to note that Γ(α+ 1) ≤ 1. �

Thus, a statement that h is a p-function with c = (Cp)−p with some positive absolute
constant C would be a good choice (modulo an exponential factor for growing p).

8. The case w(z) = z(1− z), 1 < p ≤ 3

In the proof of the inequality Wp ≤ Cp ζ1/p
p , E. Rio used the p-function h based on the choice

w(z) = sin(πz). To simplify technical computations, we prefer a slightly different choice
based on the formula (7.1) with the function w(z) = z(1− z), i.e.

h(x) =
1

A

∫ x

0
(z(1− z))p−1 dz, 0 ≤ x ≤ 1, (8.1)

where A = A(p) is described in (7.3) for all p > 1 or in (7.4) for the range 1 < p ≤ 2.
Since w is concave on [0, 1], all conditions of Lemma 7.1 are fulfilled, so we only need to

estimate from below the integral

I(p) =

∫ 1

0
w(z)p−1 dz

and to estimate from above the derivatives of wp−1 of order up to m − 1 together with the
Lipschitz semi-norm ‖(wp−1)(m−1)‖Lip(α). Here, p = m+α with m ≥ 1 integer and 0 < α ≤ 1.

Note that when 1 < p ≤ 2, we have m = 1 and

I(p) ≥
∫ 1

0
z(1− z) dz =

1

6
.
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Applying (7.4), we get

A = max
0≤x≤1

|w′(x)|α = max
0≤x≤1

|1− 2x|α ≤ 1.

Thus, I(p)
A(p) ≥ 1/6, which means that (8.1) defines a p-function with constant c = 1/6.

Next, consider the range 2 < p ≤ 3 in which case m = 2. Then, according to (7.3),

A(p) = max
{

max
0≤x≤1

|(wp−1)′(x)|, ‖(wp−1)′‖Lip(α)

}
. (8.2)

Since

(w(x)p−1)′ = (p− 1)w(x)α (1− 2x) (8.3)

and w ≤ 1, it follows that

|(wp−1)′(x)| ≤ p− 1 ≤ 2, x ∈ [0, 1].

In order to estimate the Lipschitz semi-norm in (8.2), one may use the relation

‖fg‖Lip(α) ≤ ‖f‖Lip(α) + ‖g‖Lip(α), (8.4)

holding whenever |f | ≤ 1 and |g| ≤ 1. Clearly, ‖1− 2x‖Lip(α) ≤ ‖1− 2x‖Lip ≤ 2. Also,

‖wα‖Lip(α) ≤ ‖w‖αLip = max
0≤x≤1

|w′(x)|α = 1.

Applying (8.4) in (8.3), we therefore obtain that ‖(wp−1)′‖Lip(α) ≤ 3. Hence, the constant in
(8.2) satisfies A(p) ≤ 3. In addition,

I(p) ≥
∫ 1

0
(z(1− z))2 dz =

1

30
.

Thus, A(p)
I(p) ≤ 90. One can summarize.

Lemma 8.1. The function h(x) in (8.1) is a p-function with constant c = 1
6 for the range

1 ≤ p ≤ 2 and with c = 1
90 for 2 < p ≤ 3. In both cases, c−1 < (8p)p.

9. The case w(z) = z(1− z), p > 3

Keeping notations of the previous section, now let p > 3 so that p = m+α, m ≥ 3. To bound
the derivatives of wp−1, we apply the well-known chain rule formula

dk

dxk
u(w(x)) = k!

∑ dNu(w)

dwN

∣∣∣
w=w(x)

k∏
r=1

1

pr!

( 1

r!

drw(x)

dxr

)pr
, (9.1)

where N = p1 + · · · + pk, and the summation is performed over all non-negative integer
solutions (p1, . . . , pk) to the equation

p1 + 2p2 + · · ·+ kpk = k.

Choosing w(x) = x(1− x), u(t) = tp−1, for the k-th derivative

yk(x) =
dk

dxk
w(x)p−1 =

dk

dxk
(x(1− x))p−1,
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this formula gives the expression

yk(x) = k!
∑

(p− 1)(p− 2) . . . (p−N)w(x)p−1−N
k∏
r=1

1

pr!

( 1

r!

drw(x)

dxr

)pr
.

Since w′(x) = 1 − 2x, w′′(x) = −2, and all other derivatives are vanishing, the above is
simplified to

yk(x) = k!
∑

p1+2p2=k

(p− 1) . . . (p− (p1 + p2))
(−1)p2

p1!p2!
wp1,p2(x), (9.2)

where the summation is performed over all non-negative integers p1, p2 such that p1+2p2 = k,
and where

wp1,p2(x) = w(x)p−1−(p1+p2) (1− 2x)p1 .

We need this formula with 1 ≤ k ≤ m− 1, in which case

p− 1− (p1 + p2) ≥ p− 1− k ≥ p−m ≥ α.

Since |wp1,p2(x)| ≤ 1 for all x ∈ [0, 1], from (9.2) it follows that

|yk(x)| ≤ k!
∑

p1+2p2=k

(p− 1) . . . (p− (p1 + p2))
1

p1!p2!
. (9.3)

In order to further estimate the right-hand side of (9.3), note that if we applied (9.1) to
the different function w(x) = x2 in place of x(1− x), we would obtain a similar formula

dk

dxk
x2(p−1) = k!

∑
p1+2p2=k

(p− 1) . . . (p− (p1 + p2))x2(p−1−(p1+p2)) 2p1

p1!p2!
xp1 .

In particular, at the point x = 1 the latter gives

k!
∑

p1+2p2=k

(p− 1) . . . (p− (p1 + p2))
2p1

p1!p2!
= (2(p− 1)) . . . (2(p− 1)− (k − 1))

≤ (2(p− 1))k. (9.4)

Therefore, according to (9.3), |yk(x)| ≤ (2(p− 1))k, so that

max
1≤k≤m−1

‖(wp−1)(k)‖∞ = max
1≤k≤m−1

‖yk‖∞ ≤ (2(p− 1))m−1. (9.5)

We also need to consider separately the case k = m− 1, when (9.2) becomes

ym−1(x) = (m− 1)!
∑

p1+2p2=m−1

(p− 1) . . . (p− (p1 + p2))
(−1)p2

p1!p2!
wp1,p2(x). (9.6)

Recall that wp1,p2(x) = w(x)p−n (1− 2x)p1 with n = p1 + p2 + 1 ≤ m. If n ≤ m− 1, we have

‖wp−n‖Lip(α) ≤ ‖wp−n‖Lip

= (p− n) max
0≤x≤1

w(x)p−n−1 =
p− n

4p−n−1
< 1.

In the case n = m, as we have already noticed,

‖wp−n‖Lip(α) = ‖wα‖Lip(α) ≤ ‖w‖αLip < 1.
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In both cases, ‖wp−n‖Lip(α) < 1. Taking into account the inequality (8.4), we get

‖wp1,p2‖Lip(α) ≤ ‖wp−n‖Lip(α) + ‖1− 2x‖Lip(α) < 3

for any choice of (p1, p2) participating in the expression for ym−1(x). Hence, from (9.6) and
(9.4), we get

‖ym−1‖Lip(α) ≤ 3 (2(p− 1))m−1.

Comparing this bound with (9.5), for the constant A = A(p) in (7.3), we thus obtain that

A(p) ≤ 3 (2(p− 1))m−1.

Finally,

I(p) ≥
∫ 1

0
(z(1− z))m dz =

m!2

(2m+ 1)!
.

Hence, by Lemma 7.1, the function h(x) = 1
A

∫ x
0 (z(1−z))p−1 dz is a p-function with constant

c satisfying

c−1 ≤ A(p)

I(p)
≤ 3 (2(p− 1))m−1 (2m+ 1)!

m!2
.

By Stirling’s approximation formula,

(2m+ 1)!

m!2
≤ (2m+ 1)

4mm2me−2m
√

4πm e1/(24m)

m2me−2m · 2πm
=

2m+ 1√
m

4m
1√
π
e1/(24m).

Hence, using (1− 1
p)p < 1/e, we get

c−1 ≤ 3e1/(24m)

2
√
π

8m (p− 1)m−1 2m+ 1√
m

≤ 3e1/(24m)

2
√
π

(8(p− 1))p
2m+ 1

(p− 1)
√
m
≤ 3e1/72

2e
√
π

2m+ 1

(m− 1)
√
m

(8p)p.

The sequence 2m+1
(m−1)

√
m

is decreasing in m ≥ 3, so it does not exceed 7
2
√

3
. But

3e1/72

2e
√
π

7

2
√

3
< 0.638 < 1.

Hence, h is a p-function with constant c satisfying c−1 < (8p)p. It remains to combine this
statement about the range p > 3 with Lemma 8.1.

Lemma 9.1. For all p > 1, the function h(x) = 1
A

∫ x
0 (z(1− z))p−1 dz is a p-function with

constant c−1 ≤ (8p)p.
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