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Abstract. We discuss several uniform bounds on the remainder term in the Fourier inver-
sion formula for increments of distribution functions. These bounds are illustrated on some
discrete examples related to the binomial distribution.

1. Introduction

The transition from characteristic functions to corresponding distribution functions is com-
monly performed with the help of the Fourier inversion formula

F (x)− F (y) =
1

2π
lim
T→∞

∫ T

−T

e−itx − e−ity

−it
f(t) dt. (1.1)

Here

f(t) =

∫ ∞
−∞

eitx dF (x) (1.2)

denotes the Fourier-Stieltjes transform (the characteristic function) of an arbitrary Borel prob-
ability measure µ on the real line with the associated distribution function F (x) = µ((−∞, x]),
and x, y ∈ R are points of continuity of F .

Although the convergence in (1.1) might not be uniform with respect to x, y, in various
asymptotic problems it is desirable to have a uniform bound on the error of approximation

δF (T ) = sup
x,y

∣∣∣∣(F (x)− F (y))− 1

2π

∫ T

−T

e−itx − e−ity

−it
f(t) dt

∣∣∣∣ (1.3)

for large values of T . One natural bound which immediately follows from (1.1) is given by

δF (T ) ≤ 2

π

∫ ∞
T

|f(t)|
t

dt. (1.4)

If the measure µ is absolutely continuous and has a density of bounded total variation, then
f(t) = O(1/t) as t → ∞, and (1.4) yields δF (T ) = O(1/T ). However, in general the integral
in (1.4) may be divergent.

For quantified statements, one may also use the Lévy (maximal) concentration function

QF (h) = sup
x

P{x ≤ X ≤ x+ h}

= sup
x

(
F (x+ h)− F (x−)

)
, h ≥ 0,
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where X is a random variable with distribution µ. For example, suppose that µ is unimodal
(that is, it has a density p(x) which is non-decreasing for x < a and is non-increasing for
x > a for some point a ∈ R). In this case, it was shown by Ushakov [9] that, for all t > 0,

|f(t)| ≤ QF (π/t)

(cf. also [10], p. 95). Using this pointwise bound in (1.4), we then obtain that

δF (T ) ≤ 2

π

∫ π/T

0

QF (h)

h
dh. (1.5)

In this note we consider a general situation (including discrete probability distributions),
thus removing any constraint on the shape of the distribution.

Proposition 1.1. Given a distribution function F , for all T > 0,

δF (T ) ≤ 2

1 + T
+ 4T

∫ 1

0

QF (h)

(1 + Th)2
dh. (1.6)

Under quasi-Lipschitz hypotheses posed on F , the last integral may be further estimated.

Corollary 1.2. If the distribution function F satisfies

|F (x)− F (y)| ≤ M
(
ε+ |x− y|

)
, x, y ∈ R, (1.7)

with some M ≥ 0 and ε ≥ 0, then for all T ≥ 2,

δF (T ) ≤ 2

T
+ 4M

(
ε+

log T

T

)
. (1.8)

If M ≥ 1, one may simplify the above inequality as the representation

F (x)− F (y) =
1

2π

∫ T

−T

e−itx − e−ity

−it
f(t) dt+ θM

(
ε+

log T

T

)
with a quantity θ bounded in absolute value.

The logarithmic term in (1.8) cannot be removed under the condition (1.7), even with
ε = 0, that is, when µ has a bounded density p. In this case, let us introduce the functional

M(F ) = ‖F‖Lip = ess supx p(x),

where ‖F‖Lip denotes the Lipschitz semi-norm (with respect to the Euclidean distance).

Proposition 1.3. Given M > 0 and T ≥ 2M , we have

c0
log(T/M)

T/M
≤ sup

M(F )=M
δF (T ) ≤ c1

log(T/M)

T/M
(1.9)

with some absolute constants c1 > c0 > 0.

These relations are invariant under linear transformations: (1.9) does not change when the
random variable X with distribution function F is multiplied by any positive constant.

As for distribution functions of class Lip(α) with parameter α < 1, there is a similar upper
bound, but without the logarithmic term.
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Corollary 1.4. Let 0 < α < 1. If the distribution function F satisfies

|F (x)− F (y)| ≤ M
(
ε+ |x− y|α

)
, x, y ∈ R,

with some M ≥ 0 and ε ≥ 0, then for all T > 0,

δF (T ) ≤ 2

T
+ 4M

(
ε+

1

(1− α)Tα

)
.

If ε = 0, this bound is consistent with what is obtained on the basis of the inequality (1.5),
up to an α-depending factor.

The right-hand side in (1.6) can also be related to the characteristic function f associated
to F , by applying Esseen’s upper bound

QF (h) ≤ ch
∫ 1/h

0
|f(t)| dt, h > 0,

where c is an absolute constant (cf. [5]). This leads to the inequality of the form

δF (T ) ≤ 2

T
+
c log T

T

∫ T

0
|f(t)| dt, T ≥ 2.

However, here the logarithmic term may be removed. One smoothing-type result by Prawitz
[7] implies the following sharpening of the upper bound (1.4).

Proposition 1.5. Let X be a random variable with distribution function F and charac-
teristic function f . For any T > 0,

δF (T ) ≤ 2

T

∫ T

0
|f(t)| dt. (1.10)

In particular, if f(t) is non-negative, then with some absolute constant c > 0,

δF (T ) ≤ cP
{
|X| ≤ 1/T

}
. (1.11)

If additionally X has a bounded density (which is equivalent to the integrability of f when
this function is non-negative), the latter inequality yields

δF (T ) ≤ 2c
M(F )

T
. (1.12)

This improves upon (1.8).

2. Functions of bounded total variation

Proposition 1.1 is a consequence of a more general assertion for the class of functions F of
bounded total variation on the real line. Denote by |dF (z)| the variation of F viewed as a
finite positive Borel measure on the real line with total variation norm ‖F‖TV.
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Proposition 2.1. Let F be a function of bounded total variation with the Fourier-Stieltjes
transform f defined by (1.2). For all x, y ∈ R and T > 0,

F (x)− F (y) =
1

2π

∫ T

−T

e−itx − e−ity

−it
f(t) dt

+ θ1

∫ ∞
−∞

|dF (z)|
1 + T |z − x|

+ θ2

∫ ∞
−∞

|dF (z)|
1 + T |z − y|

(2.1)

with some complex numbers θ1 and θ2 such that |θj | ≤ 1.

The last two integrals in (2.1) are bounded by ‖F‖TV. Since also |F (x)−F (y)| ≤ ‖F‖TV,
we see that the error function (1.3) is uniformly bounded, namely,

δF (T ) ≤ 3 ‖F‖TV, T ≥ 0.

Moreover, by the Lebesgue dominated convergence theorem, these integrals are convergent to
zero as T → ∞, as long as x and y are points of continuity of F , and then in the limit we
return to (1.1). Hence, (2.1) may serve as a quantification of the Fourier inversion formula.

Now, introduce the function

R(t) =

∫ t

0

sinu

u
du, t ∈ R.

It satisfies R(t)→ π
2 as t→∞ and R(−t) = −R(t) for any t > 0. Also put

r(t) =

∫ ∞
t

sinu

u
du =

π

2
−R(t). (2.2)

As a preliminary step towards the proof of Proposition 2.1, first let us prove:

Lemma 2.2. For all t ≥ 0,

|r(t)| ≤ π

1 + t
. (2.3)

Proof. Integrating by parts with t > 0, we have∫ ∞
t

sinu

u
du =

cos t

t
−
∫ ∞
t

cosu

u2
du, (2.4)

implying

|r(t)| ≤ 2

t
≤ π

1 + t
for t ≥ t0 ≡

1
π
2 − 1

∼ 1.752...

To treat the values 0 ≤ t ≤ t0, consider the function

ψ(t) = r(t)− c

1 + t
=

π

2
−
∫ t

0

sinu

u
du− π

1 + t
.

Using the inequality sinu ≥ u− u3

6 (u > 0), it follows that

ψ(t) ≤ v(t) ≡ π

2
− t+

t3

18
− π

1 + t
, t ≥ 0.
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To show that v(t) ≤ 0 in the interval 0 ≤ t ≤ t0, consider the polynomial

P (t) = (1 + t)v(t) = (1 + t)
(π

2
− t+

t3

18

)
− π.

We have P (0) = v(0) = −π
2 and

P ′(t) =
π

2
− 1− 2t+

t2

6
+

2t3

9
, P ′(0) =

π

2
− 1.

Since also P ′′(t) = 2
3 (t + 2)(t − 3

2), we conclude that P (t) is concave in 0 ≤ t ≤ 3
2 and is

convex in t ≥ 3
2 . This implies that on the first interval

P (t) ≤ P (0) + P ′(0)t ≤ −π
2

+
(π

2
− 1
) 3

2
=
π

4
− 3

2
< 0.

Since P (t0) = −2.82... < 0, we also have, by the convexity, that P (t) ≤ 0 in 3
2 ≤ t ≤ t0. Thus

P (t) ≤ 0 for all 0 ≤ t ≤ t0, and the same is true for v(t) and ψ(t) as well, that is, r(t) ≤ π
1+t .

As a next step, consider the function

ψ(t) = −r(t)− π

1 + t
= −π

2
+

∫ t

0

sinu

u
du− π

1 + t
.

Using sinu ≤ u, we have ψ(t) ≤ v(t) ≡ −π
2 + t− π

1+t . The function v(t) is increasing, so that

v(t) ≤ v(t0) < v(2) = 2− 5π

6
< 0.

Thus, ψ(t) ≤ 0, that is, −r(t) ≤ π
1+t . The two bounds yield the desired inequality (2.3). �

Proof of Proposition 2.1. By the Fubini theorem,

I ≡
∫ T

−T

e−itx − e−ity

−it
f(t) dt =

∫ ∞
−∞

[ ∫ T

−T

eit(z−x) − eit(z−y)

−it
dt

]
dF (z)

= −2

∫ ∞
−∞

[ ∫ T

0

sin(t(z − x))− sin(t(z − y))

t
dt

]
dF (z).

Hence, in terms of the function R we obtain a general representation

1

2
I =

∫ ∞
−∞

[
R(T (z − y))−R(T (z − x))

]
dF (z).

We may assume that x, y are points of continuity of F and x > y. Splitting the integration
into the three regions, write

1

2
I =

∫ y

−∞

[
R(T (x− z))−R(T (y − z))

]
dF (z)

+

∫ ∞
x

[
R(T (z − y))−R(T (z − x))

]
dF (z)

+

∫ x

y

[
R(T (z − y)) +R(T (x− z))

]
dF (z).
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Equivalently, by the definition (2.2),

1

2
I =

∫ y

−∞

[
r(T (y − z))− r(T (x− z))

]
dF (z)

+

∫ ∞
x

[
r(T (z − x))− r(T (z − y))

]
dF (z)

+

∫ x

y

[
π − r(T (z − y))− r(T (x− z))

]
dF (z).

Let us rewrite this equality as

1

2
I − π(F (x)− F (y)) =

∫ y

−∞

[
r(T (y − z))− r(T (x− z))

]
dF (z)

+

∫ ∞
x

[
r(T (z − x))− r(T (z − y))

]
dF (z)

−
∫ x

y

[
r(T (z − y)) + r(T (x− z))

]
dF (z). (2.5)

Applying the bound (2.3), we get∣∣∣ 1

2
I − π(F (x)− F (y))

∣∣∣ ≤ ∫ y

−∞

π

1 + T (y − z)
dF (z) +

∫ y

−∞

π

1 + T (x− z)
dF (z)

+

∫ ∞
x

π

1 + T (z − x)
dF (z) +

∫ ∞
x

π

1 + T (z − y)
dF (z)

+

∫ x

y

( π

1 + T (z − y)
+

π

1 + T (x− z)

)
dF (z).

As a result,∣∣∣ 1

2π
I − (F (x)− F (y))

∣∣∣ ≤ ∫ ∞
−∞

( 1

1 + T |z − y|
+

1

1 + T |x− z|

)
dF (z).

�

3. Proof of Proposition 1.1, Corollaries 1.2 and 1.4

From now on, let F be a distribution function. In this case the relation (2.1) is simplified to

F (x)− F (y) =
1

2π

∫ T

−T

e−itx − e−ity

−it
f(t) dt

+ θ1

∫ ∞
−∞

dF (z)

1 + T |z − x|
+ θ2

∫ ∞
−∞

dF (z)

1 + T |z − y|
(3.1)

with some complex numbers θj such that |θj | ≤ 1.

Proof of Proposition 1.1. In order to estimate the last integral in (3.1), assume without
loss of generality that y = 0 and that it is the point of continuity of F . First note that∫ ∞

a

1

1 + Tz
dF (z) ≤ 1

1 + Ta
(1− F (a)),
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where a > 0 is a point of continuity of F . On the other hand, integrating by parts, we have∫ a

0

1

1 + Tz
dF (z) =

1

1 + Ta
(F (a)− F (0)) + T

∫ a

0

F (z)− F (0)

(1 + Tz)2
dz

≤ 1

1 + Ta
(F (a)− F (0)) + T

∫ a

0

QF (z)

(1 + Tz)2
dz.

Combining the two estimates and letting a→ 1, we get∫ ∞
0

1

1 + Tz
dF (z) ≤ 1

1 + T
(1− F (0)) + T

∫ 1

0

QF (z)

(1 + Tz)2
dz.

By a similar argument,∫ 0

−∞

1

1 + T |z|
dF (z) ≤ 1

1 + T
F (0) + T

∫ 1

0

QF (z)

(1 + Tz)2
dz,

so that ∫ ∞
−∞

1

1 + T |z|
dF (z) ≤ 1

1 + T
+ 2T

∫ 1

0

QF (z)

(1 + Tz)2
dz.

More generally, for all y ∈ R, we get∫ ∞
−∞

1

1 + T |z − y|
dF (z) ≤ 1

1 + T
+ 2T

∫ 1

0

QF (z)

(1 + Tz)2
dz.

Hence, by (3.1), the error function (1.3) admits the upper bound (1.6). �

Proof of Corollaries 1.2 and 1.4. In the setting of Corollary 1.2, QF (h) ≤ M(ε + h)
for all h ≥ 0, and then the integral in (1.6) does not exceed

M

∫ 1

0

ε+ h

(1 + Th)2
dh ≤ Mε

T
+
M

T 2

(
log(1 + T )− T

1 + T

)
.

Here, the expression in the brackets is smaller than log T for T ≥ 2.
In Corollary 1.4, we assume that

QF (h) ≤M(ε+ hα), h ≥ 0,

and then the integral in (1.6) is bounded by

M

∫ ∞
0

ε+ hα

(1 + Th)2
dh =

Mε

T
+

M

Tα+1

∫ ∞
0

uα

(1 + u)2
du

<
Mε

T
+

M

Tα+1

∫ ∞
0

du

(1 + u)2−α

=
Mε

T
+

M

(1− α)Tα+1
.

�

Remark. In connection with the use of the function QF in Proposition 1.1, one may also
recall the Kawata mean concentration function

CF (h) =
1

h

∫ ∞
−∞

(
F (x+ h)− F (x)

)2
dx, h ≥ 0,
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which is related to the maximal concentration function via the inequalities

1

2
QF (h/2)2 ≤ CF (h) ≤ QF (h).

The relationship between the behaviour of QF (h) and CF (h) at h = 0 in the form of Lipschitz
properties of F and that of the characteristic function f(t) at infinity were studied by Kawata
and Makabe ([3], [4]). Some portion of connections is based on the Parseval identity

C(2h) =
1

2π

∫ ∞
−∞

sin2(ht)

ht2
|f(t)|2 dt.

4. Proof of Proposition 1.3

First let us verify that the inequality (1.9) is invariant with respect to linear transformations
of a random variable X with distribution functions F . Define

IF,T (x, y) =

∫ T

−T

e−itx − e−ity

−it
f(t) dt,

where f is the characteristic function of X. Given λ > 0, the random variable λX has
respectively the distribution and characteristic functions

Fλ(x) = F (x/λ), fλ(t) = f(λt) (x, t ∈ R).

Hence

IFλ,T (x, y) =

∫ λT

−λT

e−itx/λ − e−ity/λ

−it
f(t) dt = IF,λT (x/λ, y/λ),

and it follows from the definition (1.3) that

δFλ(T ) = δF (λT ).

In addition, M(Fλ) = M(F )/λ. Therefore, if (1.9) holds for F with an arbitrary value
T ≥ 2M(F ), it will hold automatically for Fλ with T ≥ 2M(Fλ).

As a consequence, to prove an upper bound in (1.9), we may assume without loss of
generality that M = 1. But then, by Corollary 1.2, for any T ≥ 2,

δF (T ) ≤ 2

T
+ 4

log T

T
≤ 7

log T

T
,

that is, we obtain (1.9) with c1 = 7.
Let us now turn to the lower bound. By the homogeneity with respect to X, assume again

that M = 1. Then we need to show that

δF (T ) ≥ c0
log T

T
(4.1)

for some distribution function F such that M(F ) = 1. So, fix T ≥ 2.
Suppose that F corresponds to the probability measure µ which is supported on the interval

(0, 2π) and is symmetric about the point π. In particular,

x = 2π + 2πm/T and y = −2πm/T

are points of continuity of F for any integer m ≥ 1 (which will be chosen later on), with
F (x) = 1, F (y) = 0, so that F (x)− F (y) = 1.
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As in the proof of Proposition 2.1, define

I =

∫ T

−T

e−itx − e−ity

−it
f(t) dt.

Note that the first two integrals in (2.5) are vanishing, and this identity is simplified to

1

2
I − π = −

∫ 2π

0

(
r(T (z − y) + r(T (x− z))

)
dF (z)

= −2

∫ 2π

0
r
(
T (z − y)

)
dF (z),

where we used the symmetry assumption in the last step. This gives

δF (T ) ≥ 2

π

∫ 2π

0
r
(
T (z − y)

)
dF (z). (4.2)

Put T0 = [T ] and define ∆ to be the union of the intervals of the form

∆k =
2π

T
(k − h, k + h), k = 1, . . . , T0 − 1,

with 0 < h < 1/2, so that these intervals are disjoint. In this case, ∆ is contained in (0, 2π)
and has the Lebesgue measure

|∆| =
T0−1∑
k=1

|∆k| = 4πh
T0 − 1

T
.

Moreover, let us require that |∆| = 1, that is, h = 1
4π

T
T0−1 . Since the last ratio is maximized

for T ↑ 3, we have
1

4π
≤ h ≤ 3

4π
. (4.3)

Now, define µ to be the uniform distribution on ∆, so that M(F ) = 1 and, by (4.2),

δF (T ) ≥ 2

π

∫
∆
r
(
T (z − y)

)
dz. (4.4)

It remains to properly estimate the above integrand. For this aim, let us integrate in (2.4)
once more, which leads to

r(t) =
cos t

t
+

sin t

t2
− 2

∫ ∞
t

sinu

u3
du.

The last integral is small than 1/(2t2), so,

r(t) ≥ cos t

t
− 2

t2
=

1

t

(
cos t− 2

t

)
, t > 0. (4.5)

Let t = T (z−y) for z ∈ ∆k, 1 ≤ k ≤ T0. Then t = 2π(k+ θh) + 2πm for some θ ∈ (−h, h),
so that

cos t = cos(2πθ) ≥ cos(2πh) ≥ cos(3/2) = 0.0707...,

where we made use of the upper bound in (4.3). On the other hand,

t ≥ 2π(k − h) + 2πm ≥ 2πm.
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It follows that

cos t− 2

t
≥ cos(3/2)− 1

πm
> 0.01,

where in the last step we choose m = 6. Then also t ≤ 2π(k + h) + 2πm < 2π(k + 7), and by
(4.5),

r(t) ≥ 0.01

2π(k + 7)
, t = T (z − y), z ∈ ∆k.

Returning to (4.4), this gives with some absolute constant c0 > 0

δF (T ) ≥ 2

π

T0∑
k=1

0.01

2π(k + 7)
|∆k| =

0.08h

πT

T0∑
k=1

1

k + 7
≥ c0

log T

T
,

where we made use of the lower bound in (4.3). This proves (4.1). �

5. Proof of Proposition 1.5

We apply smoothing inequalities by Prawitz [7]: Given an arbitrary distribution function F
with characteristic function f , for any point x ∈ R,

1

2
−
∫ T

−T
e−itxKT (−t)f(t) dt ≤ F (x) ≤ 1

2
+

∫ T

−T
e−itxKT (t)f(t) dt. (5.1)

Here, for a fixed value T > 0, the kernel is defined by

KT (t) =
1

T
K
( t
T

)
,

where

K(t) =
1

2
(1− |t|) +

i

2

[
(1− |t|) cot(πt) +

sign(t)

π

]
, |t| < 1.

The integrals in (5.1) are understood as principal values, that is, as limits of the integrals over
the regions ε < |t| < T for ε ↓ 0. It was also mentioned in [7] that∣∣∣K(t)− i

2πt

∣∣∣2 =
1

4
(1− |t|)2

[
1 +

( 1

πt
− cot(πt)

)]2
,

which can be estimated by means of the elementary bound

cotx ≥ 1

x
− x

3

π2

π2 − x2
, 0 < x < π.

As easy to see, this leads to ∣∣∣K(t)− i

2πt

∣∣∣ ≤ 1

2
, |t| ≤ 1.

Applying this bound in (5.1), we arrive at the representation

F (x) =
1

2
+

1

2π

∫ T

−T

e−itx

−it
f(t) dt+R (5.2)

with a remainder term satisfying

|R| ≤ 1

2T

∫ T

−T
|f(t)| dt. (5.3)
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Thus, for all x, y ∈ R,

F (x)− F (y) =
1

2π

∫ T

−T

e−itx − e−ity

−it
f(t) dt+

θ

T

∫ T

−T
|f(t)| dt

with some complex number θ = θ(x, y, T ) such that |θ| ≤ 1. As a consequence, similarly to
the Esseen’s bound with h = 1/T , we obtain the desired inequality (1.10).

If f(t) is non-negative, the normalized integral in (1.10) is equivalent to P{|X| ≤ 1/T},
assuming that the random variable X has the distribution function F (cf. e.g. [6], p. 27).
Therefore, in this case (1.10) may be written up to some absolute constant c as (1.11). �

Remarks. With the factor 1/T in front of the integral in (5.3), the representation (5.2)
appeared in [1], Lemma 4.1.

Let us explain why the inequality (1.11) improves upon (1.4). Consider the function

I(t) =

∫ t

0
|f(s)| ds, t ≥ 0,

assuming for a moment that I(t) = o(t) as t→∞. Then, integrating by parts, we have∫ ∞
T

|f(t)|
t

dt =

∫ ∞
T

1

t
dI(t) =

I(T )

T
+

∫ ∞
T

I(t)

t2
dt ≥ I(T )

T
.

In this step, the assumption on the growth of I(t) may be dropped. Hence, (1.11) implies

δF (T ) ≤ 2

∫ ∞
T

|f(t)|
t

dt,

i.e. (1.4) with an extra factor.

6. Squares of Bernoulli sums

In order to illustrate Corollary 1.2 and Corollary 1.4 on specific examples, let us fix an integer
d ≥ 1 and consider the normalized sums

Z(d)
n =

1√
n

(X1 + · · ·+Xn)

of independent random vectors Xk uniformly distributed in the discrete cube {−1, 1}d. By

the central limit theorem, the distributions of Z
(d)
n are weakly convergent as n → ∞ to the

distribution of the random vector Z(d) in Rd with the standard normal law.
Let F ∗dn and F ∗d denote respectively the distribution functions of the random variables

ξ(d)
n =

1

2

∣∣Z(d)
n

∣∣2 and ξ(d) =
1

2

∣∣Z(d)
∣∣2.

If d = 1, we simplify the notations: Zn = Z
(1)
n , Z = Z(1), ξn = ξ

(1)
n , ξ = ξ(1), and similarly for

the distribution functions Fn = F
(1)
n , F = F (1).

Note that 2ξn is the square of the sum of n independent Bernoulli random variables taking

the values ±1 with probability 1/2, and ξ
(d)
n is the sum of d independent copies of ξn. Hence

F ∗dn and F ∗d represent the d-th convolution power of Fn and F , respectively.
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First let us look at the one-dimensional case d = 1. In terms of the distribution functions
Φn(x) = P{Zn ≤ x} and Φ(x) = P{Z ≤ x}, we have

Fn(x) = P{|Zn| ≤
√

2x} = 2 Φn(
√

2x)− 1,

F (x) = P{|Z| ≤
√

2x} = 2 Φ(
√

2x)− 1,

for all x ≥ 0. It is well-known that, up to some absolute constant c > 0,

|Φn(x)− Φn(y)| ≤ c
( 1√

n
+ |x− y|

)
, x, y ∈ R,

and obviously |Φ(x)− Φ(y)| ≤ |x− y|. Thus

Fn(x)− Fn(y) ≤ c
( 1√

n
+
√
x−√y

)
,

and F (x)− F (y) ≤
√
x−√y for x > y ≥ 0. Since

√
x−√y ≤

√
x− y, we are in position to

apply Corollary 1.4 with α = 1/2. Introduce the characteristic functions

fn(t) = E eitZ
2
n/2 =

∫ ∞
−∞

eitx
2/2 dΦn(x), (6.1)

f(t) = E eitZ
2/2 =

∫ ∞
−∞

eitx
2/2 dΦ(x) =

1√
1− it

, t ∈ R, (6.2)

associated with the distribution functions Fn and F .

Corollary 6.1. For all x, y ∈ R and T > 0,

Fn(x)− Fn(y) =
1

2π

∫ T

−T

e−itx − e−ity

−it
fn(t) dt+ θ

( 1√
n

+
1√
T

)
,

F (x)− F (y) =
1

2π

∫ T

−T

e−itx − e−ity

−it
f(t) dt+

θ√
T
,

where θ is bounded in absolute value by an absolute constant.

Thus, if T ≥ n, then δFn(T ) ≤ c√
n

and similarly for F . Note that Fn(x) makes a jump of

order 1√
n

at x = 0 for large even values of n.

7. Approximation for convolutions F ∗2n

If d ≥ 2, the remainder term in the Fourier inversion formula is improved for the d-th con-
volution power F ∗dn of the distribution Fn with its characteristic function fn(t)d (recall that
fn(t) was defined in (6.1)). To see this, here we focus on the case d = 2. In what follows, we
use the sequence

εN =
log log logN

log logN
, N ≥ 3

(putting ε1 = ε2 = 0 for definiteness).
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Corollary 7.1. For all x, y ∈ R and T ≥ 2,

F ∗2n (x)− F ∗2n (y) =
1

2π

∫ T

−T

e−itx − e−ity

−it
fn(t)2 dt+ θnεn

( 1

n
+

log T

T

)
,

where the quantity θ is bounded in absolute value by an absolute constant.

Note that the random variable ξ(2) has a standard exponential distribution with distribu-
tion function

F ∗2(x) = P
{
ξ(2) ≤ x

}
= 1− e−x (x ≥ 0)

and characteristic function f(t)2 = 1
1−it , cf. (6.2). Therefore, by (1.4),

F ∗2(x)− F ∗2(y) =
1

2π

∫ T

−T

e−itx − e−ity

−it
f(t)2 dt+

θ

T
.

For the proof of the corollary, we need an upper bound for the number of representations
of a natural number N as the sum of two squares of integers, which is commonly denoted as

r2(N) = card
{

(k1, k2) : k2
1 + k2

2 = N, k1, k2 ∈ Z
}
.

It is well-known that r2(N) = o(N ε) for any ε > 0 as N tends to infinity. Let us give a more
precise statement which seems to be also known, although we cannot give a precise reference.

Lemma 7.2. Given λ > 1
2 , we have r2(N) ≤ NλεN for all N large enough.

Proof. One may employ the following representation (cf. [2]): If

N = 2αpα1
1 . . . pαrr qβ11 . . . qβss

is the decomposition of N into prime factors, where pi ≡ 1 (mod 4), qj ≡ 3 (mod 4), then

r2(N) = 4 (α1 + 1) . . . (αr + 1), if all βj are even,

and r2(N) = 0, if some of βj is odd. Therefore, starting from the prime factorization without
the above specification

N = pα1
1 . . . pαrr , 2 ≤ p1 < · · · < pr, (7.1)

we have

r2(N) ≤ 4 (α1 + 1) . . . (αr + 1) ≤ 2r+2 α1 . . . αr. (7.2)

Necessarily, N ≥ p1 . . . pr ≥ r! implying that, for all N large enough,

r ≤ λ logN

log logN
. (7.3)

Indeed, assume that the opposite inequality holds true. Then, given ε > 0, we would get

log r − 1 > log λ− 1 + log logN − log log logN > (1− ε) log logN

for sufficiently large N . Using r! ≥ ( re)r
√
r and choosing ε = 2λ−1

2λ+1 , this would lead to

log(r!) ≥ r (log r − 1) +
1

2
log r

> λ
logN

log logN
· (1− ε) log logN +

1− ε
2

log logN = logN,



14 Sergey G. Bobkov

contradicting to r! ≤ N . Thus, by (7.3) with λ ≤ 1/ log 2,

2r = er log 2 ≤ exp
{ logN

log logN

}
,

so that, by (7.2),

r2(N) ≤ 4α1 . . . αr exp
{ logN

log logN

}
. (7.4)

Now, taking the logarithm in (7.4), let us maximize the concave function in r real variables

u(α1, . . . , αr) = logα1 + · · ·+ logαr, α1, . . . , αr ≥ 0,

subject to the linear condition c1α1 + · · ·+ crαr = c with ci = log pi and c = logN , according
to (7.1). Treating αr as a function of the remaining variables and assuming that r ≥ 2,

∂u

∂αi
=

1

αi
− ci
cr

1

αr
= 0, 1 ≤ i ≤ r − 1,

which means that the point of maximum of u satisfies ciαi = b for all i ≤ r. Since the sum of
ciαi is c, we get b = c/r, αi = c/(cir), so

maxu = log(α1 . . . αr) = log
cr

rrc1 . . . cr
.

This also holds for r = 1. Using c1 . . . cr ≥ log 2, we obtain that

α1 . . . αr ≤
( logN

r log 2

)r
.

But the function ( logN
x log 2)x is positive and increasing for 1 ≤ x < 1

e log 2 logN . In view of (7.3),

our values of r belong to this interval for all N large enough as long as 1
2 < λ < 1

e log 2 ∼ 0.53...

which may be assumed. We then get( logN

r log 2

)r
≤

(λ log logN

log 2

) λ logN
log logN

= exp
{ λ logN

log logN
(log log logN + log λ− log log 2)

}
.

It remains to recall (7.4) and note that λ may be as close to 1
2 as we wish. �

Proof of Corollary 7.1. Recall that ξ
(2)
n = 1

2Z
2
n+ 1

2Z
′2
n , where Z ′n is an independent copy

of Zn. By the local limit theorem for the binomial distributions,

P
{
Zn =

k√
n

}
≤ c√

n
, k ∈ Z, (7.5)

with some absolute constant c > 0. Since the random variable ξ
(2)
n takes values of the form

N
2n with N = k2

1 + k2
2 (k1, k2 ∈ Z), the inequality (7.5) yields

P
{
ξ(2)
n =

N

2n

}
=

∑
k21+k22=N

P
{
Zn =

k1√
n

}
P
{
Zn =

k2√
n

}
≤ c2

n
r2(N).
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Note that |Zn| ≤
√
n, so, we only need to consider the values N ≤ 2n2. In this case, since nεn

is increasing for large n, while ε2n2 ∼ εn, we have, by Lemma 7.2, for all n large enough

r2(N) ≤ n
3
4
ε2n2 ≤ nεn .

Thus,

P
{
ξ(2)
n =

N

2n

}
≤ c

n
nεn . (7.6)

Now, suppose that x > y ≥ 0 and 1
n ≤ x − y ≤ 1. The interval [y, x] contains at most

[2n(x− y)] + 1 ≤ 3n(x− y) points of the form N/(2n) with integers N . Hence,

F ∗2n (x)− F ∗2n (y) =
∑

y< N
2n
≤x

P
{
ξn =

N

2n

}
≤ 3cnεn (x− y).

Combining this with (7.6), it follows that F
(2)
n satisfies the quasi-Lipschitz condition

|F ∗2n (x)− F ∗2n (y)| ≤ cnεn
( 1

n
+ |x− y|

)
(7.7)

for all x, y ∈ R up to some absolute constant c > 0. We are in position to apply Corollary 1.2
to Fn with ε = 1/n and M = cn2εn . �

8. Approximation for convolution powers F ∗3n

As the last example, consider the distribution functions F ∗3n of the random variables

ξ(3)
n =

1

2
Z2
n +

1

2
Z ′2n +

1

2
Z ′′2n ,

where Z ′n, Z
′′
n are independent copies of Zn. The next assertion is analogous to Corollary 7.1.

Corollary 8.1. For all x, y ∈ R and T ≥ 2,

F ∗3n (x)− F ∗3n (y) =
1

2π

∫ T

−T

e−itx − e−ity

−it
fn(t)3 dt+ θ nεn

( 1

n
+

log T

T

)
,

where fn(t) is the characteristic function of 1
2 Z

2
n and where θ is bounded in absolute value.

Proof. By Lemma 7.2, the set

Ω =
{

(k1, k2, k3) : k2
1 + k2

2 + k2
3 = N, kj ∈ Z, |kj | ≤ n

}
has cardinality

r3,n(N) = card(Ω) ≤ c
√
nN3εN/4 (8.1)

(where c > 0 is an absolute value which may vary from place to place). Since ξ
(3)
n takes values

N
2n , where N = k2

1 + k2
2 + k2

3 with kj ∈ Z, |kj | ≤ n, we obtain, by (7.5),

P
{
ξ(3)
n =

N

2n

}
≤

∑
(k1,k2,k3)∈Ω

P
{
Zn =

k1√
n

}
P
{
Zn =

k2√
n

}
P
{
Zn =

k3√
n

}
≤ c

n3/2
r3,n(N).
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Hence, by (8.1),

P
{
ξ(3)
n =

N

2n

}
≤ c

n
N3εN/4.

Since |Zn| ≤
√
n, necessarily N ≤ 3n2. As we noted before, nεn is increasing for large n, while

ε3n2 ∼ εn. Therefore, we arrive at the same bound as in dimension two,

P
{
ξ(3)
n =

N

2n

}
≤ c

n
nεn .

With a similar argument, this implies that the distribution functions Fn of the random
variables ξn satisfy the quasi-Lipschitz condition (7.7). One can therefore apply Corollary 1.2.

�

Remark. For convolutions F ∗kn with larger values of k (at least for k > 4), one can derive
similar representations as in Corollaries 7.1 and 8.1 without the factor nεn . In this case, the

number rk(n) of representations of n as a sum of k squares of integers is approximately n
k
2
−1

within k-dependent factors. There is an intensive literature on this topic (cf. e.g. [8]).
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