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Abstract. We study sharpened forms of the concentration of measure phenom-
enon typically centered at stochastic expansions of order d − 1 for any d ∈ N.
The bounds are based on d-th order derivatives or di�erence operators. In par-
ticular, we consider deviations of functions of independent random variables and
di�erentiable functions over probability measures satisfying a logarithmic Sobolev
inequality, and functions on the unit sphere. Applications include concentration
inequalities for U -statistics as well as for classes of symmetric functions via poly-
nomial approximations on the sphere (Edgeworth-type expansions).

1. Introduction

In this article, we study higher order versions of the concentration of measure
phenomenon. Referring to the use of derivatives or di�erence operators of higher
order, say d, the notion of higher order concentration has several aspects. In par-
ticular, instead of the classical problem about deviations of f around the mean Ef ,
one may consider potentially smaller �uctuations of f − Ef − f1 − . . . − fd, where
f1, . . . , fd are �lower order terms� of f with respect to a suitable decomposition, such
as a Taylor-type decomposition or the Hoe�ding decomposition of f .
Starting with the works of Milman in local theory of Banach spaces, and of Borell,

Sudakov, and Tsirelson within the framework of Gaussian processes, the concentra-
tion of measure phenomenon has been intensely studied during the past decades.
This study includes important contributions due to Talagrand and other researchers
in the 1990s, cf. Milman and Schechtman [M-S], Talagrand [T], Ledoux [L1], [L2],
[L3]; a more recent survey is authored by Boucheron, Lugosi and Massart [B-L-M].
As another previous work, let us mention Adamczak and Wol� [A-W], who ex-

ploited certain Sobolev-type inequalities or subgaussian tail conditions to derive ex-
ponential tail inequalities for functions with bounded higher-order derivatives (eval-
uated in terms of tensor-product matrix norms). While in [A-W], concentration
around the mean is studied, the idea of sharpening concentration inequalities for
Gaussian measures by requiring orthogonality to linear functions also appears in
Wol� [W] as well as in Cordero-Erausquin, Fradelizi and Maurey [CE-F-M].
Our research started with second order results for functions on the n-sphere or-

thogonal to linear functions [B-C-G], with an approach which was continued in
[G-S] in presence of logarithmic Sobolev inequalities. This includes discrete models
as well as di�erentiable functions on open subsets of Rn. Here, we adapt in particular
Sobolev type inequalities introduced by Boucheron, Bousquet, Lugosi and Massart
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[B-B-L-M], and thus extend some of the results from [G-S] to arbitrary higher or-
ders. Developing the algebra of higher order di�erence operators, we moreover came
across a higher order extension of the well-known Efron�Stein inequality.

1.1. Functions of independent random variables. Let X = (X1, . . . , Xn) be
a random vector in Rn with independent components, de�ned on some probability
space (Ω,A,P). First, we state higher order exponential inequalities in terms of the
di�erence operator which is frequently used in the method of bounded di�erences.
Let (X̄1, . . . , X̄n) be an independent copy of X. Given f(X) ∈ L∞(P), de�ne

Tif(X) = Tif = f(X1, . . . , Xi−1, X̄i, Xi+1, . . . , Xn), i = 1, . . . , n,

(1.1) hif(X) =
1

2
‖f(X)− Tif(X)‖i,∞, hf = (h1f, . . . , hnf),

where ‖·‖i,∞ denotes the L∞-norm with respect to (Xi, X̄i). Depending on the ran-
dom variables Xj, j 6= i, hif thus provides a uniform upper bound on the di�erences
with respect to the i-th coordinate (up to constant). Based on h, it is possible to
de�ne higher order di�erence operators hi1...id (d ∈ N) by setting

hi1...idf(X) =
1

2d

∥∥∥ d∏
s=1

(Id− Tis)f(X)
∥∥∥
i1,...,id,∞

=
1

2d

∥∥∥ f(X) +
d∑

k=1

(−1)k
∑

1≤s1<...<sk≤d

Tis1 ...iskf(X)
∥∥∥
i1,...,id,∞

,

(1.2)

where Ti1...id = Ti1 ◦ . . . ◦ Tid , and ‖·‖i1,...,id,∞ denotes the L∞-norm with respect to
Xi1 , . . . , Xid and X̄i1 , . . . , X̄id . For instance,

hijf =
1

4
‖f − Tif − Tjf + Tijf‖i,j,∞ for i 6= j.

Based on (1.2), we de�ne hypermatrices of d-th order di�erences as follows:(
h(d)f(X)

)
i1...id

=

{
hi1...idf(X), if i1, . . . , id are distinct,

0, else.
(1.3)

For short, we freely write h(d)f instead of h(d)f(X). Since Tii ≡ Ti, we necessarily
have hiif = 1

2
hif . Therefore, removing the d-th order di�erences in which some in-

dexes appear more than once can be interpreted as removing lower order di�erences.
Moreover, de�ne |h(d)f |HS to be the Euclidean norm of h(d)f regarded as an ele-

ment of Rnd . For instance, |h(1)f |HS is the Euclidean norm of hf , and |h(2)f |HS is
the Hilbert�Schmidt norm of the �Hessian� h(2)f . Also, put

(1.4) ‖h(d)f‖HS,p =
(
E |h(d)f |pHS

)1/p
, p ∈ (0,∞].

Using these notations, the following result holds for any �xed integer d = 1, . . . , n.

Theorem 1.1. Let f = f(X) be in L∞(P) with Ef = 0. If the conditions

(1.5) ‖h(k)f‖HS,2 ≤ 1 (k = 1, . . . , d− 1)

and

(1.6) ‖h(d)f‖HS,∞ ≤ 1
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are satis�ed, then, for some universal constant c > 0,

E exp
(
c |f |2/d

)
≤ 2.

Here, a possible choice is c = 1/(208 e).
In the case d = 1, (1.5) does not contain any constraint, while (1.6) means the

boundedness of �uctuations of f along every coordinate. Here we arrive at the well-
known assertion on Gaussian deviations of f(X). For growing d, the conclusion
is getting somewhat weaker, however it holds as well under the potentially much
weaker assumptions (1.5)�(1.6). To interpret them in case d ≥ 2, let us recall the
notion of a Hoe�ding decomposition, introduced by Hoe�ding in 1948 [Hoe]. Given
a function f(X) ∈ L1(P), it is the unique decomposition

f(X1, . . . , Xn) = Ef(X) +
∑

1≤i≤n

hi(Xi) +
∑

1≤i<j≤n

hij(Xi, Xj) + . . .(1.7)

= f0 + f1 + f2 + . . .+ fn

such that Eishi1...ik(Xi1 , . . . , Xik) = 0 whenever 1 ≤ i1 < . . . < ik ≤ n, s = 1, . . . , k,
where Ei denotes the expectation with respect to Xi. The sum fd is called Hoe�ding
term of degree d or simply d-th Hoe�ding term of f . Provided that f(X) ∈ L2(P),
the system {fi(X)}ni=0 forms an orthogonal decomposition of f(X) in L2(P).
It is not hard to see that hi1...ikf = hi1...ik

(∑n
i=k fi

)
whenever i1 < . . . < ik, k ≤ d.

In this sense, (1.5) controls the lower order Hoe�ding terms f1, . . . , fd−1, while the
behaviour of

∑n
i=d fi is mainly controlled by (1.6). The relationship between these

two conditions may be illustrated by considering a special class of functions f like
multilinear polynomials, that is

f(X1, . . . , Xn) = α0 +
n∑
i=1

αiXi +
∑
i<j

αijXiXj + . . .(1.8)

= f0 + f1 + f2 + . . .+ fn (αI ∈ R).

Proposition 1.2. Let X1, . . . , Xn be bounded and such that EXi = 0, EX2
i = 1 for

i = 1, . . . , d. If f(X) is a multilinear polynomial (1.8) of the form f =
∑n

k=d fk,
then (1.6) implies (1.5).

Note that under the conditions of Proposition 1.2, the Hoe�ding decomposition of
f can be read o� the polynomial structure: hi1...ik(Xi1 , . . . , Xik) = αi1...ikXi1 · · ·Xik .
In particular, let X1, . . . , Xn be independent Rademacher variables, i. e. Xi's have

distribution 1
2
δ+1 + 1

2
δ−1, where δx denotes the Dirac measure in x. In this case, any

function f(X) can be written as a multilinear polynomial with coe�cients

αi1...ik = Ef(X1, . . . , Xn)Xi1 · · ·Xik , 1 ≤ i1 < . . . < ik ≤ n.

This representation is known as Fourier�Walsh expansion of f . Consequently, The-
orem 1.1 yields a d-th order concentration result on the discrete hypercube, and if f
has Fourier�Walsh expansion of type f =

∑n
k=d fk satisfying (1.6), the concentration

bound given in Theorem 1.1 holds.
Using Rademacher variables in Theorem 1.1 gives rise to a concentration inequal-

ity for U -statistics with completely degenerate kernel functions. There are many
results on the distributional properties of U -statistics (cf. de la Peña and Giné
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[D-G] for an overview). Starting with Hoe�ding's inequalities (e. g. [D-G], Theo-
rem 4.1.8), we especially refer to the results by Arcones and Giné [A-G] and Major
[M]. By combining elements of the proof of Theorem 1.1 and a classical result on
randomized U -statistics by de la Peña and Giné, we arrive at the following:

Corollary 1.3. Let X1, . . . , Xn be i.i.d. random elements in a measurable space
(S,S), and h be a measurable function on Sd (1 ≤ d ≤ n) such that |h| ≤ M for
some constant M . If h is completely degenerate, i. e. Ei h(X1, . . . , Xd) = 0 for all
i = 1, . . . , d, then, for some positive constant c = c(d,M), the U-statistic

f(X1, . . . , Xn) =
(n− d)!

n!

∑
i1 6=... 6=id

h(Xi1 , . . . , Xid)

satis�es

E exp
(
cn |f |2/d

)
≤ 2.

By Chebychev's inequality, Theorem 1.1 immediately yields a deviation bound

P{|f(X)| ≥ t} ≤ 2e−ct
2/d

, t ≥ 0.

More precisely, we get re�ned tail estimates similar to Adamczak [A], Theorem 7,
or Adamczak and Wol� [A-W], Theorem 3.3.

Corollary 1.4. Let f = f(X) be in L∞(P) with Ef = 0. For all t ≥ 0, putting

ηf (t) = min
( t2/d

‖h(d)f‖2/dHS,∞

, min
k=1,...,d−1

t2/k

‖h(k)f‖2/kHS,2

)
,

we have

P{|f | ≥ t} ≤ e2 exp{−ηf (t)/41(de)2}.

Moreover, it is possible to give a version of Theorem 1.1 for suprema of suitable
classes of functions. To this end, we need some more notation. Let F be a class
of functions f = f(X) in L∞(P), where as before X = (X1, . . . , Xn) is a vector of
independent random variables. Then, for i1 6= . . . 6= id, d = 1, . . . , n, we de�ne

h∗i1...id(F) = sup
f∈F

hi1...idf(X)

as a structural supremum (eventually taken over a countable subset of F), and put

(
h∗(d)(F)

)
i1...id

=

{
h∗i1...id(F), if i1, . . . , id are distinct,

0, else.

The notations used in (1.4) are similarly adapted. This leads to the following result.

Theorem 1.5. If ‖h∗(k)(F)‖HS,2 ≤ 1 for all k = 1, . . . , d−1 and ‖h∗(d)(F)‖HS,∞ ≤ 1,
then

E exp
{
c
∣∣ sup
f∈F
|f | − E sup

f∈F
|f |
∣∣2/d} ≤ 2

with some universal constant c > 0.
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Finally, to provide another application, recall the example of additive functionals
of partial sums (e. g. random walks)

(1.9) Sf = Sf (X) =
n∑
i=1

f
( i∑
j=1

Xj

)
.

In [G-S] we proved a second order concentration result for functionals of this type,
which may be reproved and somewhat sharpened by applying Corollary 1.4:

Proposition 1.6. Given a bounded, Borel measurable function f : R→ R, for any
t ≥ 0,

P(|Sf − ESf | ≥ t) ≤ e2 exp
{
− cmin

( t2

n3‖f‖2∞
,

t

n2‖f‖∞

)}
,

where c > 0 is some numerical constant.

1.2. Higher order Efron�Stein inequality. Given independent random variables
X1, . . . , Xn, we denote by Ei f(X) = Eif and Varif(X) = Ei (f(X)− Eif(X))2 the
expected value and variance with respect to Xi. By a well-known result of Efron
and Stein [E-S], the variance functional is subadditive in the sense that

(1.10) Varf(X) ≤ E
n∑
i=1

Vari f(X).

It is possible to restate (1.10) in terms of di�erence operators which we introduce
below. As before, let X̄1, . . . , X̄n be a set of independent copies of X1, . . . , Xn and
Tif = f(X1, . . . , Xi−1, X̄i, Xi+1, . . . , Xn). We use Ēi to denote the expectation with
respect to X̄i, and put x+ = max(x, 0) and x− = max(−x, 0) for a number x.

De�nition 1.7. Let f(X) = f(X1, . . . , Xn) be a measurable function. For i =
1, . . . , n, under proper integrability assumptions, put:

(i)

vif(X) =
(
Vari f(X)

)1/2
, vf = (v1f, . . . , vnf);

(ii)

Dif(X) = f(X)− Eif(X), Df = (D1f, . . . ,Dnf);

(iii)

dif(X) =
(1

2
Ēi(f(X)− Tif(X))2

)1/2
, df = (d1f, . . . , dnf);

(iv)

d+i f(X) =
(1

2
Ēi(f(X)− Tif(X))2+

)1/2
, d+f = (d+1 f, . . . , d

+
n f);

(v)

d−i f(X) =
(1

2
Ēi(f(X)− Tif(X))2−

)1/2
, d−f = (d−1 f, . . . , d

−
n f).
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Various relations between these di�erence operators are discussed in Section 3. In
particular, it is easy to see that, for f(X) ∈ L2(P),

(1.11) E |vf |2 = E |Df |2 = E |df |2 = 2E |d+f |2 = 2E |d−f |2,

where | · | denotes the Euclidean norm in Rn. Therefore, we may equivalently state
the Efron�Stein inequality as

Varf ≤ E |vf |2, Varf ≤ E |Df |2, Varf ≤ E |df |2,
Varf ≤ 2E |d+f |2 or Varf ≤ 2E |d−f |2.

(1.12)

Equality in (1.12) holds i� the Hoe�ding decomposition of f consists of the expected
value and the �rst order term only, namely for f(X) = Ef(X)+

∑n
i=1 hi(Xi). Thus,

the Efron�Stein inequality may be restated as the fact that any product probability
measure satis�es a Poincaré-type inequality with respect to any of the di�erence
operators v, D and d with constant σ2 = 1 (like (1.17) below). The same statement
applies as well to the di�erence operators d+ and d− but with constant σ2 = 2.
To introduce higher order versions of the Efron�Stein inequality, we need to de�ne

higher order di�erences based on the di�erence operators from De�nition 1.7. For
D, this is achieved by iteration, i. e. Dijf = Di(Djf) or, in general, Di1...idf =
Di1(. . . (Didf)) for 1 ≤ i1, . . . , id ≤ n. To generalize v, we set similarly to (1.2)

vi1...idf(X) =
(
Ei1...id

( d∏
s=1

(Id− Eis) f(X)
)2 )1/2

=
(
Ei1...id

(
f(X) +

d∑
k=1

(−1)k
∑

1≤s1<...<sk≤d

Eis1 ...iskf(X)
)2 )1/2

,

(1.13)

Here, Ei1...id means taking the expectation with respect toXi1 , . . . , Xid . For instance,

vijf =
(
Eij (f − Eif − Ejf + Eijf)2

)1/2
, 1 ≤ i < j ≤ n.

In particular, vijf 6= (Varijf)1/2. One major di�erence is that vijf annihilates �rst
order Hoe�ding terms, but Varijf does not. Similar remarks hold for any d ≥ 2.
Finally, in case of d, we de�ne

di1...idf(X) =
( 1

2d
Ēi1...id

( d∏
s=1

(Id− Tis) f(X)
)2 )1/2

=
( 1

2d
Ēi1...id

(
f(X) +

d∑
k=1

(−1)k
∑

1≤s1<...<sk≤d

Tis1 ...iskf(X)
)2 )1/2

.

(1.14)

Here, Ēi1...id means taking the expectation with respect to X̄i1 , . . . , X̄id , recalling
that Ti1...id = Ti1 ◦ . . . ◦ Tid . For d±, a variant of (1.14) holds by setting

d±i1...idf(X) =
( 1

2d
Ēi1...id

( d∏
s=1

(Id− Tis)f(X)
)2
±

)1/2
.
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In the same way as in (1.3), we may de�ne d-th order hyper-matrices with respect
to any of the di�erence operators introduced above, e. g.

(v(d)f)i1...id =

{
vi1...idf, if i1, . . . , id are distinct,

0, else.

The hyper-matrices D(d)f , d(d)f and d±(d)f are de�ned analogously. As in case
of h(d)f , we equip these hyper-matrices with the respective Hilbert�Schmidt type
norms. We are now ready to formulate the following generalization of (1.12).

Theorem 1.8 (Higher Order Efron�Stein Inequality). Let X1, . . . , Xn be indepen-
dent random variables, and assume that f(X) ∈ L2(P) admits a Hoe�ding decom-
position of type f = Ef +

∑n
k=d fk for some 1 ≤ d ≤ n. Then

Varf ≤ 1

d!
E |v(d)f |2, Varf ≤ 1

d!
E |D(d)f |2, Varf ≤ 1

d!
E |d(d)f |2.

Moreover,

Varf ≤ 2

d!
E |d+(d)f |2 and Varf ≤ 2

d!
E |d−(d)f |2.

Equality holds if and only if the Hoe�ding decomposition of f consists of the expected
value and the d-th order term only, i.e. f = Ef + fd.

In particular, Theorem 1.8 yields the following formula for the variance of an
arbitrary function f = f(X) ∈ L2(P) with Hoe�ding decomposition f =

∑n
k=0 fk:

(1.15) Varf =
n∑
k=1

1

k!
E |v(k)fk|2 =

n∑
k=1

1

k!
E |D(k)fk|2 =

n∑
k=1

1

k!
E |d(k)fk|2.

This result is related to the work of Houdré [Hou], who studied iterations of the
Efron�Stein inequality for symmetric functions in the context of the jackknife esti-
mate of the variance. In particular, he obtained formulas for the variance in terms
of certain higher order di�erence operators adapted to this situation. Following
the lines of our proofs, it is possible to extend his results to arbitrary functions of
independent random variables. To provide an example, we may prove that

(1.16) Varf =
n∑
k=1

(−1)k+1

k!
E|v(k)f |2,

which is an extension of (1.3) from [Hou]. As always, here the di�erence operator v
can be replaced by D, d and (up to a factor 2) d±.

1.3. Di�erentiable Functions. In the following we shall develop higher order con-
centration in the setting of smooth functions on Rn. Here we may derive similar
results in the spirit of Adamczak and Wol� [A-W], when the underlying probabil-
ity measure satis�es a logarithmic Sobolev inequality. Let us recall that a Borel
probability measure µ on an open set G ⊂ Rn is said to satisfy a Poincaré-type
and respectively a logarithmic Sobolev inequality with constant σ2 > 0, if for any
bounded smooth function f on G with gradient ∇f , respectively

(1.17) Varµ(f) ≤ σ2

∫
|∇f |2 dµ,
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(1.18) Entµ(f 2) ≤ 2σ2

∫
|∇f |2 dµ.

Here, Varµ(f) =
∫
f 2 dµ− (

∫
f dµ)2 is the variance, and Entµ(f 2) =

∫
f 2 log f 2 dµ−∫

f 2 dµ log
∫
f 2 dµ is the entropy functional. Logarithmic Sobolev inequalities are

stronger than Poincaré inequalities, in the sense that (1.18) implies (1.17).
Given a function f ∈ Cd(G), we de�ne f (d) to be the (hyper-) matrix whose entries

(1.19) f
(d)
i1...id

(x) = ∂i1...idf(x), d = 1, 2, . . .

represent the d-fold (continuous) partial derivatives of f at x ∈ G. By considering
f (d)(x) as a symmetric multilinear d-form, we de�ne operator-type norms by

(1.20) |f (d)(x)|Op = sup
{
f (d)(x)[v1, . . . , vd] : |v1| = . . . |vd| = 1

}
.

For instance, |f (1)(x)|Op is the Euclidean norm of the gradient∇f(x), and |f (2)(x)|Op

is the operator norm of the Hessian f ′′(x). Furthermore, similarly to (1.4), we will
use the short-hand notation

(1.21) ‖f (d)‖Op,p =

(∫
G

|f (d)|pOp dµ

)1/p

, p ∈ (0,∞].

We now have the following results, assuming that µ is a probability measure on
G satisfying a logarithmic Sobolev inequality with constant σ2 > 0.

Theorem 1.9. Let f : G→ R be a Cd-smooth function with
∫
G
f dµ = 0. If

(1.22) ‖f (k)‖Op,2 ≤ min(1, σd−k) ∀k = 1, . . . , d− 1

and

(1.23) ‖f (d)‖Op,∞ ≤ 1,

then with some universal constant c > 0 we have∫
G

exp
{ c

σ2
|f |2/d

}
dµ ≤ 2.

Here, a possible choice is c = 1/(8e). If f has centered partial derivatives of order
up to d − 1, it is possible to replace (1.22) by a possibly simpler condition. To
this end, as in the previous section, we need to involve Hilbert�Schmidt-type norms
|f (d)(x)|HS which are de�ned by taking the Euclidean norm of f (d)(x) ∈ Rnd . As in
(1.4), ‖f (d)‖HS,2 then denotes the L2-norm of |f (d)|HS. In detail:

Theorem 1.10. Let f : G→ R be a Cd-smooth function such that
∫
G
f dµ = 0 and∫

G
∂i1...ikf dµ = 0 for all k = 1, . . . , d− 1 and 1 ≤ i1, . . . , ik ≤ n. Assume that

‖f (d)‖HS,2 ≤ 1 and ‖f (d)‖Op,∞ ≤ 1.

Then, there exists some universal constant c > 0 such that∫
G

exp
{ c

σ2
|f |2/d

}
dµ ≤ 2.

Here again, a possible choice is c = 1/(8e). Note that, by partial integration, if µ
is the standard Gaussian measure, the conditions

∫
G
fdµ = 0 and

∫
G
∂i1...ikfdµ = 0

are satis�ed if f is orthogonal to all polynomials of (total) degree at most d− 1.
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As in case of functions of independent random variables, it is possible to re�ne
the tail estimates implied by Theorem 1.9:

Corollary 1.11. Let f : G→ R be a Cd-smooth function such that
∫
G
f dµ = 0. For

any t ≥ 0, putting

ηf (t) = min
( t2/d

σ2‖f (d)‖2/dOp,∞

, min
k=1,...,d−1

t2/k

σ2‖f (k)‖2/kOp,2

)
,

we have

µ(|f | ≥ t) ≤ e2 exp{−ηf (t)/(de)2}.

Note that for d = 2 and functions f(X) =
∑

i,j aijXiXj, where X1, . . . , Xn are
independent with mean zero, this yields Hanson�Wright type inequalities.
Possible applications of Theorem 1.9 include functionals of the eigenvalues of

random matrices. As in [G-S], we consider two situations. First, let {ξjk}1≤j≤k≤N
be a family of independent random variables, and assume that the distributions of
the ξjk's all satisfy a (one-dimensional) logarithmic Sobolev inequality (1.18) with
common constant σ2. Putting ξjk = ξkj for k < j, consider a symmetric N × N

random matrix Ξ = (ξjk/
√
N)1≤j,k≤N and denote by µ(N) = µ the joint distribution

of its ordered eigenvalues λ1 ≤ . . . ≤ λN on RN (note that λ1 < . . . < λN a.s.).

Secondly, we consider β-ensembles: for β > 0 �xed, let µ
(N)
β,V = µ(N) = µ be the

probability distribution on RN with density given by

(1.24) µ(dλ) =
1

ZN
e−βNH(λ)dλ, H(λ) =

1

2

N∑
k=1

V (λk)−
1

N

∑
1≤k<l≤N

log(λl − λk)

for λ = (λ1, . . . , λN), λ1 < . . . < λN . Here, V : R→ R is a strictly convex C2-smooth
function, and ZN is a normalization constant. For β = 1, 2, 4, these probability
measures correspond to the distributions of the classical invariant random matrix
ensembles (orthogonal, unitary and symplectic, respectively). For other β, one can
interpret (1.24) as particle systems on the real line with Coulomb interactions.
In both cases, the probability measure µ satis�es a logarithmic Sobolev inequality

with constant of order 1/N (see [G-S] for details). Throughout the rest of this
section, we consider the probability space (RN ,BN , µ), where µ is one of the two
probability measures introduced above, supported on the set λ1 < . . . < λN .
In [G-S], we studied concentration bounds for linear and quadratic eigenvalue

statistics. Those results may be reproved (up to constants) using Theorem 1.10, and
by Corollary 1.11 it is moreover possible to give slightly more accurate estimates for
the tails. In the sequel, we will rather study a related problem, namely multilinear
polynomials in the eigenvalues λ1, . . . , λN . That is, we consider functionals of type

(1.25)
∑

i1 6=... 6=id

ai1...idλi1 · · ·λid .

Here, ai1...id are real numbers such that for any permutation σ ∈ Sd, aσ(i1)...σ(id) ≡
ai1...id , and ai1...id = 0 whenever the indexes i1, . . . , id are not pairwise di�erent. This

gives rise to a hypermatrix A = (ai1...id) ∈ Rnd , whose Euclidean norm we denote by
‖A‖HS. Moreover, set ‖A‖∞ = maxi1<...<id |ai1...id |.
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According to the framework sketched in Theorem 1.10, we shall not only center
around the expected value of (1.25) but also around some �lower order� terms in
order to arrive at centered derivatives of order up to d − 1. We work out details
for d = 1, . . . , 4. To facilitate notation, let us introduce the following conventions:

by µ[·], we denote integration with respect to the measure µ. Moreover, set λ̃i =

λi − µ[λi]. For any subset {i1, . . . , id} ⊂ {1, . . . , N}, write λ̃i1...id = λ̃i1 · · · λ̃id . Now
(similarly to Theorem 1.4 in [G-S-S]) de�ne the functions

f1(λ) =
N∑
i=1

aiλ̃i,

f2(λ) =
∑
i 6=j

aij(λ̃ij − µ[λ̃ij]),

f3(λ) =
∑
i 6=j 6=k

aijk
(
λ̃ijk − µ[λ̃ijk]− 3λ̃iµ[λ̃jk]

)
,

f4(λ) =
∑

i 6=j 6=k 6=l

aijkl
(
λ̃ijkl − µ[λ̃ijkl]− 4λ̃iµ[λ̃jkl]− 6λ̃ijµ[λ̃kl] + 6µ[λ̃ij]µ[λ̃kl]

)
.

Applying Theorem 1.10 and recalling that the Sobolev constant of µ is of order 1/N
immediately yields the following result.

Proposition 1.12. Let µ be the joint distribution of the ordered eigenvalues of Ξ or
the distribution de�ned in (1.24). For the functions fd, d = 1, . . . , 4, de�ned above,
with some constant c > 0, we have∫

exp
{ cN

‖A‖2/dHS

|fd|2/d
}
dµ ≤ 2

and moreover ∫
exp

{ c

‖A‖2/d∞
|fd|2/d

}
dµ ≤ 2.

If µ is the eigenvalue distribution of Ξ, c depends on the logarithmic Sobolev constant
σ2, and if µ is the β-ensemble distribution (1.24), c depends on β and the potential
function V . In particular,

µ(|fd|≥ t) ≤ 2 exp
{
− cNt2/d

‖A‖2/dHS

}
≤ 2 exp

{
− ct2/d

‖A‖2/d∞

}
.

The bounds may be somewhat sharpened by applying Corollary 1.11. We omit
details. In particular, Proposition 1.12 implies that if we �recenter�∑

i1 6=... 6=id

λi1 · · ·λid (d = 1, . . . , 4)

in such a way that all derivatives of order up to d−1 are centered (cf. the de�nition
of the functions fd given above), we obtain exponential concentration bounds which
yield �uctuations of order OP (1). For d = 2, we thus get back a result shown in
Proposition 1.12 from [G-S]. These bounds may be extended to higher orders d ≥ 5.
In some sense, this may be seen as an extension of the self-normalizing property of
linear eigenvalue statistics for a special class of higher order polynomials.
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1.4. Functions on the unit sphere. As a particular case, one may consider (real-
valued) functions de�ned in some open neighbourhood G of the unit sphere

Sn−1 = {x ∈ Rn : |x| = 1}, n ≥ 2,

which we equip with the uniform, or normalized Lebesgue measure σn−1. Since any
Cd-smooth function on Sn−1 can be extended to a Cd-smooth function on Rn \ {0},
this means no loss of generality. We then restrict the usual (Euclidean) derivatives
of f to Sn−1, which allows to use the de�nitions of the hyper-matrices (1.19) with
operator norms (1.20), together with the Lp-norms ‖f (d)‖Op,p in (1.21) taken with
respect to σn−1. This yields the following analogue of Theorem 1.9.

Theorem 1.13. Let f be a Cd-smooth function on some open neighbourhood of Sn−1

with
∫
Sn−1 fdσn−1 = 0. Assume that

‖f (k)‖Op,2 ≤ n−(d−k)/2 ∀ k = 1, . . . , d− 1

and |f (d)(θ)|Op ≤ 1 for all θ ∈ Sn−1. Then, for some universal constant c > 0,∫
Sn−1

exp{(n− 1) |f |2/d/(8e)} dσn−1 ≤ 2.

Moreover, an analogue of Theorem 1.10 also holds, which is particularly interesting
for the class of p-homogeneous functions. Recall that a function f on Rn \ {0} is
p-homogeneous for some p ∈ R, if f(λx) = λpf(x) for all x 6= 0 and λ > 0.

Theorem 1.14. Suppose that a Cd-smooth function f on Rn \{0} is p-homogeneous
for some real number p > d− 3 and is orthogonal in L2(σn−1) to all polynomials of
total degree at most d− 1. Moreover, assume that

(1.26) ‖f (d)‖HS,2 ≤ 1 and ‖f (d)‖Op,∞ ≤ 1.

Then, with some universal constant c > 0∫
G

exp
{ c

σ2
|f |2/d

}
dµ ≤ 2.

A possible choice is c = 1/(8e). The same holds for p ≤ d− 3, if n > d− p− 1.

Recall that the Hilbert space L2(Sn−1) can be decomposed into a sum of or-
thogonal subspaces Hd, d = 0, 1, 2, . . ., consisting of all d-homogeneous harmonic
polynomials (in fact, restrictions of such polynomials to the sphere). This fact is
mirrored in the orthogonality assumptions from Theorem 1.14. If f is not a homo-
geneous function, the bounds from Theorem 1.14 remain valid assuming (1.26), but
instead of orthogonality to polynomials of lower degree we have to require that f
and all its partial derivatives of order up to d− 1 are centered with respect to σn−1.
In Theorem 1.13, we use the usual (Euclidean) derivatives of functions de�ned in

an open neighbourhood of the unit sphere. In applications, this is usually su�cient.
There is also a notion of intrinsic (spherical) derivatives (cf. Section 5), and it is
possible to obtain an analogue of Theorem 1.13 for these derivatives as well.
To �x some notation, denote by∇Sf the spherical gradient of a di�erentiable func-

tion f : Sn−1 → R and write Dif = 〈∇Sf, ei〉, i = 1, . . . , n, for the spherical partial
derivatives of f . Here, ei denotes the i-th standard unit vector in Rn. Higher order
spherical partial derivatives are de�ned by iteration, e. g. Dijf = 〈∇S〈∇Sf, ej〉, ei〉
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for any 1 ≤ i, j ≤ n. Note that in general, Dijf 6= Djif . If f ∈ Cd(Sn−1), we denote
by Ddf(θ) the hyper-matrix of the spherical partial derivatives of order d, i. e.

(1.27) (D(d)f(θ))i1...id = Di1...idf(θ), θ ∈ Sn−1.

Similarly to (1.20), let |D(d)f(θ)|Op be the operator norm of D(d)f(θ). Finally, write

(1.28) ‖D(d)f‖Op,p =
(∫

Sn−1

|D(d)f |pOp dσn−1

)1/p
, p ∈ (0,∞].

We have the following �intrinsic� version of Theorem 1.13.

Theorem 1.15. Let f be a Cd-smooth function on Sn−1 such that
∫
Sn−1 f dσn−1 = 0.

Assume that

‖D(k)f‖Op,2 ≤ n−(d−k)/2, k = 1, . . . , d− 1,

and |D(d)f(θ)|Op ≤ 1 for all θ ∈ Sn−1. Then∫
Sn−1

exp{(n− 1) |f |2/d/(8e)} dσn−1 ≤ 2.

1.5. Outline. In Section 2, we give the proofs of the theorems and corollaries from
Section 1.1. We brie�y discuss the notion of di�erence operators. The main tool is
a recursion inequality for the Lp-norms of the function f and the Hilbert�Schmidt
norms of |h(k)f |. In Section 3, Theorem 1.8 is proven. This includes a number of
relations between the di�erence operators introduced in De�nition 1.7. In Section
4, we prove Theorems 1.9 and 1.10 as well as Corollary 1.11 by adapting the main
steps of the proof of Theorem 1.1. In Section 5, the proofs of Theorems 1.13, 1.14
and 1.15 are given; in particular, we introduce some facts about spherical calculus
which allow us to proceed in a similar way as in case of functions on Rn. Finally,
in Section 6, we illustrate Theorem 1.13 on the example of polynomials and the
problem of Edgeworth approximations for symmetric functions on the sphere. For
additional applications we refer to [G-S].

2. Functions of independent random variables: Proofs

Let X = (X1, . . . , Xn) be a vector of independent random variables on the prob-
ability space (Ω,A,P). By a �di�erence operator� we mean an Rn-valued functional
Γ de�ned on L∞(P) such that the following two conditions hold:

Conditions 2.1. (i) Γf(X) = (Γ1f(X), . . .Γnf(X)), where f : Rn → R may be
any Borel measurable function such that f(X) ∈ L∞(P).

(ii) |Γi(af(X) + b)| = a |Γif(X)| for all a > 0, b ∈ R and i = 1, . . . , n.

We also call Γ a gradient operator or simply gradient. We do not suppose Γ to
satisfy any sort of �Leibniz rule�. Clearly, the di�erence operator h from (1.1) and
any of the di�erence operators introduced in De�nition 1.7 satisfy Conditions 2.1.
For the proof of Theorem 1.1 we will need several lemmas. As before, let Tif =

f(X1, . . . , Xi−1, X̄i, Xi+1, . . . , Xn) with X̄1, . . . , X̄n an independent copy of X. As
a �rst step, the Hilbert�Schmidt norms of the derivatives of consecutive orders are
related in the following way:
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Lemma 2.2. For any d ≥ 2,

(2.1) |h|h(d−1)f(X)|HS| ≤ |h(d)f(X)|HS.

Proof. First let d = 2. Using Ti|hf | = |Tihf | and the triangle inequality, we have

(2.2) (hi|hf |)2 =
1

4
‖|hf | − |Tihf |‖2i,∞ ≤

1

4
‖|hf − Tihf |‖2i,∞ =

1

4
‖|hf − Tihf |2‖i,∞.

Here, hf − Tihf is de�ned componentwise. Since Tihif = hif , we obtain

|hf − Tihf |2 =
∑
j 6=i

1

4

(
‖f − Tjf‖j,∞ − ‖Tif − Tijf‖j,∞

)2
≤
∑
j 6=i

1

4
‖f − Tjf − Tif + Tijf‖2j,∞,(2.3)

where the last inequality follows from the reverse triangular inequality again (for
the pseudo-norm ‖·‖j,∞). Combining (2.2) and (2.3) yields

(hi|hf |)2 ≤
∥∥ 1

16

∑
j 6=i

‖f − Tjf − Tif + Tijf‖2j,∞
∥∥
i,∞

≤ 1

16

∑
j 6=i

‖f − Tjf − Tif + Tijf‖2i,j,∞.

Summing over i = 1, . . . , n we arrive at the result in the case d = 2.
For d ≥ 3, note that Tihi1...id−1

f = hi1...id−1
f whenever i ∈ {i1, . . . , id−1}. The

claim then follows in the same way as above. �

Corresponding results in the setting of di�erentiable functions (see Lemma 4.1)
suggest to replace the Hilbert�Schmidt norms in Lemma 2.2 by operator type norms
(1.20). In Boucheron, Bousquet, Lugosi and Massart [B-B-L-M], Theorem 14, iter-
ations of (2.6) are sketched to study applications for Rademacher chaos type func-
tions. Unfortunately, working out the arguments in the proof of Theorem 14 we
seemed to need Hilbert�Schmidt instead of operator norms. Already in second or-
der statistics of Rademacher variables like

∑n
i=1XiXi+1 (setting Xn+1 = X1), an

analogue of (2.1) for operator norms cannot be true. Similar remarks hold for any
of the di�erence operators introduced in De�nition 1.7 (cf. Remark 3.1).
Our results will follow from certain moment inequalities for functions of indepen-

dent random variables. In [B-B-L-M], cf. Theorem 2, the following moment bounds
are shown

‖(f − Ef)+‖p ≤
√

2κp ‖V +(f)‖p, ‖(f − Ef)−‖p ≤
√

2κp ‖V −(f)‖p
in terms of the conditional expectations

V +(f) = E
( n∑
i=1

(f − Tif)2+
∣∣X) V −(f) = E

( n∑
i=1

(f − Tif)2−
∣∣X),

where κ =
√
e

2 (
√
e−1) < 1.271. Note that, in our notations according to De�nition 1.7,

V +(f) = 2 |d+f |2 and V −(f) = 2 |d−f |2.
For iterating these inequalities however, we had to bypass the problem that dii = di
respectively d+ii = d+i (up to constant), which would introduce additional lower



14 S.G. BOBKOV, F. GÖTZE, AND H. SAMBALE

order di�erences on the right-hand side of (2.1). This motivated us to introduce
the following related quantities adapted to the framework of L∞-bounds. For i =
1, . . . , n, introduce

(2.4) h+i f(X) =
1

2
‖(f(X)− Tif(X))+‖i,∞, h+f = (h+1 f, . . . , h

+
n f),

(2.5) h−i f(X) =
1

2
‖(f(X)− Tif(X))−‖i,∞, h−f = (h−1 f, . . . , h

−
n f),

which are clearly di�erence operators in the sense of Conditions 2.1. Using the
relations V +(f) ≤ 4 |h+f |2 and V −(f) ≤ 4 |h−f |2, we get from the [B-B-L-M]-result
the following somewhat weaker bounds in terms of the Lp-norms as in (1.4).

Theorem 2.3. With the same constant κ =
√
e

2 (
√
e−1) , for any real p ≥ 2,

(2.6) ‖(f − Ef)+‖p ≤
√

8κp ‖h+f‖p,

(2.7) ‖(f − Ef)−‖p ≤
√

8κp ‖h−f‖p.

For the reader's convenience, let us give a self-contained proof of Theorem 2.3. It
is su�cient to derive (2.6), since (2.7) follows from (2.6) by considering −f . The
key step are the following two lemmas.

Lemma 2.4. Assume Ef = 0. Then,

(2.8) ‖f‖2 ≤
√

2 ‖hf‖2,

(2.9) ‖f+‖2 ≤ 2 ‖h+f‖2.

Proof. By the Efron�Stein inequality (1.10), Ef 2 ≤ E |df |2 and Ef 2 ≤ 2E |d+f |2,
while |d+f |2 ≤ 2 |h+f |2 and |df |2 ≤ 2 |hf |2 (cf. Remark 3.1 (v)). �

The next lemma provides a moment recursion similarly to [B-B-L-M], Lemma 3.

Lemma 2.5. For any real p ≥ 2,

(2.10) ‖f+‖pp ≤ ‖f+‖
p
p−1 + 4 (p− 1) ‖h+f‖2p ‖f+‖p−2p .

Proof. First assume n = 1, i. e. f = f(X) for a random variable X and Tf = f(X̄),
where X̄ is an independent copy of X. Using the notation fp−1+ ≡ (f+)p−1, we have

1

2
E [(fp−1+ − Tfp−1+ )(f+ − Tf+)]− ‖f+‖pp = −‖f+‖p−1p−1 ‖f+‖1 ≥ −‖f+‖

p
p−1.

Thus, by symmetry in X and X̄, and since (f − Tf)+ ≤ 2 h+f ,

‖f+‖pp ≤ ‖f+‖
p
p−1 + E [(fp−1+ − Tfp−1+ )+ (f+ − Tf+)]

≤ ‖f+‖pp−1 + (p− 1)E
[
(f − Tf)2+ f

p−2
+

]
.

Using Hölder's inequality, the last expectation may be bounded by

4E
[
|h+f |2fp−2+

]
≤ 4 ‖| h+f |2‖p/2 ‖f+‖p−2p = 4 ‖h+f ‖2p ‖f+‖p−2p .(2.11)

This completes the proof in case n = 1.
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For n ≥ 1, we use a tensorization argument: For any g ∈ Lq, q ∈ (1, 2],

(2.12) E |g|q −
(
E |g|

)q ≤ E
n∑
i=1

(
Ei |g|q −

(
Ei |g|

)q)
,

where Ei denotes expectation with respect to Xi. Applying this inequality to g =
fp−1+ with q = p/(p− 1), similarly to the case of n = 1 we obtain

‖f+‖pp − ‖f+‖
p
p−1 ≤ E

n∑
i=1

(
Eifp+ − (Eifp−1+ )p/(p−1)

)
≤ (p− 1)

n∑
i=1

E Ei Ēi
[
(f − Tif)2+f

p−2
+

]
≤ 4 (p− 1)

n∑
i=1

E
[
|h+i f |2f

p−2
+

]
= 4 (p− 1)E

[
|h+f |2fp−2+

]
.

As in (2.11), the last expectation is bounded by ‖h+f‖2p ‖f+‖p−2p using Hölder's
inequality, which gives the desired result.
It remains to prove (2.12). Let us mention that the tensorization of functionals

L(g) = EΨ(g) − Ψ(E g) was proposed in the mid 1990's by Bobkov, as explained
in [L1], Proposition 4.1. This property is actually equivalent to the convexity of L
in g, and can be explicitly expressed in terms of R (convexity of Ψ and −1/Ψ′′; see
also [L-O]). For completeness of exposition let us include here a direct argument for
the power functions Ψ(x) = xq. By induction, it su�ces to consider n = 2; we use
the representation

(2.13) L(|g|) = sup
h∈Lq

{
q E
[
|g|(|h|q−1 − (E |h|)q−1)

]
− (q − 1)

(
E |h|q − (E |h|)q

)}
.

Indeed, by the arithmetic-geometric inequality, 1
q
E |g|q + q−1

q
E |h|q ≤ E |g| |h|q−1,

which we rewrite as

E |g|q ≤ q E |g| |h|q−1 − (q − 1)E |h|q.
We may assume E|g| = 1; therefore, subtracting (E |g|)q = 1 on both sides,

L(|g|) ≤ q E
[
|g| (|h|q−1 − (E |h|)q−1)

]
− (q − 1)

(
E |h|q − (E |h|)q

)
+R(E |h|)

with R(x) = qxq−1 − (q − 1)xq − 1 for x ≥ 0. Since R(x) ≤ 0, while equality holds
if h = g, we arrive at (2.13). By Fubini's theorem and applying (2.13), we now get

E2

[
(E1|g|)q − (E|g|)q

]
= E2(E1|g|)q − (E2E1|g|)q

= sup
h(X2)∈Lq

{
q E2

[
(E1|g|)(|h|q−1 − (E2|h|)q−1)

]
− (q − 1)

(
E2|h|q − (E2|h|)q

)}
= sup

h(X2)∈Lq

{
E1

[
q (E2|g|)(|h|q−1 − (E2|h|)q−1)− (q − 1)

(
E2|h|q − (E2|h|)q

)]}
≤ E1

[
sup

h(X2)∈Lq

{
q E2

[
|g|(|h|q−1 − (E2|h|)q−1)

]
− (q − 1)

(
E2|h|q − (E2|h|)q

)}]
= E1

[
E2|g|q − (E2|g|)q

]
.

As a consequence, by Fubini's theorem again,

E |g|q − (E |g|)q = E2

[
E1|g|q − (E1|g|)q

]
+ E2

[
(E1|g|)q − (E|g|)q

]
≤ E2

[
E1|g|q − (E1|g|)q

]
+ E1

[
E2|g|q − (E2|g|)q

]
.
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�

Following the arguments in [B-B-L-M], we may now prove Theorem 2.3:

Proof of Theorem 2.3. It su�ces to prove (2.6) assuming Ef = 0. To this end, by
induction on k, we show that for all k ∈ N and all p ∈ (k, k + 1],

(2.14) ‖f+‖p ≤
√

8κp p ‖h+f‖p∨2 with κp =
1

2

(
1−

(
1− 1

p

)p/2)−1
.

These constants are strictly increasing in p, κ1 = 1/2 and limp→∞ κp = κ =
√
e

2 (
√
e−1) .

For k = 1 and p ∈ (1, 2], by (2.9) and the fact that κpp ≥ 1/2, we have

‖f+‖p ≤ ‖f+‖2 ≤ 2 ‖h+f‖2 ≤
√

8κp p ‖h+f‖2.
To make an induction step, �x an integer k > 1 and assume that (2.14) holds for

all real p ∈ [1, k]. Now, consider the values p ∈ (k, k + 1]. Set

xp = ‖f+‖pp 8−p/2κ−p/2p p−p/2‖h+f ‖−pp∨2,
so that it su�ces to prove that xp ≤ 1. In terms of xp, (2.10) implies that

xp 8p/2κp/2p pp/2 ‖h+f‖pp
≤xp/(p−1)p−1 8p/2κ

p/2
p−1 (p− 1)p/2 ‖h+f‖pp−1

+ 4 (p− 1) ‖h+f‖2p x1−2/pp 8p/2−1κp/2−1p pp/2−1 ‖h+f ‖p−2p

≤xp/(p−1)p−1 8p/2κp/2p (p− 1)p/2 ‖h+f‖pp +
1

2
x1−2/pp 8p/2κp/2−1p pp/2 ‖h+f‖pp.

Here we have used the fact that κp−1 ≤ κp. Simplifying and using that by induction,
xp−1 ≤ 1, it follows that

xp ≤ x
p/(p−1)
p−1

(
1− 1

p

)p/2
+

1

2κp
x1−2/pp ≤

(
1− 1

p

)p/2
+

1

2κp
x1−2/pp .

Now note that the function

up(x) =
(

1− 1

p

)p/2
+

1

2κp
x1−2/p − x

is concave on R+ and positive at x = 0. Since up(1) = 0 and up(xp) ≥ 0, we may
conclude that xp ≤ 1. �

Corollary 2.6. Given f = f(X1, . . . , Xn) in L∞(P), for all p ≥ 2,

(2.15) ‖f‖p ≤ ‖f‖2 +
√

32κp ‖hf‖p.
If additionally Ef = 0,

(2.16) ‖f‖p ≤
√

32κp ‖hf‖p.

Proof. By Theorem 2.3,

‖f − Ef‖p ≤ ‖(f − Ef)+‖p + ‖(f − Ef)−‖p
≤
√

8κp ‖h+f‖p +
√

8κp ‖h−f‖p ≤ 2
√

8κp ‖hf‖p,
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which proves (2.16). Moreover, by the triangle inequality,

‖f − Ef‖p ≥ ‖f‖p − |Ef | ≥ ‖f‖p − ‖f‖2,
so that we obtain (2.15). �

We shall now prove Theorem 1.1. Recall that if the relation of the form

(2.17) ‖f‖k ≤ γk (k ∈ N)

holds true with some constant γ > 0, then f has sub-exponential tails, i. e. Eec|f | ≤ 2
for some constant c = c(γ) > 0, e. g. c = 1

2γe
. Indeed, using k! ≥ (k

e
)k, we have

E exp(c|f |) = 1 +
∞∑
k=1

ck
E |f |k

k!
≤ 1 +

∞∑
k=1

(cγ)k
kk

k!
≤ 1 +

∞∑
k=1

(cγe)k = 2.

Proof of Theorem 1.1. Put A =
√

32κp. Using (2.15) with f replaced by |h(k−1)f |HS

for k = 1, . . . , d, and applying Lemma 2.2, we get

‖h(k−1)f‖HS,p ≤ ‖h(k−1)f‖HS,2 + A ‖h|h(k−1)f |HS‖p
≤ ‖h(k−1)f‖HS,2 + A ‖h(k)f‖HS,p.

Consequently, using (2.16) and then iterating (2.15), we arrive at

(2.18) ‖f‖p ≤
d−1∑
k=1

Ak ‖h(k)f‖HS,2 + Ad ‖h(d)f‖HS,p.

Now, since ‖h(k)f‖HS,2 ≤ 1 for k ≤ d−1 and ‖h(d)f‖HS,∞ ≤ 1 by assumption, we get

‖f‖p ≤
d∑

k=1

Ak =
Ad+1 − 1

A− 1
− 1 ≤

( A

A− 1
A
)d

for all p ≥ 2, where A/(A − 1) ≤ 1.12. We now arrive at 1.12A ≤
√
Cp, where

the best constant corresponds to p = 2, and then we �nd that C < 52. Hence, we
obtain the bound

(2.19) ‖f‖p ≤ (52 p)d/2, p ≥ 2.

As for 0 < p < 2, one may �nd ‖f‖p ≤ ‖f‖2 ≤ (104)d/2, and thus, for all k ≥ 1,

‖|f |2/d‖k = ‖f‖2/d2k/d ≤ γk,

as in (2.17), with constant γ = 104. �

Proof of Proposition 1.2. First note that since Xi's are centered, we have α0 = 0,
and the Hoe�ding decomposition of f is given by the polynomials

hi1...id(Xi1 , . . . , Xid) = αi1...id Xi1 · · ·Xid (i1 < . . . < id, d = 1, . . . , n).

It is now easily seen that for any 1 ≤ k ≤ d and 1 ≤ j1 6= . . . 6= jk ≤ n,

hj1...jkf(X) = hXj1 · · · hXjk

∣∣∣ ∑
i1<...<id
3j1,...,jk

αi1...id
∏

ν∈{i1,...,id}
\{j1,...,jk}

Xν

+
∑

i1<...<id+1
3j1,...,jk

αi1...id+1

∏
ν∈{i1,...,id+1}
\{j1,...,jk}

Xν + . . .
∣∣∣.
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Here, hXjν is understood according to (1.1) as the di�erence hg for the function
g(Xjν ) = Xjν (i. e. in dimension n = 1). Hence, for any k = 0, . . . , d,

‖h(k)f(X)‖2HS,2 =
∑

i1<...<id

α2
i1...id

∑
j1 6=... 6=jk
∈{i1,...,id}

(hXj1)
2 · · · (hXjk)

2

+
∑

i1<...<id+1

α2
i1...id+1

∑
j1 6=... 6=jk
∈{i1,...,id+1}

(hXj1)
2 · · · (hXjk)

2 + . . .

As a consequence, since hXi ≥ 1 for all i = 1, . . . , n,

(2.20) ‖f‖HS,2 ≤ ‖h(1)f(X)‖HS,2 ≤ . . . ≤ ‖h(d)f(X)‖HS,2 ≤ ‖h(d)f(X)‖HS,∞.

�

Corollary 1.3 can now be obtained along the lines of the proof of Theorem 1.1,
when the random variables X1, . . . , Xn are Rademacher variables.

Proof of Corollary 1.3. Without loss of generality we assume h to be symmetric (i. e.
invariant under permutations). Hence f can be rewritten as

f(X1, . . . , Xn) =
1(
n
d

) ∑
i1<...<id

h(Xi1 , . . . , Xid).

Introduce a set of independent Rademacher variables ε1, . . . , εn which are indepen-
dent of the random variables X1, . . . , Xn and consider

f ε(X, ε) =
1(
n
d

) ∑
i1<...<id

εi1 · · · εid h(Xi1 , . . . , Xid).

Denote by hεi , h
ε(d) and by similar expressions di�erences of f ε with respect to the

Rademacher variables εi conditionally on X.
Note that conditionally on X, f ε(X, ε) has Fourier�Walsh expansion consisting of

the d-th order term only. Hence, we may use (2.20) with ‖h(d)f(X)‖HS,∞ replaced
by ‖h(d)f(X)‖HS,p in (2.18). Arguing as in (2.19), conditionally on X we get

Eε |f ε(X, ε)|p ≤ (52 p)pd/2 Eε |hε(d)f ε(X, ε)|pHS

for all p ≥ 2. Hence, taking expectations with respect to X on both sides, we have

(2.21) E |f ε(X, ε)|p ≤ (52 p)pd/2 E |hε(d)f ε(X, ε)|pHS.

It follows from a result by de la Peña and Giné [D-G], Theorem 3.5.3 (also see
Joly and Lugosi [J-L], Theorem 8) that

(2.22) E |f(X)|p ≤ c̃p E |f ε(X, ε)|p

with some constant c̃ depending on d only. Moreover, for any i1 6= . . . 6= id, it is not
hard to see that

hεi1...idf
ε(X, ε) = |h(Xi1 , . . . , Xid)|

(cf. the proof of Proposition 1.2 and note that hεi = 1). Consequently,

(2.23) |hε(d)f ε(X, ε)|HS ≤ Cd(f),

where

Cd =
1(
n
d

)( ∑
i1 6=... 6=id

‖h(X1, . . . , Xd)‖2∞
)1/2

.
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Applying (2.22) and (2.23) on (2.21) and taking p-th roots, we arrive at

‖f‖p ≤ c̃ (52 p)d/2Cd(f).

From here on, the proof is similar to the proof of Theorem 1.1 if we normalize f
such that Cd(f) ≤ 1. However, it follows from the assumptions on h that Cd(f) ≤
ĉn−d/2 for some numerical constant ĉ depending on d and M only. Hence we arrive
at the normalization ĉ−1nd/2f which yields Corollary 1.3. �

Proof of Corollary 1.4. First note that, by Chebychev's inequality, for any p ≥ 1

(2.24) P(|f | ≥ e ‖f‖p) ≤ e−p.

Moreover, if p ≥ 2, it follows from (2.18) that

e ‖f‖p ≤ e
( d−1∑
k=1

(41p)k/2 ‖h(k)f‖HS,2 + (41p)d/2 ‖h(d)f‖HS,∞

)
.

Here we have used that 32κ < 41. Assuming ηf (t) ≥ 2 · 41, we therefore arrive that

e ‖f‖ηf (t)/41 ≤ e
( d−1∑
k=1

t+ t
)

= (de) t.

Hence, applying (2.24) to p = ηf (t)/41 (if p ≥ 2) yields

µ(|f | ≥ (de)t) ≤ µ(|f | ≥ e ‖f‖ηf (t)/41) ≤ exp{−ηf (t)/41}.

Using a trivial estimate in case of p < 2, we also obtain that

µ(|f | ≥ (de)t) ≤ e2 exp{−ηf (t)/41}.

The proof is now easily completed by rescaling f and using η(de)f (t) ≥ ηf (t)/(de)
2.
�

Proof of Theorem 1.5. First note that

hi sup
f∈F
|f(X)| ≤ sup

f∈F
hif(X)

by the reverse triangular inequality, and therefore (writing h∗(F) ≡ h∗(1)(F))

|h sup
f∈F
|f(X)|| ≤ |h∗(F)|.

In a similar way, we may also prove an analogue of (2.1), i. e.

|h|h∗(d−1)(F)|HS| ≤ |h∗(d)(F)|HS.

To see this, note that supf∈F ‖·‖j,∞ is a pseudo-norm. In view of these elementary
facts, the proof of Theorem 1.5 is now similar to the proof of Theorem 1.1. �

Proof of Theorem 1.6. The proof is obtained by calculating the di�erences of �rst
and second order. To start, note that for any ν = 1, . . . , n,

(hνSf (X))2 =
1

4

∥∥∥∑
i≥ν

(
f
( i∑
j=1

Xj

)
− f

( i∑
j=1

TνXj

))∥∥∥2
∞
≤ ‖f‖2∞(n− ν + 1)2,
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and consequently

|hSf (X)|2 ≤ ‖f‖2∞
n∑
ν=1

(n− ν + 1)2 =
1

6
n(n+ 1)(2n+ 1)‖f‖2∞ ≤ Cn3‖f‖2∞

for some constant C > 0. Moreover, for any ν 6= µ, (hνµSf (X))2 is given by

1

16

∥∥∥ ∑
i≥ν∨µ

(
f(

i∑
j=1

Xj

)
− f

( i∑
j=1

TνXj

)
− f

( i∑
j=1

TµXj

)
+ f
( i∑
j=1

TνµXj

))∥∥∥2.
By similar arguments as above, this expression does not exceed ‖f‖2∞(n−(ν∨µ)+1)2,
and therefore

‖h(2)Sf (X)‖2HS =
∑
ν 6=µ

(hνµSf (X))2 ≤ Cn4‖f‖2∞.

Combining these arguments and applying Corollary 1.4 completes the proof. �

3. Higher order Efron�Stein inequality: Proofs

Let us �rst collect some elementary facts about the di�erence operators introduced
in Section 1. As before, assume thatX = (X1, . . . , Xn) has independent components.

Remark 3.1. Let i = 1, . . . , n.
(i) If ε = (ε1, . . . , εn) has independent Rademacher components, then Dif(ε) =

1
2

(f(ε)− f(σiε)), where σiε = (ε1, . . . ,−εi, . . . , εn). Moreover,

hif(ε) = vif(ε) = dif(ε) = |Dif(ε)|.
(ii) If f(X) ∈ L2(P), then

(vif(X))2 = Ei(Dif(X))2 and (vif(X))2 = Ei(dif(X))2.

In particular, we immediately obtain (1.11), where the identities involving d±f
follow from symmetry and Fubini's theorem.

(iii) Let f(X) ∈ L2(P). Then, by independence, we can rewrite dif(X) as

dif(X) =
(1

2

(
(f(X)− Ei f(X))2 + Ei (f(X)− Eif(X))2

))1/2
=
(1

2

(
(Dif(X))2 + Ei(Dif(X))2

))1/2
.(3.1)

(iv) By induction over n, f is bounded if and only if |Df | is bounded. Using (3.1),
the same holds for |df | and |hf | instead of |Df |.

(v) We have |d+f | ≤ |df |, |d−f | ≤ |df |, |d+f | ≤
√

2 |h+f |, |d−f | ≤
√

2 |h−f | and
|df | ≤

√
2 |hf |.

The di�erence operator D is closely related to the Hoe�ding decomposition (1.7).
Indeed, the representation (1.7) follows by tensorizing the identity Ei +Di = Id, so

(3.2) hi1...ik(Xi1 , . . . , Xik) =
( ∏
j /∈{i1,...ik}

Ej
∏

l∈{i1,...ik}

Dl

)
f(X1, . . . , Xn).

Many of the relations described in Remark (3.1) extend to higher order di�erences.
In particular, for any i1 < . . . < id,

(3.3) (vi1...idf(X))2 = Ei1...id (Di1...idf(X))2 = Ei1...id (di1...idf(X))2.
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Furthermore, similarly to (3.1), we may rewrite (1.14) as

di1...id f(X) =
( 1

2d
(
(Di1...id f(X))2 +

d∑
k=1

∑
1≤s1<...<sk≤d

Eis1 ...isk (Di1...idf(X))2
))1/2

.

(3.3) implies that we always have

E (Di1...idf)2 = E (vi1...idf)2 = E (di1...idf)2.

Moreover, by the symmetry and Fubini's theorem,

E (d+i1...idf)2 = E (d−i1...idf)2 =
1

2
E (di1...idf)2.

In particular,

(3.4) E |D(d)f |2 = E |v(d)f |2 = E |d(d)f |2 = 2E |d+(d)f |2 = 2E |d−(d)f |2.
Finally, as in Remark 3.1 (i), we may conclude that even the identity

hi1...idf(ε) = vi1...idf(ε) = di1...idf(ε) = |Di1...idf(ε)|
holds for independent Rademacher variables (ε1, . . . , εn) = ε.
The proof of Theorem 1.8 is based on L2-identities together with some kind of

�harmonic� analysis arguments on the symmetric group. To this end, we shall need
speci�c (higher order) operators Ld we would call powers of �Laplacians�. Here we
make use of the di�erence operators Di. That is, we set

(3.5) Ld =
∑

1≤i1 6=i2 6=... 6=id≤n

Di1 . . .Did , d ∈ N.

In case of d = 1 this just means summing over all i = 1, . . . , n.
To motivate the notation of Ld, recall that for the discrete hypercube {±1}n,

L1 =
∑n

i=1Di is the usual graph Laplacian. The higher order operators Ld can be
written as polynomials in L1 of total degree d. Note that (L1)

d can be expressed as a
sum of d-th order di�erences Di1...id . Hence it easily follows that Ld can be expressed
in terms of (L1)

d by removing all the di�erences in which some indexes appear more
than once. This is in accordance with our de�nition of the hyper-matrices D(d)f (cf.
the discussion of (1.3)). Relating the Hoe�ding decomposition to the Laplacian Ld
yields the following result.

Theorem 3.2. Let f = f(X1, . . . , Xn) be in L1(P) with Hoe�ding decomposition
f =

∑n
k=0 fk. Then,

Ldfk = (k)d fk,

where Ld is the d-th order Laplacian (3.5), and (k)d = k(k−1) · · · (k−d+1). Thus,
the k-th Hoe�ding term is an eigenfunction of Ld with eigenvalue (k)d.

Consequently, there is an orthogonal decomposition of L2-functions f(X) on which
the Laplacian Ld operates diagonally, and the eigenvalues of the Hoe�ding terms of
order up to d− 1 are 0.

Proof. Write fk(X1, . . . , Xn) =
∑

j1<...<jk
hj1...jk(Xj1 , . . . , Xjk) as in (1.7). Fix j1 <

. . . < jk. Then, we get

Eihj1...jk(Xj1 . . . , Xjk) =

{
0, i ∈ {j1, . . . , jk},
hj1...jk(Xj1 , . . . , Xjk), i /∈ {j1, . . . , jk}.
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Therefore,

(3.6) Difd(X1, . . . , Xn) =
∑

j1<...<jk
i∈{j1,...,jk}

hj1...jk(Xj1 , . . . , Xjk)

and consequently, by iteration,

(3.7) Di1...idfk(X1, . . . , Xn) =
∑

j1<...<jk
i1,...,id∈{j1,...,jk}

hj1...jd(Xj1 , . . . , Xjk).

It remains to check how often each term hj1...jd(Xj1 , . . . , Xjd) appears in Ldfk =∑
i1 6=... 6=id Di1...idfk. As we just saw, each d-tuple i1 6= . . . 6= id such that i1, . . . , id ∈

{j1, . . . , jk} replicates the summand hj1...jd(Xj1 , . . . , Xjd) precisely once. As there
are k(k − 1) · · · (k − d+ 1) = (k)d such tuples, we arrive at the result. �

There is a �partial integration� formula involving di�erence operators. Recall that
by [G-S], Lemma 5.1, the di�erence operators Di are self-adjoint in the sense that
E (Dif)g = Ef(Dig) = E (Dif)(Dig) whenever f(X) and g(X) are in L2(P). In
particular, for the Laplacians Ld from (3.5), we have

(3.8) E (Ldf)g = Ef(Ldg) =
∑

i1 6=... 6=id

E (Di1...idf)(Di1...idg).

This identity can be used to obtain the following relation:

Proposition 3.3. Let f(X) ∈ L2(P) have the Hoe�ding decomposition f =
∑n

m=d fm.
If k ≤ d ≤ n, then

E |D(k−1)f |2 ≤ 1

d− k + 1
E |D(k)f |2.

Equality holds only if f = fd.

Proof. First, let f = fm. Then, applying (3.8) leads to

E |D(k)fm|2 =
∑

i1 6=... 6=ik

E (Di1...ikfm)(Di1...ikfm) = Efm(Lkfm).

Moreover, Theorem 3.2 yields Lkfm = (m)kfm. Consequently,

E |D(k)fm|2 = (m)k Ef 2
m. (∗)

The same argument with k replaced by k − 1 yields

E |D(k−1)fm|2 = (m)k−1Ef 2
m. (∗∗)

Comparing (∗) and (∗∗) completes the proof in the case f = fm.
For functions with arbitrary Hoe�ding decomposition we shall use the orthogo-

nality of the terms in the Hoe�ding decomposition and obtain

E |D(k−1)f |2 =
n∑

m=d

1

m− k + 1
E |D(k)fm|2 ≤

1

d− k + 1
E |D(k)f |2.

�

Proof of Theorem 1.8. Due to (3.4), it su�ces to prove Theorem 1.8 for the di�er-
ence operator D. In this case, iterating Proposition 3.3 yields the result. �
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Finally, we prove (1.16). By orthogonality and Proposition 3.3,

E |v(k)f |2 =
n∑
j=k

E |v(k)fj|2 =
n∑
j=k

1

(j − k)!
E |v(j)fj|2

for any k = 1, . . . , n, which may be rewritten as

E |v(k)fk|2 = E |v(k)f |2 −
n∑

j=k+1

1

(j − k)!
E |v(j)fj|2.

Iteratively plugging this into (1.15), we obtain that

Varf =
n∑
k=1

RkE |v(k)f |2, Rk =
k−1∑
j=0

Rj
1

(k − j)!
, R0 := 1.

It follows that for k ≥ 1, Rk = (−1)k+1/k! which �nishes the proof.

4. Differentiable Functions: Proofs

Given a continuous function on an open subset G ⊂ Rn, the equality

(4.1) |∇f(x)| = lim sup
x→y

|f(x)− f(y)|
|x− y|

, x ∈ G,

may be used as de�nition of the generalized modulus of the gradient of f . The
function |∇f | is Borel measurable, and if f is di�erentiable at x, |∇f(x)| agrees with
the Euclidean norm of the usual gradient. This operator preserves many identities
from calculus in form of inequalities, such as a �chain rule inequality�

(4.2) |∇T (f)| ≤ |T ′(f)||∇f |,
where |T ′| is understood according to (4.1) again.
Using the generalized modulus of the gradient, there is an analogue of Lemma 2.2

for the operator norms of the derivatives of consecutive orders:

Lemma 4.1. Given a Cd-smooth function f : G→ R, d ∈ N, at all points x ∈ G,
|∇|f (d−1)(x)|Op| ≤ |f (d)(x)|Op.

Proof. Indeed, for any h ∈ Rn, by the triangle inequality,∣∣ |f (d−1)(x+ h)|Op − |f (d−1)(x)|Op

∣∣ ≤ |f (d−1)(x+ h)− f (d−1)(x)|Op

= sup{(f (d−1)(x+ h)− f (d−1)(x))[v1, . . . , vd−1] : v1, . . . , vd−1 ∈ Sn−1},
while, by the Taylor expansion,

(f (d−1)(x+ h)− f (d−1)(x))[v1, . . . , vd−1] = f (d)(x)[v1, . . . , vd−1, h] + o(|h|)
as h → 0. Here, the o-term can be bounded by a quantity which is independent of
v1, . . . , vd−1 ∈ Sn−1. As a consequence,

lim sup
h→0

| |f (d−1)(x+ h)|Op − |f (d−1)(x)|Op|
|h|

≤ sup{f (d)(x)[v1, . . . , vd−1, vd] : v1, . . . , vd ∈ Sn−1} = |f (d)(x)|Op.

�
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For higher order concentration we need to establish a recursion for the Lp-norms
of the derivatives of f of consecutive orders similarly to (2.15). To this end, we
recall a classical result on the moments of Lipschitz functions in the presence of a
logarithmic Sobolev inequality which goes back to Aida and Stroock [A-S]. Namely,
if a probability measure µ on G satis�es a logarithmic Sobolev inequality (1.18) with
constant σ2, then, for any locally Lipschitz function g : G→ R, and any p > 2,

(4.3) ‖g‖2p ≤ ‖g‖22 + σ2(p− 2) ‖∇g‖2p.
For the reader's convenience, let us brie�y recall the argument. We may assume g
to be bounded, in which case the squares of the Lp(µ)-norms of g have derivatives

(4.4)
d

dp
‖g‖2p =

2

p2
‖g‖2−pp Entµ(|g|p).

We apply this identity to the function u = |g|p/2. By the chain rule inequality (4.2),

|∇u|2 ≤ p2

4
|g|p−2 |∇g|2. Hence, by Hölder's inequality,∫
|∇u|2 dµ ≤ p2

4

(∫
|g|p dµ

) p−2
p
(∫
|∇g|p dµ

) 2
p

=
p2

4
‖g‖p−2p ‖∇g‖2p.

Applying (1.18) to the function u, we therefore obtain

Entµ(|g|p) = Entµ(u2) ≤ 2σ2

∫
|∇u|2 dµ ≤ p2σ2

2
‖g‖p−2p ‖∇g‖2p.

Combining this with (4.4), we arrive at the di�erential inequality d
dp
‖g‖2p ≤ σ2‖∇g‖2p.

Integrating it from 2 to p yields (4.3).
Combining Lemma 4.1 and (4.3), we are now able to prove Theorem 1.9.

Proof of Theorem 1.9. Using (4.3) with f replaced by |f (k−1)|Op, 1 ≤ k ≤ d, we get

‖f (k−1)‖2Op,p ≤ ‖f (k−1)‖2Op,2 + σ2(p− 2) ‖∇|f (k−1)|Op‖2p
≤ ‖f (k−1)‖2Op,2 + σ2(p− 2) ‖f (k)‖2Op,p,

(4.5)

where Lemma 4.1 was applied on the last step. Consequently, by iteration,

‖f‖2p ≤ ‖f‖22 +
d−1∑
k=1

(σ2(p− 2))k ‖f (k)‖2Op,2 + (σ2(p− 2))d ‖f (d)‖2Op,p

≤ σ2 ‖∇f‖22 +
d−1∑
k=1

(σ2(p− 2))k ‖f (k)‖2Op,2 + (σ2(p− 2))d ‖f (d)‖Op,p

≤
d−1∑
k=1

(σ2p)k ‖f (k)‖2Op,2 + (σ2p)d ‖f (d)‖2Op,p.(4.6)

Here, the second step was based on the Poincaré-type inequality. Since ‖f (k)‖2Op,2 ≤
min(1, σ2(d−k)) for all k = 1, . . . , d− 1 and ‖f (d)‖Op,∞ ≤ 1 by assumption, we obtain

(4.7) ‖f‖2p ≤ σ2d

d∑
k=1

pk ≤ 1

1− p−1
(σ2p)d ≤ 2 (σ2p)d

and therefore ‖f‖p ≤ (2σ2p)d/2 for all p ≥ 2. Moreover, ‖f‖p ≤ ‖f‖2 ≤ (4σ2)d/2 for
p < 2. It follows that ‖|f |2/d‖k ≤ γk for all k ∈ N, i. e. (2.17) with γ = 4σ2. �
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Proof of Theorem 1.10. Starting as in the proof of Theorem 1.9, we arrive at

‖f‖2p ≤
d−1∑
k=1

(σ2p)k ‖f (k)‖2HS,2 + (σ2p)d ‖f (d)‖2Op,p,(4.8)

where we used the property that the operator norms are dominated by the Hilbert�
Schmidt norms. Moreover, since

∫
G
∂i1...ikf dµ = 0, by the Poincaré-type inequality,∫

G

(∂i1...ikf)2 dµ ≤ σ2

n∑
j=1

∫
G

(∂i1...ikjf)2 dµ

whenever 1 ≤ i1, . . . , ik ≤ n, k ≤ d− 1. Summing over all 1 ≤ i1, . . . , ik ≤ n, we get

(4.9) ‖f (k)‖2HS,2 =

∫
G

|f (k)|2HS dµ ≤ σ2

∫
G

|f (k+1)|2HS dµ = σ2 ‖f (k+1)‖2HS,2.

Using (4.9) in (4.8) and iterating, we thus obtain

‖f‖2p ≤
d−1∑
k=1

σ2dpk ‖f (d)‖2HS,2 + (σ2p)d ‖f (d)‖2Op,p.

Noting that ‖f (d)‖HS,2 ≤ 1 and ‖f (d)‖Op,∞ ≤ 1, we arrive at (4.7), from where we
may proceed as in the proof of Theorem 1.9. �

Proof of Corollary 1.11. For any p ≥ 2, it follows from (4.6) that

e ‖f‖p ≤ e
( d−1∑
k=1

(σ2p)k/2 ‖f (k)‖Op,2 + (σ2p)d/2 ‖f (d)‖Op,∞

)
.

From here we may proceed as in the proof of Corollary 1.4. �

5. Functions on the Sphere: Proofs

First, let us recall some basic facts about the spherical calculus (cf. [S-W] or e. g.
[B-C-G]). The normalized Lebesgue measure σn−1 on the unit sphere Sn−1 can be
introduced as the distribution of Z/|Z|, assuming that the random vector Z has
a standard normal distribution in Rn. Using independence of |Z| and Z/|Z|, this
description implies that for any p-homogeneous function f : Rn \ {0} → R,

(5.1)

∫
Rn
f(x) dγn(x) = E |Z|p

∫
Sn−1

f(θ) dσn−1(θ)

provided that all the integrals involved exist.
A function f on Sn−1 is called Cd-smooth if it can be extended to a Cd-smooth

function on some open subset G of Rn containing the unit sphere. If f is C1-smooth
on Sn−1, then at every point θ ∈ Sn−1 it admits the Taylor expansion

(5.2) f(θ′) = f(θ) + 〈v, θ′ − θ〉+ o(|θ′ − θ|) as θ′ → θ, θ′ ∈ Sn−1

with some v ∈ Rn. Among all the vectors v ful�lling (5.2), the one with smallest
Euclidean norm represents the spherical derivative or gradient of f at θ and is
denoted ∇Sf(θ). Equivalently, in terms of the usual (Euclidean) gradient, we have

∇Sf(θ) = Pθ⊥∇f(θ) = ∇f(θ)− 〈∇f(θ), θ〉 θ,
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where Pθ⊥ denotes the orthogonal projection from Rn to the tangent space θ⊥. In
particular, |∇Sf(θ)| ≤ |∇f(θ)| for all θ ∈ Sn−1. If f is a C1-function on Sn−1, the
norm of the spherical gradient |∇Sf | coincides with the generalized modulus of the
gradient (4.1) using either the geodesic or the induced Euclidean distance on Sn−1.
By a result of Mueller and Weissler [M-W], the uniform measure σn−1 on Sn−1

satis�es a logarithmic Sobolev inequality with constant σ2 = 1
n−1 . In other words,

(5.3) Entσn−1(f
2) ≤ 2

n− 1

∫
|∇Sf |2 dσn−1

for any smooth f : Sn−1 → R. Therefore, considering any open neighbourhood G
of Sn−1, we may regard σn−1 as a Borel probability measure on G satisfying a log-
arithmic Sobolev inequality with constant σ2 = 1

n−1 . Hence, Theorem 1.13 directly
follows from Theorem 1.9. It remains to note that in the notation of Theorem 1.9,

min(1, σd−k) ≥ n−(k−d)/2,

hence arriving at the conditions used in Theorem 1.13.
In a similar way, we now prove Theorem 1.14.

Proof of Theorem 1.14. It follows from Theorem 1.10, once the partial derivatives
up to order d− 1 are centered under σn−1. Indeed, we may assume that f is de�ned
on Rn \ {0} (cf. (5.4)). Fix any i1 ≤ . . . ≤ ik, k ≤ d− 1. Noting that xi1 · · · xikf(x)
is (p+ k)-homogeneous, by (5.1) and a k-fold partial integration, we obtain∫

Rn
∂i1...ikf(x) dγn(x) =

∫
Rn
xi1 · · ·xikf(x) dγn(x)

= E |Z|p+k
∫
Sn−1

θi1 · · · θikf(θ) dσn−1(θ).

On the other hand, since f is p-homogeneous, ∂i1...ikf is (p−k)-homogeneous. There-
fore, applying (5.1) again,∫

Rn
∂i1...ikf(x) dγn(x) = E |Z|p−k

∫
Sn−1

∂i1...ikf(θ) dσn−1(θ).

Hence, orthogonality to all polynomials of total degree at most d − 1 implies that
the partial derivatives up to order d−1 are centered (if the involved integrals exist).
Since f is a Cd-function (hence bounded on Sn−1), this holds true if E |Z|p−k < ∞
for all k = 0, 1, . . . , d− 1, which in turn is satis�ed i� p− (d− 1) + n > 0. �

To prove Theorem 1.15, we need some further details about spherical derivatives.
First note that ∇Sf is a vector-valued function on Sn−1, and hence we may de�ne
spherical partial derivatives of �rst and higher orders as suggested in Section 1.4.
Any function f on Sn−1 can be extended to a p-homogeneous function F on Rn

(where p ∈ R) by putting

(5.4) F (x) =

{
rpf(θ), x 6= 0,

0, x = 0,
r = |x|, θ = x/|x|.

If f is Cd-smooth, its p-homogeneous extension F will be Cd-smooth on Rn \ {0}.
The spherical derivative ∇Sf of a C1-smooth function on Sn−1 and the derivatives

of its p-homogeneous extensions F are related by the identity

∇F (x) = rp−1 [pf(θ)θ +∇Sf(θ)], x 6= 0
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(see [B-C-G], Proposition 12.1). In particular, for the 0-homogeneous extension
F (0)(x) = f(θ), ∇F (0) is (−1)-homogeneous and is given by

(5.5) ∇F (0)(x) = r−1∇Sf(θ),

so that ∇F (0) = ∇Sf on Sn−1. In other words, ∂iF
(0) = Dif on Sn−1, where ∂i and

Di denote the partial and spherical partial derivatives, respectively.
By iteration, we can retrieve spherical partial derivatives of any order from suit-

able homogeneous extensions. To start, note that F (1)(x) = r∇F (0)(x) is a 0-
homogeneous vector-valued function on Rn\{0}. It follows that for any 1 ≤ i, j ≤ n,

∂iF
(1)
j is a (−1)-homogeneous function with

∂iF
(1)
j (x) = ∂i(r∂jF

(0)(x)) = r−1Di〈∇Sf(θ), ej〉 = r−1Dijf(θ),

so that ∂iF
(1)
j = Dijf on Sn−1. For general k ∈ N, we may therefore de�ne

(5.6) F (k)(x) = r∇F (k−1)(x),

which is a 0-homogeneous function on Rn \ {0} taking values in Rnk . Arguing as
above, for any 1 ≤ i1, . . . , ik ≤ n,

(5.7) F
(k)
i1...ik

= Di1...ikf

on Sn−1, where Di1...ikf denotes the k-th order spherical partial derivatives of f .
With the help of the 0-homogeneous functions F (k), k = 0, 1, . . . , d, it is now

possible to adapt the key steps of the proof of Theorem 1.9.

Lemma 5.1. If f : Sn−1 → R is Cd-smooth, then for all θ ∈ Sn−1,

|∇|D(d−1)f(θ)| | ≤ |D(d)f(θ)|.

Proof. Noting that |F (d−1)(x)| is the 0-homogeneous extension of |D(d−1)f(θ)|, we
may perform similar arguments as in the proof of Lemma 4.1. �

Proof of Theorem 1.15. Since the uniform distribution on the sphere satis�es a log-
arithmic Sobolev inequality (5.3), the moment recursion (4.3) from the proof of
Theorem 1.9 remains valid for functions on the sphere with intrinsic derivatives.
Hence, using (4.3) with f replaced by |D(k−1)f |Op for k = 1, . . . , d, we obtain

‖D(d−1)f‖2Op,p ≤ ‖D(d−1)f‖2Op,2 + σ2(p− 2) ‖∇∗|D(d−1)f |Op‖2p
≤ ‖D(d−1)f‖2Op,2 + σ2(p− 2) ‖D(d)f‖2Op,p.

Here the last step relies upon Lemma 5.1. But this is the same inequality as (4.5).
Therefore, the rest of the proof is analogous to the proof of Theorem 1.9. �

6. Polynomials and Edgeworth-type Expansions on the Sphere

For vectors a = (a1, . . . , an) ∈ Rn and an integer d ≥ 3, consider the polynomials

Qd,a(θ) =
n∑
i=1

aiθ
d
i , θ ∈ Sn−1,
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extending them to Rn by setting Qd,a(x) =
∑n

i=1 aix
d
i . By an easy calculation,∫

Sn−1

θ2pi dσn−1(θ) =
(2p− 1)!!

n(n+ 2) · · · (n+ 2p− 2)
, i = 1, . . . , n, p ∈ N.

Therefore, di�erentiating Qd,a(x), it follows that, for any k = 1, . . . , d− 1,

‖Q(k)
d,a‖

2
HS,2 =

(
2 (d− k)− 1

)
!! (d)2k

n(n+ 2) · · · (n+ 2 (d− k − 1))

n∑
i=1

a2i ,

where we used the notation (d)k = d(d− 1) · · · (d− k + 1). Similarly,

|Q(d)
d,a(θ)|

2
HS = (d!)2

n∑
i=1

a2i .

As a consequence, using the normalization n−1
∑n

i=1 a
2
i = 1 and choosing a suitable

constant cd, we see that the function n
−1/2cdQd,a satis�es the conditions of Theorem

1.13. Summarizing, we arrive at the following result.

Proposition 6.1. Let d ≥ 3 and let n−1
∑n

i=1 a
2
i = 1. There exists some constant

cd > 0 depending on d only such that∫
Sn−1

exp
(
cd n

(d−1)/d |Qd,a − Q̄d,a|2/d
)
dσn−1 ≤ 2,

where Q̄d,a denotes the σn−1-mean of Qd,a. In particular, Qd,a−Q̄d,a = Oσn−1

(
n−

d−1
2

)
.

Note though that if d is odd, Q̄d,a = 0, while for d even,

(6.1) Q̄d,a =
(d− 1)!!

(n+ 2) · · · (n+ d− 2)
ā, ā = n−1

n∑
i=1

ai.

In order to illustrate possible applications of these results, consider smooth func-
tion of the form

hn(θ) = EH
( n∑
i=1

θiXi

)
, θ ∈ Sn−1,

with Xi ∈ Rk independent and such that Cov(Xi) = Id. For simplicity, let us
assume that Xi is symmetric, i. e. Xi = −Xi in distribution. It is known, cf. [G-H],
that hn(θ) may be approximated via Edgeworth expansions, in particular � by the
polynomial Γ0 +

∑n
i=1 Γ4,i θ

4
i , as long as H ∈ C4(Rk) and assuming that the quantity

M = sup
x∈Rk

(
|H(x)|+ sup

|α|=4

|∂αH(x)|
)(

1 + |x|6
)−1

is �nite. The Γ-terms are the non-vanishing even Edgeworth expansion terms de�ned
by Γ0 = EH(N), where N is a standard normal random vector in Rk, and by

Γ4,i =
1

24

(
∂4

∂ε4

∣∣∣
ε=0

EH(N + εXj)− 3
∂4

∂ε21∂ε
2
2

∣∣∣
ε1=ε2=0

EH(N + ε1Xi + ε2X̄i)

)
,

where Xi, X̄i, N are independent and X̄i denotes an independent copy of Xi.
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If furthermore ρp,i = E |Xi|p < ∞ for p ≤ 6, then an inspection of the proof of
[G-H], Theorem 3.6, yields an explicit bound for the error

(6.2) R(θ) = hn(θ)−
(

Γ0 +
n∑
i=1

Γ4,i θ
4
i

)
,

namely

(6.3) |R(θ)| ≤ cM

( n∑
i=1

ρ6,iθ
6
i +

( n∑
i=1

ρ3,i|θi|3
)4)

≤ cM

n∑
i=1

(
ρ6,i + ρ43,i

)
θ6i

with some constant cM depending on M only.
To study the asymptotic behaviour of hn(θ) as a function of θ ∈ Sn−1 as n→∞,

we apply Proposition 6.1 together with (6.1). Here we are interested in concentration
inequalities for R(θ), i. e. we do not only center around the constant term Γ0 but
also include the fourth order term

∑n
i=1 Γ4,iθ

4
i . Indeed, write

Q6,ρ(θ) =
n∑
i=1

(
ρ6,i + ρ43,i

)
θ6i ,

so that |R(θ)| ≤ cMQ6,ρ(θ) by (6.3). Dividing Q6,ρ by ρ∗ = ( 1
n

∑n
i=1(ρ6,i + ρ43,i)

2)1/2,
we may apply Proposition 6.1 with d = 6, which yields

(6.4)

∫
Sn−1

exp
( c6

ρ
1/3
∗

n5/6 |Q6,ρ(θ)− Q̄6,ρ|1/3
)
dσn−1(θ) ≤ 2

for some absolute constant c6 > 0. Furthermore, by (6.1),

Q̄6,ρ =
15

(n+ 2)(n+ 4)
ρ̄, ρ̄ =

1

n

n∑
i=1

(ρ6,i + ρ43,i).

In particular,

(6.5)

∫
Sn−1

exp
( c0

ρ
1/3
∗

n2/3 |Q̄6,ρ|1/3
)
dσn−1(θ) ≤ 2

for some absolute constant c0 > 0. Applying the Cauchy�Schwarz inequality to-
gether with (6.4) and (6.5), we therefore arrive at the concentration inequality∫

Sn−1

exp
( c

ρ
1/3
∗

n2/3 |R(θ)|1/3
)
dσn−1(θ) ≤ 2

for some absolute constant c > 0 depending on M only. One may take c =

c
1/3
M min(c0, c6)/2 with cM from (6.3).
This example is related to a general framework of symmetric functions introduced

by Götze, Naumov and Ulyanov [G-N-U]. Indeed, we may consider sequences of real
functions hn(θ, . . . , θn), de�ned on Rn such that

hn+1(θ1, . . . , θj, 0, θj+1, . . . , θn) = hn(θ1, . . . , θj, θj+1, . . . , θn);

∂

∂θj
hn(θ1, . . . , θj, . . . , θn)

∣∣∣
θj=0

= 0 ∀j = 1, . . . , n;

hn(θπ(1), . . . , θπ(n)) = hn(θ1, . . . , θn) ∀π ∈ Sn,

(6.6)

where Sn denotes the symmetric group. This model may be regarded as a general
scheme which holds true in a lot of situations where asymptotic expansions are
considered. As shown in [G-N-U], Conditions (6.6) ensure the existence of a �limit�
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function h∞(
∑

i θ
2
i , λ1, . . . , λs), s ∈ N0, together with �Edgeworth-type� asymptotic

expansions. These expansions are given in terms of polynomials of Qd(θ), d ≥ 3,
where Qd(θ) = Qd,a∗ for a

∗ = (1, . . . , 1), and coe�cients given by the derivatives of
the limit function h∞ at λ1 = . . . = λs = 0. In particular, if we assume θ ∈ Sn−1,
applying Proposition 6.1 yields higher order concentration results for (hn)n.
In a certain sense, this represents a higher order extension of the second order

results by Klartag [K] for distribution functions of spherical weighted sums for log-
concave measures. See also the results by Klartag and Sodin [K-S] for sums of
independent randoms variables.
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