
SPHERICAL COVARIANCE REPRESENTATIONS

SERGEY G. BOBKOV1 AND DEVRAJ DUGGAL2

Abstract. Covariance representations are developed for the uniform distributions on the
Euclidean spheres in terms of spherical gradients and Hessians. They are applied to derive a
number of Sobolev type inequalities and to recover and refine the concentration of measure
phenomenon, including second order concentration inequalities. A detail account is also
given in the case of the circle, with a short overview of Höffding’s kernels and covariance
identities in the class of periodic functions.

1. Introduction

Let γn denote the standard Gaussian measure on Rn with density

ϕn(x) = (2π)−n/2 e−|x|
2/2, x ∈ Rn.

The space Rn is equipped with the Euclidean norm | · | and the inner product 〈·, ·〉.
It is well known that the covariance functional with respect to this measure

covγn(f, g) =

∫
Rn
fg dγn −

∫
Rn
f dγn

∫
Rn
g dγn

admits the representation

covγn(f, g) =

∫
Rn

∫
Rn
〈∇f(x),∇g(y)〉 dπn(x, y) (1.1)

for a certain probability measure πn on Rn × Rn. Here f and g may be arbitrary smooth
functions on Rn with γn-square integrable gradients ∇f and ∇g.

In an equivalent form, this identity was derived in the works by Houdré and Pérez-Abreu
using an interpolation argument in an infinite-dimensional setting for functionals of the
Wiener process and by Ledoux by means of the Ornstein-Uhlenbeck semi-group, cf. [9],
[11]. The form (1.1) with an explicit description of the mixing measure πn was later pro-
posed in [2]. It was shown that (1.1) can serve as a convenient tool to recover a number of
Sobolev-type inequalities in Gauss space such as the Poincaré-type inequality and exponen-
tial bounds, as well as to refine the classical dimension-free concentration in the form of a
deviation inequality.

The measure πn in (1.1) is unique. Indeed, extending this relation by linearity to complex-

valued functions and applying it to f(x) = ei〈t,x〉, g(x) = ei〈s,x〉 with parameters t, s ∈ Rn,
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we get an explicit expression for the Fourier-Stieltjes transform π̂n of πn, namely

π̂n(t, s) = e−
1
2

(|t|2+|s|2) 1− e−〈t,s〉

〈t, s〉
.

It determines πn in a unique way. Although this measure is not Gaussian, it has γn as
marginals, which is a crucial property for many applications.

What is also interesting, only Gaussian measures may satisfy a representation such as
(1.1) in dimension n ≥ 2: If for a probability measure µ on Rn there exists an identity

covµ(f, g) =

∫
Rn

∫
Rn
〈∇f(x),∇g(y)〉 dπ(x, y) (1.2)

with some (signed) measure π on Rn × Rn, then necessarily µ must be a Gaussian measure
with covariance matrix proportional to the identity matrix ([2], Theorem 2.4). Thus, (1.2)
characterizes the class of Gaussian measures.

Nevertheless, it is natural to wonder whether or not one can obtain (1.2) with a proper
modification of the Euclidean gradient. This turns out to be the case where µ is a uniform
distribution on the hypercubeM = {−1, 1}n, that is, the product n-th power of the symmetric
Bernoulli measure. Then we have (1.2) for the discrete gradient of functions on M ([2]).

In this paper, we consider a similar question for the uniform distribution µ = σn−1 on the
unit sphere

Sn−1 = {x ∈ Rn : |x| = 1}, n ≥ 2.

Any smooth function f on Sn−1 has a (continuous) spherical gradient ∇Sf(x) which may be
defined for every point x on the sphere as the shortest vector w ∈ Rn satisfying the Taylor
expansion up to the linear term

f(x′) = f(x) +
〈
w, x′ − x

〉
+ o(|x′ − x|), x′ → x (x, x′ ∈ Sn−1). (1.3)

As we will see, (1.2) does exist for the spherical gradient.

Theorem 1.1. On Sn−1 × Sn−1 there exists a positive measure νn such that, for all
smooth functions f, g on Sn−1,

covσn−1(f, g) =

∫
Sn−1

∫
Sn−1

〈∇Sf(x),∇Sg(y)〉 dνn(x, y). (1.4)

Moreover, νn = cnµn for a probability measure µn on Sn−1 × Sn−1 with marginals σn−1 and
with a constant satisfying

1

n− 1
< cn <

1

n− 2
(n ≥ 3).

Here νn has density with respect to the product measure σn−1⊗σn−1 of the form ψn(x, y) =
ψn(〈x, y〉) for a certain positive function ψn on [−1, 1]. This ensures that the marginals of νn
represent (equal) multiples of σn−1.

One should however emphasize that νn in (1.4) is not unique, in contrast with the Gaussian
case. Let us explain this in the case of the circle. Let κ be any signed measure on the torus
S1 × S1 supported on

∆ =
{

(x, y) ∈ S1 × S1 : 〈x, y〉 = 0
}
.

On this set necessarily 〈∇Sf(x),∇Sg(y)〉 = 0, since the vector ∇Sf(x) is orthogonal to x,
while ∇Sg(y) is orthogonal to y. Hence, if (1.4) holds true for ν, this relation continues to
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hold for the measure ν + κ. In addition, κ may have σ1 as marginals, for example, when κ is
the image of σ1 under the mapping x→ (x, eix) from S1 to S1 × S1.

Despite the non-uniqueness issue, the measure νn in Theorem 1.1 can be constructed in
rather natural ways leading to the same result. The first approach is based on the Gaussian
covariance identity (1.1) which we apply to 0-homogeneous functions f and g. For this aim,
we give an integrable description of the density of πn (Section 2) and then integrate in polar
coordinates in order to reduce the right-hand side of (1.1) to the form (1.4) and thus to obtain
an explicit integrable description for the density of νn (Sections 3-4). This will also allow us
to analyze an asymptotic behavior of the function ψn(x, y) when the points x, y are close to
each other and to show that

ψn(x, y) ∼ 1

|x− y|n−3
(n ≥ 4), ψ3(x, y) ∼ log

1

|x− y|
, (1.5)

where the equivalence is understood as two sided bounds with n-dependent factors (Sec-
tion 5). This relation shows that for the growing dimension n the mixing measure πn is
almost concentrated on the diagonal x = y.

In the case of the circle, which is treated separately in Section 6, the density ψ2 is bounded.
We will return to this case in the end of the paper in order to clarify the meaning of (1.1),
connect it with the class of periodic covariance identities on the line, and eventually evaluate
the density on the torus (addressing the uniqueness problem as well).

In Sections 7-8 we collect basic definitions and identities related to the differentiation on
the sphere, the spherical Hessian and Laplacian ∆S. Then we discuss a heat semi-group
approach to the covariance functional with respect to σn−1, by involving the semi-group
Pt = et∆S (Section 9). This may be done in analogy with M. Ledoux’ approach to the
Gaussian covariance representation, which leads to the following counterpart of Theorem 1.1.

Theorem 1.2. For all smooth functions f, g on Sn−1 (n ≥ 3),

covσn−1(f, g) =

∫ ∞
0

∫
Sn−1

〈∇Sf,∇SPtg〉 dσn−1 dt. (1.6)

The relationship between the two representations (1.4) and (1.6) are briefly discussed in
Section 10. Let us note here that (1.6) is no longer true on the circle.

Then we turn to applications of (1.4) including the spherical concentration. Let us recall
that, for any function f on Sn−1 with Lipschitz semi-norm ‖f‖Lip ≤ 1 and with σn−1-mean
m, there is a deviation inequality

σn−1

{
|f −m| ≥ r

}
≤ 2e−(n−1) r2/2, r ≥ 0. (1.7)

This classical result can be proved by applying the spherical isoperimetric inequality (a theo-
rem due to P. Lévy and Schmidt), or using the logarithmic Sobolev inequality on the sphere
(due to Mueller and Weissler, cf. [13], [12]). In Section 11 the following assertion is proved.

Theorem 1.3. For any function f on Sn−1 with ‖f‖Lip ≤ 1 and σn−1-mean m,

σn−1

{
|f −m| ≥ r

}
≤ 1

r
e−(n−2) r2/2 Eσn−1 |f −m|, r ≥ 0. (1.8)
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By the (spherical) Poincaré inequality, the expectation Eσn−1 |f−m| =
∫
Sn−1 |f−m| dσn−1

is bounded by 1√
n−1

. Hence (1.8) yields

σn−1

{
|f −m| ≥ r

}
≤ 1

r
√
n− 1

e−(n−2) r2/2,

which may be viewed as a sharpening of (1.7), at least for the values in the range r ≥ 1/
√
n.

Another point of sharpening is that the factor Eσn−1 |f−m| may be much smaller than 1/
√
n.

Covariance representations in Theorems 1.1-1.2 can be further developed in terms of
derivatives of higher orders such as the spherical Hessian f ′′S , which is well motivated from
the point of view of higher order concentration phenomena. In particular, it will be shown
that on Sn−1 × Sn−1 there exists a probability measure µn with marginals σn−1 such that

covσn−1(f, g) = cn

∫
Sn−1

∫
Sn−1

〈Df(x), Dg(y)〉 dµn(x, y) (1.9)

for all C2-smooth f, g that are orthogonal to all linear functions in L2(σn−1), and with
constants behaving like cn ∼ 1/n2 for the growing dimension n. In this representation, we
use the linear differential operator

Df(x) = f ′′S (x)− 2∇Sf(x)⊗ x

and involve the canonical inner product for symmetric n×n matrices in the integrand in (1.9).
Such results are discussed in Sections 12-13. First applications to bounding the covariance by
quantities of order 1/n2 are given in Section 14, and then a spherical second order deviation
inequality is derived in Section 15.

In the end, we give a short overview of one-dimensional covariance representations and
then focus on the case of the circle in Theorem 1.1. The whole plan is as follows.

1. Introduction
2. Gaussian covariance representation
3. From the Gauss space to the sphere
4. Proof of Theorem 1.1 for n ≥ 3
5. Asymptotic behaviour of mixing densities
6. Proof of Theorem 1.1 for the circle
7. Differentiation on the sphere
8. Spherical Laplacian
9. Semi-group approach to the covariance
10. Comparison of the two representations
11. Applications to spherical concentration
12. Second order covariance identity in Gauss space
13. Second order covariance identities on the sphere
14. Upper bounds on covariance of order 1/n2

15. Second order concentration on the sphere
16. Covariance representations on the line
17. Periodic covariance representations
18. From the circle to the interval
19. Mixing measures on the circle and the interval
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2. Gaussian covariance representation

The mixing measure in the covariance representation (1.1) may be constructed as the mixture

πn =

∫ 1

0
L
(
X, tX +

√
1− t2 Z

)
dt, (2.1)

where X and Z are independent standard normal random vectors in Rn with density ϕn,
and where L refers to the joint distribution. Since tX +

√
1− t2 Z and X are distributed

according to γn, it follows from this description that πn has marginals γn.
Let us state the identity (1.1) once more in a way which will be needed later on.

Theorem 2.1. Let u and v be C1-smooth complex-valued functions on an open set G in
Rn of γn-measure 1 such that

E |∇u(X)|2 <∞, E |∇v(X)|2 <∞. (2.2)

Then the random variables u(X) and v(X) have finite second moments, and

cov(u(X), v(X)) =

∫
Rn

∫
Rn
〈∇u(x),∇v(y)〉 dπn(x, y). (2.3)

The double integral in (2.3) is bounded in absolute value by∫
Rn

∫
Rn
| 〈∇u(x),∇v(y)〉 | dπn(x, y) ≤ 1

2
E |∇u(X)|2 +

1

2
E |∇v(X)|2,

so that it is finite. Also, the Poincaré-type inequality

Var(u(X)) ≤ E |∇u(X)|2 (2.4)

(which readily follows from (1.1)) and the assumption (2.2) ensures that u(X) and v(X) have
finite second moments, so the covariance is well-defined and finite as well.

The equality (2.3) is easily verified to be true for all exponential functions u(x) = ei〈t,x〉,

v(x) = ei〈s,x〉. Therefore, it holds true for finite linear combinations of such functions and ac-
tually for Fourier-Stieltjes transforms of signed measures on Rn with finite absolute moments.
This class is sufficiently rich to properly approximate all smooth functions as in Theorem 2.1
and establish (2.3) in full generality by an approximation argument.

As we have mentioned before, one may also state the identity (2.3) by involving the
Ornstein-Uhlenbeck operators

Ptv(x) =

∫
Rn
v
(
e−tx+

√
1− e−2ty

)
dγn(y), x ∈ Rn, t ≥ 0. (2.5)

A similar definition is applied to vector-valued functions. These operators act on Lebesgue
spaces Lp(γn) as contractions and form a semi-group, that is, Pt(Psv) = Pt+sv, t, s ≥ 0.

If v is integrable and has an integrable gradient ∇v with respect to γn, one may differen-
tiate under the integral sign in (2.5), which leads to

∇Ptv(x) = e−t
∫
Rn
∇v
(
e−tx+

√
1− e−2ty

)
dγn(y) = e−tPt∇v(x).

An equivalent formulation of (2.3) is the following:
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Theorem 2.2. Under the assumptions of Theorem 2.1,

cov(u(X), v(X)) =

∫ ∞
0

E 〈∇u(X),∇Ptv(X)〉 dt, (2.6)

where the integral is absolutely convergent.

From the definition (2.1) it follows that the probability measure πn is absolutely continuous
with respect to Lebesgue measure on Rn × Rn and has some density

pn(x, y) =
dπn(x, y)

dx dy
.

To write it down explicitly, let us write s =
√

1− t2. For any bounded Borel measurable
function h : Rn × Rn → R, changing the variable z = y−tx

s , we have

Eh(X, tX + sZ) =

∫
Rn

∫
Rn
h(x, tx+ sz)ϕn(x)ϕn(z) dx dz

=
1

sn

∫
Rn

∫
Rn
h(x, y)ϕn(x)ϕn

(y − tx
s

)
dx dy,

which means that

pn(x, y) =

∫ 1

0
s−nϕn(x)ϕn

(
y − tx
s

)
dt.

But

ϕn(x)ϕn

(
y − tx
s

)
=

1

(2π)n
exp

[
− |x|

2 + |y|2 − 2t 〈x, y〉
2s2

]
.

Thus, we arrive at:

Proposition 2.3. The mixing probability measure πn in the Gaussian covariance repre-
sentation (2.3) has density

pn(x, y) =
1

(2π)n

∫ 1

0
s−n exp

[
− |x|

2 + |y|2 − 2t 〈x, y〉
2s2

]
dt, x, y ∈ Rn, (2.7)

where we write s =
√

1− t2.

If n ≥ 2, the density pn is unbounded, since pn(0, 0) = (2π)−n
∫ 1

0 s
−n dt = ∞. On the

other hand, in the case n = 1, we have p1(x, y) ≤ 1
4 .

3. From the Gauss space to the sphere

Starting from (2.3), one can develop a spherical variant of the Gaussian covariance identity

covγn(u, v) =

∫
G

∫
G
〈∇u(x),∇v(y)〉 pn(x, y) dx dy. (3.1)

Here G is an open subset of Rn of a full γn-measure, and pn is the density of the probability
measure πn described in Proposition 2.3. This section is devoted to the first step in this
reduction. Putting

x = rθ, y = r′θ′, r, r′ > 0, θ, θ′ ∈ Sn−1,
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the formula (2.7) takes the form in polar coordinates

pn(rθ, r′θ′) =
1

(2π)n

∫ 1

0
s−n exp

[
− r2 + r′2 − 2rr′t 〈θ, θ′〉

2s2

]
dt, (3.2)

where we use the notation s =
√

1− t2 in the integrand, as before.
With two smooth functions f, g : Sn−1 → R, we associate the functions u(x) = f(θ),

v(y) = g(θ′), where

θ =
x

r
, θ′ =

y

r′
, r = |x|, r′ = |y|.

They are defined and C1-smooth on G = Rn \ {0} and have (Euclidean) gradients

∇u(x) =
1

r
∇Sf(θ), ∇v(y) =

1

r′
∇Sg(θ′). (3.3)

As random variables on the sphere, f and g have the same distributions under the nor-
malized Lebesgue measure σn−1 on Sn−1 as u and v have under γn. In particular,∫

Rn
u dγn =

∫
Sn−1

f dσn−1,

∫
Rn

v dγn =

∫
Sn−1

g dσn−1.

A similar identity is also true for the products uv ang fg. Hence from (3.1) we obtain that

covσn−1(f, g) = covγn(u, v) =

∫
Rn

∫
Rn
〈∇u(x),∇v(y)〉 pn(x, y) dx dy. (3.4)

In addition, since r and θ are independent under γn, and r has the same distribution as
|Z| (where Z is a standard normal random vector in Rn), we have∫

|∇u|2 dγn = E
1

|Z|2

∫
Sn−1

|∇Sf |2 dσn−1

and ∫
|∇v|2 dγn = E

1

|Z|2

∫
Sn−1

|∇Sg|2 dσn−1.

Here, while the spherical integrals are finite by the smoothness of f and g, the expectation
on the right-hand side is finite for n ≥ 3, only. So, this has to be assumed. For further
developments, we will need a recursive formula on similar expectations.

Lemma 3.1. For any real number m > −(n− 2),

E |Z|m = (m+ n− 2)E |Z|m−2,

where Z is a standard normal random vector in Rn. In particular, E |Z|−2 = 1
n−2 for n ≥ 3.

Proof. One may use a general formula

Ew(|Z|) =
1

(2π)n/2

∫
Rn
w(|x|) e−|x|2/2 dx =

ωn−1

(2π)n/2

∫ ∞
0

w(r)rn−1 e−r
2/2 dr,

where we integrated in polar coordinates in the last step. Here and in the sequel, we denote
by ωn−1 the surface area of the sphere Sn−1, that is,

ωn−1 =
(2π)

n
2

2
n
2
−1 Γ(n2 )

. (3.5)
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Integrating by parts for the polynomial function w(r) = rm with m > −(n−2) (this condition
is posed for the integrability reason), we get

E |Z|m =
ωn−1

(2π)n/2

∫ ∞
0

rm+n−1 e−r
2/2 dr

= (m+ n− 2)
ωn−1

(2π)n/2

∫ ∞
0

rm+n−3 e−r
2/2 dr = (m+ n− 2)E |Z|m−2.

�

4. Proof of Theorem 1.1 for n ≥ 3

Keeping the same notations as before, let us return to (3.4). To continue, one may integrate
on the right-hand of this representation in polar coordinates using the general formula∫

Rn

∫
Rn
h(x, y) dxdy =

∫ ∞
0

∫ ∞
0

∫
Sn−1

∫
Sn−1

h(rθ, r′θ′) (rr′)n−1 dr dr′ dθ dθ′

= ω2
n−1

∫ ∞
0

∫ ∞
0

∫
Sn−1

∫
Sn−1

h(rθ, r′θ′) (rr′)n−1 dr dr′ dσn−1(θ) dσn−1(θ′),

where ωn−1 stands for the area size of the sphere Sn−1 described in (3.5). Hence, applying
(3.2)-(3.3), the double integral in (3.4) may be rewritten, and we obtain that

covσn−1(f, g) =

∫
Sn−1

∫
Sn−1

〈
∇Sf(θ),∇Sg(θ′)

〉
ψn(θ, θ′) dσn−1(θ) dσn−1(θ′) (4.1)

with

ψn(θ, θ′) =
1

2n−2 Γ(n2 )2

∫ 1

0
s−n

[ ∫ ∞
0

∫ ∞
0

exp

[
− r2 + r′2 − 2rr′t 〈θ, θ′〉

2s2

]
(rr′)n−2 dr dr′

]
dt

=
1

2n−2 Γ(n2 )2

∫ 1

0
sn−2

[ ∫ ∞
0

∫ ∞
0

exp

[
− r2 + r′2 − 2rr′t 〈θ, θ′〉

2

]
(rr′)n−2 dr dr′

]
dt,

where changed the variables in the last step by replacing r with sr and r′ with sr′.
Let us see that ψn is integrable over the product measure σn−1 ⊗ σn−1, so that it serves

as density of some finite Borel positive measure νn on Sn−1 × Sn−1 with total mass

cn = νn(Sn−1 × Sn−1) =

∫
Sn−1

∫
Sn−1

ψn(θ, θ′) dσn−1(θ) dσn−1(θ′).

Repeating integration in polar coordinates as before, one may notice that

E
∫ 1

0

1

|X| |tX + sZ|
dt =

∫
Rn

∫
Rn

1

|x| |y|
pn(x, y) dx dy = cn.

But, for any fixed 0 < t < 1, by Cauchy’s inequality and applying Lemma 3.1,

E
1

|X| |tX + sZ|
<

(
E

1

|X|2

)1/2(
E

1

|tX + sZ|2

)1/2

= E
1

|X|2
=

1

n− 2
< ∞.

Thus, νn = cnµn for some Borel probability measure µn on Sn−1 × Sn−1 with cn <
1

n−2 .
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Note also that ψn(θ, θ′) = ψn(〈θ, θ′〉) depends on θ and θ′ via the inner product only. This
implies that the integral∫

Sn−1

ψn(θ, θ′) dσn−1(θ′) =

∫
Sn−1

ψn(
〈
θ, θ′

〉
) dσn−1(θ′)

does not depend on θ and is therefore equal to cn. As a consequence, we conclude that νn
is a positive, finite, symmetric measure whose marginal distributions are spherically invari-
ant measures. Hence they coincide with a multiple of σn−1. Returning to (4.1), one can
summarize in the following refinement of Theorem 1.1 for the case n ≥ 3.

Theorem 4.1. For all smooth functions f, g on Sn−1 (n ≥ 3),

covσn−1(f, g) =

∫
Sn−1

∫
Sn−1

〈∇Sf(x),∇Sg(y)〉 dνn(x, y), (4.2)

where νn is a positive measure on Sn−1 × Sn−1 with density ψn(〈x, y〉) with respect to the
product measure σn−1 ⊗ σn−1, where

ψn(α) =
1

2n−2 Γ(n2 )2

∫ 1

0
sn−2

[ ∫ ∞
0

∫ ∞
0

exp

[
− r2 + r′2 − 2rr′tα

2

]
(rr′)n−2 dr dr′

]
dt (4.3)

defined for |α| ≤ 1. Moreover, νn = cnµn for a probability measure µn on Sn−1 × Sn−1 with
marginals σn−1 and with total mass satisfying

1

n− 1
< cn <

1

n− 2
. (4.4)

Proof. It remains to explain the lower bound in (4.3). From (4.2) in the case of equal
functions f = g we get

Var(f(ξ)) = cn

∫
Sn−1

∫
Sn−1

〈
∇Sf(θ),∇Sf(θ′)

〉
dµn(θ, θ′), (4.5)

where ξ is a random vector with distribution σn−1. By Cauchy’s inequality,

Var(f(ξ)) ≤ cn

(∫ ∫
|∇Sf(x)|2 dµn(x, y)

)1/2(∫ ∫
|∇Sf(y)|2 dµn(x, y)

)1/2

(4.6)

= cn

∫
|∇Sf |2 dσn−1.

Thus, we arrive at the Poincaré-type inequality Var(f(ξ)) ≤ cn E |∇Sf(ξ)|2 on the unit sphere.
Here, the constant may not be better than the optimal constant 1

n−1 .

Moreover, the equality in (4.6) is only possible if and only if

〈∇Sf(x),∇Sf(y)〉 = |∇Sf(x)| |∇Sf(y)|
for µn-almost all (x, y) ∈ Sn−1 × Sn−1, hence for all x, y ∈ Sn−1 (by the continuity of the
gradient). Equivalently, one should have ∇Sf(x) = ∇Sf(y) for all x, y ∈ Sn−1, which means
that f must be a constant. This implies that cn >

1
n−1 . �

Remark 4.2. In order to estimate cn and prove (4.4), it is also sufficient to apply the
identity (4.5) to linear functions f(x) = 〈x, v〉, v ∈ Sn−1. In this case Var(f(ξ)) = 1

n and
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∇Sf(θ) = v − 〈v, θ〉 θ, so that〈
∇Sf(θ),∇Sf(θ′)

〉
= 1− 〈v, θ〉2 −

〈
v, θ′

〉2
+ 〈v, θ〉

〈
v, θ′

〉 〈
θ, θ′

〉
.

Hence, integrating this expression over µn and using the property that µn has marginals
σn−1, (4.5) yields

1

ncn
= 1− 2

n
+

∫
Sn−1

∫
Sn−1

〈v, θ〉
〈
v, θ′

〉 〈
θ, θ′

〉
dµn(θ, θ′).

Here, the left-hand side does not depend on v, while formally the right-hand side does.
Integrating this equality over dσn−1(v), we then get

1

ncn
= 1− 2

n
+

1

n

∫
Sn−1

∫
Sn−1

〈
θ, θ′

〉2
dµn(θ, θ′).

The latter implies 1
ncn

> 1 − 2
n , that is, cn <

1
n−2 . On the other hand, since 〈θ, θ′〉2 < 1 for

µn-almost all couples (θ, θ′), the double integral is smaller than 1. Hence, 1
ncn

< 1− 1
n , that

is, we also have a lower bound cn >
1

n−1 .

5. Asymptotic behaviour of mixing densities

Since 〈θ, θ′〉 = 1 − |θ − θ′|2, the property that the density function ψn(θ, θ′) on Sn−1 × Sn−1

depends on the inner product is equivalent to the assertion that it depends on the distance
function |θ − θ′|. We will now examine an asymptotic behaviour of this function when this
distance is close to zero.

The previous results are applicable in dimension n = 2 as well (with a slightly modified
argument), that is, for the circle S1 which we equip with the uniform probability measure σ1.
In this case, according to (4.3), the measure ν2 has density

ψ2(θ, θ′) = ψ2(
〈
θ, θ′

〉
) =

∫ 1

0

[ ∫ ∞
0

∫ ∞
0

exp

[
− r2 + r′2 − 2rr′t 〈θ, θ′〉

2

]
drdr′

]
dt, (5.1)

where we use the notation s =
√

1− t2. In the previous section, it was however not checked,
whether ν2 is finite or not. In fact, although the above triple integral is apparently not easy
to evaluate explicitly, one can show that the density ψ2 is bounded.

Since σ1 ⊗ σ1 is invariant under transformations (θ, θ′)→ (±θ,±θ′), we have

ν2(S1 × S1) =
1

4

∫
S1

∫
S1

Ψ(α) dσ1(θ) dσ1(θ′), α =
〈
θ, θ′

〉
,

where

Ψ(α) =

∫ 1

0

[ ∫ ∞
−∞

∫ ∞
−∞

exp

[
− r2 + r′2 − 2rr′tα

2

]
drdr′

]
dt.

In addition,

ψ2(α) ≤ Ψ(α). (5.2)

The inner integral with respect to r in the definition of Ψ(α) is equal to∫ ∞
−∞

exp

[
− (r − r′tα)2 − (r′tα)2 + r′2

2

]
dr =

√
2π exp

[
− 1− (tα)2

2
r′2
]
.
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The next integration with respect to r′ yields the value 2π√
1−(tα)2

. Integrating over 0 < t < 1,

we then get

Ψ(α) = 2π

∫ 1

0

dt√
1− (tα)2

= 2π
arcsin(α)

α
.

In view of the concavity of the sine function on [0, π2 ], we have π
2 sin(t) ≥ t on this interval,

or equivalently arcsin(α) ≤ π
2 α for all 0 ≤ α ≤ 1. Thus, Ψ(α) ≤ π2 implying the following:

Lemma 5.1. We have ψ2(θ, θ′) ≤ π2 for all θ, θ′ ∈ S1 and

c2 = ν2(S1 × S1) ≤ π2

4
.

However, the density of the mixing measure νn is not bounded for n ≥ 3. Let us give
natural lower and upper bounds for ψn(α) in terms of α and n as α approaches 1. To this
aim, consider the functions

Rm(α) =

∫ 1

0
sm
[ ∫ ∞

0

∫ ∞
0

exp

[
− r2 + r′2 − 2rr′tα

2

]
(rr′)m dr dr′

]
dt, (5.3)

for −1 ≤ α < 1 with a real parameter m ≥ 0 which may be used with m = n − 2 for the
sphere Sn−1, n ≥ 3, and with 0 < m < 1 for n = 2.

Put β = 1− αt and first consider the inner double integral

Im(β) =

∫ ∞
0

∫ ∞
0

exp

[
− r2 + r′2 − 2(1− β)rr′

2

]
(rr′)m dr dr′

=

∫ ∞
0

∫ ∞
0

exp

[
− 1

2
(r − r′)2 − βrr′

]
(rr′)m dr dr′.

Changing the variables x = r − r′, y = rr′, the last integral takes the form∫ ∞
0

∫ ∞
0

exp

[
− 1

2
x2 − βy

]
ym drdr′.

The next change r′ = y/x, x = r − y/x with arbitrary x ∈ R and y > 0 leads to

Im(β) =

∫ ∞
−∞

∫ ∞
0

exp

[
− 1

2
x2 − βy

]
ym√
x2 + 4y

dx dy, (5.4)

which is bounded from above by

1

2

∫ ∞
−∞

∫ ∞
0

exp

[
− 1

2
x2 − βy

]
ym−1/2 dx dy =

√
2π

2
β−m−1/2 Γ(m+ 1/2).

For a similar lower bound, one may restrict integration in (5.4) to the regions |x| < 1 and
y > 1, in which case x2 + 4y ≤ 5y. Since also 0 < β < 1, this leads to

Im(β) ≥ 2√
5e

∫ ∞
1

e−βy ym−1/2 dy =
2√
5e
β−m−1/2

∫ ∞
β

e−z zm−1/2 dz

≥ b0 β
−m−1/2 Γ(m+ 1/2)

for some absolute constant b0 > 0. Thus,

b0 β
−m−1/2 Γ(m+ 1/2) ≤ Im(β) ≤ b1 β−m−1/2 Γ(m+ 1/2), (5.5)
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where one may take b1 =
√

2π
2 and where we recall that β = 1− αt.

Let us turn to (5.3) and apply the upper bound in (5.5) which gives

Rm(α) =

∫ 1

0
sm Im(1− αt) dt

≤
√

2π

2
Γ(m+ 1/2)

∫ 1

0
sm (1− αt)−m−1/2 dt. (5.6)

Note that Rm(α) is increasing in −1 ≤ α ≤ 1. Using s ≤
√

2 (1 − t)1/2 and assuming
0 ≤ m < 1, this gives

Rm(α) ≤ Rm(1) ≤
√
π Γ(m+ 1/2)

∫ 1

0
(1− t)−

m+1
2 dt =

√
π Γ(m+ 1/2)

2

1−m
.

That is, we proved:

Lemma 5.2. For 0 ≤ m < 1 and |α| ≤ 1,

Rm(α) ≤ 2
√
π

Γ(m+ 1/2)

1−m
. (5.7)

In particular, choosing m = 0, we have ψ2(θ, θ′) = R0(α) ≤ 2π for all θ, θ′ ∈ S1.

The last bound is slightly better then the uniform bound of Lemma 5.1.
However, Lemma 5.2 is not applicable for m ≥ 1, and we have to return to the bound

(5.6). We need to estimate the integral

Jm(α) =

∫ 1

0
sm (1− αt)−m−1/2 dt

as α approaching 1. Let us write Q1 ∼ Q2 for two positive quantities, if the ratio Q1/Q2 is
bounded away from zero and infinity by some m-dependent constants. Note that Jm(α) ≤
Jm(1/2) ≤ 2m+1/2 for α ≤ 1/2, so, we may assume that 1

2 ≤ α < 1. Since the above integral

remains bounded when integrating over 0 < t < 1/2, and s ∼ (1 − t)1/2, we have, changing
the variable and putting ε = 1− α,

Jm(α) ∼
∫ 1/2

0

tm/2

(1− α(1− t))m+1/2
dt =

∫ 1/2

0

tm/2

(ε+ (1− ε) t)m+1/2
dt

= ε−
m−1

2

∫ 1/2ε

0

xm/2

(1 + (1− ε)x)m+1/2
dt ∼ ε−

m−1
2

∫ 1/2ε

0

xm/2

(1 + x)m+1/2
dx

∼ ε−
m−1

2

∫ 1/2ε

1/2

1

(1 + x)
m+1

2

dx.

The last integral is bounded for m > 1 and is equivalent to log(1/ε) for m = 1. Therefore,

Rm(α) ∼ (1− α)−
m−1

2 (m > 1), R1(α) ∼ log
1

1− α
.

Using this with m = n − 2 according to the formula (4.3), we obtain a similar conclusion
about the densities ψn(α) = ψn(〈θ, θ′〉) of νn and thus prove the asymptotic relations (1.5):
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Proposition 5.3. For −1 ≤ α < 1,

ψn(α) ∼ (1− α)−
n−3
2 (n ≥ 4), ψ3(α) ∼ log

1

1− α
.

6. Proof of Theorem 1.1 for the circle

Here we extend the assertion of Theorem 4.1 to the case of the circle, using the same formula
(4.3) for the density ψ2 for the mixing measure ν2 which is also described in (5.1).

For this aim, the Gaussian covariance identity may still be used, however, with slightly
different functions u and v. Namely, with a given smooth function f : Sn−1 → R, we associate
the homogeneous functions of order ε > 0

uε(x) = rεf(r−1x) = rεf(θ), where r = |x| =
√
x2

1 + · · ·+ x2
n, θ = r−1x.

They are defined, C1-smooth in the whole space except for the origin, and have gradients

∇uε(x) = rε−1
(
εf(θ)θ +∇Sf(θ)

)
.

Define similarly the homogeneous functions vε for a smooth function g : Sn−1 → R, so that

∇vε(x) = rε−1
(
εg(θ)θ +∇Sg(θ)

)
.

Since r and θ are independent under γn, while r has the same distribution as |Z|, we have

covγn(uε, vε) = E |Z|2ε covσn−1(f, g) → covσn−1(f, g) (6.1)

as ε→ 0. In addition,∫
|∇uε|2 dγn = E |Z|2ε−2

∫
Sn−1

(ε2f2 + |∇Sf |2) dσn−1,

which is finite, and similarly for vε. Hence, we may apply Theorem 2.1 to the couple (uε, vε),
which gives

covγn(uε, vε) =

∫
Rn

∫
Rn
〈∇uε(x),∇vε(y)〉 pn(x, y) dx dy. (6.2)

Putting

wε(θ, θ
′) = ε2f(θ)g(θ′)

〈
θ, θ′

〉
+ εf(θ)

〈
θ,∇Sg(θ′)

〉
+ εg(θ′)

〈
θ′,∇Sf(θ)

〉
+
〈
∇Sf(θ),∇Sg(θ′)

〉
,

one may integrate in polar coordinates separately with respect to x and y in (6.2) and
represent the double integral similarly as in the proof of Theorem 4.1 as∫

Sn−1

∫
Sn−1

wε(θ, θ
′)ψn,ε(θ, θ

′) dσn−1(θ)dσn−1(θ′) (6.3)

with ψn,ε(θ, θ
′) given by

1

2n−2 Γ(n2 )2

∫ 1

0
s−n

[ ∫ ∞
0

∫ ∞
0

exp

[
− r2 + r′2 − 2rr′t 〈θ, θ′〉

2s2

]
(rr′)n+ε−2 drdr′

]
dt,
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where we use the notation s =
√

1− t2. Changing the variable and using α = 〈θ, θ′〉, this
expression is simplified to

1

2n−2 Γ(n2 )2

∫ 1

0
sn+2ε−2

[ ∫ ∞
0

∫ ∞
0

exp

[
− r2 + r′2 − 2rr′tα

2

]
(rr′)n+ε−2 drdr′

]
dt.

As we know from Section 4, one may continue with ε = 0 in the case n ≥ 3. If n = 2, then

ψ2,ε(α) =

∫ 1

0
s2ε

[ ∫ ∞
0

∫ ∞
0

exp

[
− r2 + r′2 − 2rr′tα

2

]
(rr′)ε drdr′

]
dt,

and by (6.2),

covγ2(uε, vε) =

∫
S1

∫
S1
wε(θ, θ

′)ψ2,ε(θ, θ
′) dσ1(θ)dσ1(θ′). (6.4)

Here, the covariance part is convergent as ε→ 0 to covσ1(f, g), according to (6.1).
In order to turn to the limit on the right-hand side, note that the functions wε(θ, θ

′) remain
bounded uniformly over all θ, θ′ ∈ S1, 0 < ε ≤ 1/4, and are convergent to 〈∇Sf(θ),∇Sg(θ′)〉
as ε → 0. By Lemma 6.2 with m = ε, the quantities ψ2,ε(α) = R2ε(α) are also bounded by
a constant. Hence, if we show that ψ2,ε(α) → ψ2(α) for all α ∈ [−1, 1), one may apply the
Lebesgue dominated convergence theorem, so that to derive from (6.4) the limit case

covσ1(f, g) =

∫
S1

∫
S1

〈
∇Sf(θ),∇Sg(θ′)

〉
ψ2(θ, θ′) dσ1(θ)dσ1(θ′).

As we did in the previous section, cf. (5.3)-(5.4) with m = 2ε, we have

ψ2,ε(α) = R2ε(α) =

∫ 1

0

∫ ∞
−∞

∫ ∞
0

exp

[
− 1

2
x2 − (1− tα)y

]
(sy)2ε√
x2 + 4y

dx dy dt,

of which the limit case is given by

ψ2(α) = R0(α) =

∫ 1

0

∫ ∞
−∞

∫ ∞
0

exp

[
− 1

2
x2 − (1− tα)y

]
1√

x2 + 4y
dx dy dt. (6.5)

In order to apply the Lebesgue dominated convergence theorem and show that ψ2,ε(α) →
ψ2(α), it is sufficient to see that the integrands

Kε,α(x, y, t) = exp

[
− 1

2
x2 − (1− tα)y

]
(sy)2ε√
x2 + 4y

are bounded by an integrable function Kα(x, y, t) on R× (0,∞)× (0, 1) with respect to the
Lebesgue measure on this product space uniformly over all 0 < ε ≤ 1

4 . Clearly, for a fixed
value of α ∈ [−1, 1), one should examine the majorant

Kα(x, y, t) = sup
0<ε≤ 1

4

Kε,α(x, y, t) = exp

[
− 1

2
x2 − (1− tα)y

]
max(1,

√
sy)√

x2 + 4y
.

Clearly, the last expression is maximized for α = 1. Since also s ≤ 2(1− t), we have

Kα(x, y, t) ≤ K1(x, y, t) ≤ exp

[
− 1

2
x2 − (1− t)y

]
max(1,

√
(1− t)y)√

2y
,
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so,∫ 1

0

∫ ∞
−∞

∫ ∞
0

Kα(x, y, t) dx dy dt ≤
√

2π

∫ 1

0

∫ ∞
0

e−(1−t)y max(1,
√

(1− t)y)√
2y

dy dt

=
√

2π

∫ 1

0

∫ ∞
0

1√
1− t

e−z
max(1,

√
z)√

2z
dz dt < ∞.

One may summarize.

Proposition 6.1. On the torus S1×S1 there exists a positive measure ν2 with marginals
cσ1 for some constant c > 0 such that, for all smooth functions f, g on S1, we have the
covariance representation

covσ1(f, g) =

∫
S1

∫
S1

〈
∇Sf(θ),∇Sg(θ′)

〉
dν2(θ, θ′). (6.6)

Moreover, the mixing measure ν2 has density ψ2(〈θ, θ′〉) for the function ψ2 with respect to
the product measure σ1⊗ σ1 given in (6.5). We also have ψ2 ≤ 2π and c = ν2(S1× S1) < π.

The triple integral in (6.5) may be simplified by changing the variable y = 1
4 x

2z and then
integrating over x and t. Then it becomes the one-dimensional integral

ψ2(α) =
2

α

∫ ∞
0

(
log(1 + z/2)− log(1 + (1− α)z/2)

) dz

z
√

1 + z
.

7. Differentiation on the sphere

Before turning to Theorem 1.2 and applications of the spherical covariance representation,
let us recall a few basic formulas related to differentiation on the sphere.

The spherical gradient w = ∇Sf(θ) of a smooth function f on Sn−1 may be defined as the
shortest vector in Rn satisfying the Taylor formula (1.3). If f is defined and smooth on the
whole space Rn or a smaller open subset G containing the unit sphere, its spherical gradient
at a point θ ∈ Sn−1 is related to the usual gradient ∇f(θ) by

∇Sf(θ) = ∇f(θ)− 〈∇f(θ), θ〉 θ = Pθ⊥∇f(θ), (7.1)

where Pθ⊥ denotes the projection operator in Rn onto the orthogonal complement of the line
containing θ (the shifted tangent space). Alternatively, one may start with a smooth function
f : Sn−1 → Rn and extend it to G = Rn \ {0}, for example, by the formula

u(x) = f(r−1x), r = |x|. (7.2)

Then we obtain a smooth function on G with

∇u(x) = r−1∇Sf(r−1x), (7.3)

which coincides with the spherical gradient when it is restricted to the sphere.
From (7.1) it follows that the spherical derivative ∇S is a linear operator satisfying the

usual rule of differentiation of products

∇S(fg) = f∇Sg + g∇Sf. (7.4)
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Here and in the sequel, we endow the real linear space of n×n matrices with the standard
inner product

〈A,B〉 =

n∑
i,j=1

aijbij = Tr(AB), A = (aij)
n
i,j=1, B = (aij)

n
i,j=1,

(where Tr means the trace). The associated Hilbert-Schmidt norm is

‖A‖HS =
√
〈A,A〉 =

( n∑
i,j=1

a2
ij

)1/2
.

Given a C2-smooth function f on Sn−1, its second derivative or the Hessian B = f ′′S(θ) at
the point θ ∈ Sn−1 may be defined intrinsically using the Taylor formula

f(θ′)− f(θ) =
〈
∇Sf(θ), θ′ − θ

〉
+

1

2

〈
B(θ′ − θ), θ′ − θ

〉
+ o(|θ′ − θ|2), θ′ → θ (θ′ ∈ Sn−1), (7.5)

where B is required to be a symmetric n×n matrix with the smallest Hilbert-Schmidt norm.
One can show that, for all v ∈ Rn and θ ∈ Sn−1,

f ′′S (θ)v = ∇S 〈∇Sf(θ), v〉+ 〈v, θ〉∇Sf(θ), (7.6)

which means that the second order derivative represents the double application of the spher-
ical differentiation, however, for v in the tangent space, only.

For a matrix description in terms of (any) smooth extension u of f from the sphere to its
neighborhood, we have

f ′′S (θ) = Pθ⊥APθ⊥ , A = u′′(θ)− 〈∇u(θ), θ〉 In, (7.7)

where In denotes the identity n × n matrix, and where u′′ is the usual (Euclidean) Hessian
of u, that is, the matrix of second order partial derivatives of u (cf. e.g. [4]).

In view of the orthogonality of ∇Sf(θ) and θ, we always have f ′′S (θ)θ = 0 (since Pθ⊥θ = 0).
Hence, by the symmetry of the second spherical derivative,〈

f ′′S (θ)h, θ
〉

=
〈
h, f ′′S (θ)θ

〉
= 0

for any h ∈ Rn. Hence the image f ′′S (θ)h lies in θ⊥.
Let us relate the usual second derivative of the classical extension u as in (7.2) to the

spherical derivative f ′′S . By (7.3), 〈∇u(θ), θ〉 = 0, so that A = u′′(θ) in (7.7). Hence, we get:

Proposition 7.1. If u is the 0-homogeneous extension of a C2-smooth function f on
Sn−1 defined in (7.2), then

f ′′S (θ) = Pθ⊥u
′′(θ)Pθ⊥ , θ ∈ Sn−1.

To argue in the opposite direction from f to u, fix a point x ∈ Rn, x 6= 0, and put

θ′ =
x+ h

|x+ h|
, θ =

x

|x|
= r−1x, r = |x|,
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with h ∈ Rn small enough. Using Taylor’s formula, it is easy to check that

θ′ − θ = r−1h− r−3 〈x, h〉x− r−3 〈x, h〉h

− 1

2
r−3 |h|2 x+

3

2
r−5 〈x, h〉2 x+O(|h|3).

In particular, |θ′ − θ| = O(|h|). Since 〈∇Sf(θ), x〉 = r 〈∇Sf(θ), θ〉 = 0, we get〈
∇Sf(θ), θ′ − θ

〉
= r−1 〈∇Sf(θ), h〉 − r−2 〈∇Sf(θ), h〉 〈θ, h〉+O(|h|3).

Recall that the matrix B = f ′′S (θ) satisfies Bx = rBθ = 0. Using a shorter expansion

θ′ − θ = r−1h− r−3 〈x, h〉x+O(|h|2),

we also have B(θ′ − θ) = r−1Bh+O(|h|2) and therefore〈
B(θ′ − θ), θ′ − θ

〉
= r−2 〈Bh, h〉+O(|h|3).

Hence, by Taylor’s expansion (7.5),

u(x+ h)− u(x) = f(θ′)− f(θ)

= r−1 〈∇Sf(θ), h〉 − r−2 〈∇Sf(θ), h〉 〈θ, h〉+
1

2
r−2 〈Bh, h〉+ o(|h|2).

Thus, according to the usual Taylor expansion for the function u(x) up to the quadratic term,
necessarily ∇u(x) = r−1∇Sf(θ) and, for all h ∈ Rn,〈

u′′(x)h, h
〉

= −2r−2 〈∇Sf(θ), h〉 〈θ, h〉+ r−2 〈Bh, h〉 . (7.8)

To give an equivalent matrix description, one may use the symmetrized tensor product.

Definition 7.2. Given vectors v = (v1, . . . , vn), w = (w1, . . . , wn) in Rn, the symmetrized
tensor product v ⊗ w is an n× n symmetric matrix with entries

(v ⊗ w)ij =
1

2
(viwj + wivj), 1 ≤ i, j ≤ n.

Note that

〈v, h〉 〈w, h〉 =
n∑

i,j=1

viwjhihj = 〈(v ⊗ w)h, h〉 , h = (h1, . . . , hn) ∈ Rn.

Using this equality, from (7.8) we obtain:

Proposition 7.3. The extension u(x) in (7.2) of a C2-smooth function f(θ) on Sn−1 has
the matrix of second derivatives

u′′(x) = r−2
[
f ′′S (θ)− 2∇Sf(θ)⊗ θ

]
, θ = r−1x, x 6= 0.

In particular, on the unit sphere

f ′′S (θ) = u′′(θ) + 2∇Sf(θ)⊗ θ.

Example. For the linear function f(θ) = 〈v, θ〉 with a fixed v ∈ Rn, we have, by (7.1),

∇Sf(θ) = Pθ⊥∇f(θ) = v − 〈v, θ〉 θ.
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Using the extension (7.2) and applying (7.6) or (7.7) together with Proposition 7.3, one can
show that

f ′′S (θ) = −〈v, θ〉Pθ⊥ = 〈v, θ〉 [θ ⊗ θ − In].

8. Spherical Laplacian

Here we collect basic formulas related to the spherical Laplacian with reference to [1, 3, 4]
for more details and proofs. This operator is defined on the class of all C2-smooth functions
f on Sn−1 by the equality

∆Sf = Tr f ′′S .

Introduce the “spherical partial derivatives” Dif(θ) = 〈∇Sf(θ), ei〉, where e1, . . . , en is the
canonical basis in Rn, so that

∇Sf(θ) =
n∑
i=1

Dif(θ) ei.

As further partial derivatives, one may define the “second order” differential operators

Dijf = Di(Djf) = 〈∇S 〈∇Sf, ej〉 , ei〉 , i, j = 1, . . . , n

(note that the identity Dijf = Djif is no longer true in the entire class C2). Then

∆S =
n∑
i=1

Dii.

In fact, any orthonormal basis in Rn could be used in place of the ei’s in the definition of
Dii, and the above statement will continue to hold.

The next statement indicates how one may evaluate the Laplacian of a given function in
terms of usual (Euclidean) derivatives.

Proposition 8.1. If f is C2-smooth in an open region G containing the unit sphere, then
for any θ ∈ Sn−1,

∆Sf(θ) = ∆f(θ)− (n− 1) 〈∇f(θ), θ〉 −
〈
f ′′(θ)θ, θ

〉
. (8.1)

The Laplacian appears naturally in the classical formula for spherical integration by parts,∫
〈∇Sf,∇Sg〉 dσn−1 = −

∫
f∆Sg dσn−1, (8.2)

which may be taken as an equivalent definition of ∆S. It yields the following characterization
of the orthogonality to linear functions in terms of the spherical gradient.

Proposition 8.2. For any C1-smooth function f on Sn−1,∫
f(θ)θ dσn−1(θ) =

1

n− 1

∫
∇Sf(θ) dσn−1(θ).

In particular, f is orthogonal to all linear functions in L2(Sn−1) if and only if the linear forms
〈∇Sf(θ), v〉 have σn−1-mean zero for any v ∈ Rn.
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Applying the rule (7.4), we have another identity

1

2

[
∆S(fg)− f∆Sg − g∆Sf

]
= 〈∇Sf,∇Sg〉 (8.3)

in the class of all C2-smooth functions f and g on the sphere. For the proof, it is sufficient
to multiply this equality by an arbitrary smooth function h and integrate according to (8.2).

It is well-known (cf. e.g. [16]) that the Hilbert space L2(Sn−1, σn−1) can be decomposed into
the sum of orthogonal linear subspaces Hd, d = 0, 1, 2, . . . , consisting of all d-homogeneous
harmonic polynomials (more precisely – restrictions of such polynomials to the sphere). In
particular, H0 is the space of constant functions, H1 is the space of linear functions, H2

consists of quadratic harmonics, and so on. Any element fd of Hd represents an eigenfunction
of the Laplacian with the eigenvalue −d(n+d−2). That is, any function f in L2(Sn−1, σn−1)
admits a unique orthogonal (Fourier) expansion in spherical harmonics,

f =

∞∑
d=0

fd (fd ∈ Hd), (8.4)

and ∆Sfd = −d(n + d − 2) fd. Hence, if f is C2-smooth, we get another representation for
the Laplacian,

∆Sf = −
∞∑
d=1

d(n+ d− 2)fd. (8.5)

9. Semi-group approach to the covariance

The heat semi-group Pt = et∆S , t ≥ 0, on the sphere Sn−1 has the generator ∆S, so that

d

dt
Ptf = ∆SPtf, t > 0. (9.1)

For every t > 0 and f ∈ L2(σn−1), the operator Pt assigns a C∞-smooth function Ptf , which
can be defined using the orthogonal decomposition (8.4) into spherical harmonics by

Ptf =
∞∑
d=0

e−d(n+d−2)t fd. (9.2)

Let us list a few properties of this semi-group. To simplify the notations, in this section
the gradients ∇ = ∇S and the Laplacian ∆ = ∆S are understood in the spherical sense.

1) (commutativity) ∆Ptf = Pt ∆f for any C2-smooth f on Sn−1.

2)
∫

(Ptf) g dσn−1 =
∫
f Ptg dσn−1.

3) Ptf →
∫
f dσn−1 as t→∞.

4) (Jensen’s inequality) Ψ(Ptf) ≤ PtΨ(f) for any convex function Ψ.

There is another important property related to the geometry of the sphere known as the
curvature-dimension condition (for details we refer an interested reader to [1]). According to
(8.3), for the generator L = ∆, the carré du champ operator is given by

Γ(f, g) =
1

2

[
L(fg)− fLg − gLf

]
= 〈∇f,∇g〉 .
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Analogously, one may speak of an iteration of Γ

Γ2(f, g) =
1

2

[
LΓ(f, g)− Γ(f, Lg)− Γ(g, Lf)

]
.

In general, a semi-group is said to satisfy the curvature dimension condition CD(ρ, n)
with constant ρ if

Γ2(f) ≥ ρΓ(f) +
1

n
(Lf)2,

where Γ(f) = Γ(f, f). It is a classic result that the heat semi-group on Sn−1 satisfies the
curvature condition CD(n− 2, n− 1), so that

Γ2(f) ≥ (n− 2) Γ(f) +
1

n− 1
(Lf)2.

A general characterization commonly known as the Bakry-Emery condition indicates that

CD(ρ,∞) ⇐⇒
√

Γ (Ptf) ≤ e−ρtPt
√

Γ(f) for all t ≥ 0.

Hence, the heat semi-group on the sphere satisfies√
Γ (Ptf) ≤ e−(n−2)tPt

√
Γ(f),

that is, we have a pointwise bound

|∇Ptf | ≤ e−(n−2)tPt|∇f |. (9.3)

These properties are sufficient to derive a covariance representation in terms of the semi-
group operators. We start with a variance representation.

Lemma 9.1. For any smooth function f on Sn−1 (n ≥ 3),

Varσn−1(f) =

∫ ∞
0

∫
Sn−1

〈∇Ptf,∇f〉 dσn−1 dt. (9.4)

Proof. We may assume that f is C2-smooth and has mean P∞f =
∫
Sn−1 f dσn−1 = 0.

Note that the double integral in (9.4) is absolutely convergent due to the exponential decay
in (9.3) with respect to t. Using P0f = f and applying (9.1) together with properties 3) and
1), we can write

f2 = −
∫ ∞

0

d

dt
(Ptf)2 dt = −2

∫ ∞
0

Ptf Pt∆f dt.

Integrating this equality over σn−1 and applying 2) together with Fubini’s theorem, we get

Varσn−1(f) = −2

∫ ∞
0

[ ∫
Sn−1

P2tf ∆f dσn−1

]
dt

= −
∫ ∞

0

[ ∫
Sn−1

Ptf ∆f dσn−1

]
dt

=

∫ ∞
0

[ ∫
Sn−1

〈∇Ptf,∇f〉 dσn−1

]
dt,

where in the last step we employed the formula (8.2) for spherical integration by parts. �
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Proof of Theorem 1.2. In view of the identity

2 covσn−1(f, g) = Varσn−1(f + g)−Varσn−1(f)−Varσn−1(g), (9.5)

it makes sense to apply Lemma 8.1 to f, g and f + g. By linearity of the semi-group and
spherical gradient,

〈∇Pt(f + g),∇(f + g)〉 = 〈∇Ptf,∇f〉+ 〈∇Ptg,∇g〉
+ 〈∇Ptf,∇g〉+ 〈∇Ptg,∇f〉 .

Hence, after integration over dσn−1 and dt, (8.4) yields

Varσn−1(f + g) = Varσn−1(f) + Varσn−1(g) +

∫ ∞
0

[ ∫
Sn−1

〈∇Ptf,∇g〉 dσn−1

]
dt

+

∫ ∞
0

[ ∫
Sn−1

〈∇Ptg,∇f〉 dσn−1

]
dt.

Here the last inner integral is equal to

−
∫
Sn−1

f ∆Ptg dσn−1 = −
∫
Sn−1

f Pt∆g dσn−1 = −
∫
Sn−1

Ptf ∆g dσn−1

=

∫
Sn−1

〈∇Ptf,∇g〉 dσn−1.

Thus

Varσn−1(f + g) = Varσn−1(f) + Varσn−1(g) + 2

∫ ∞
0

[ ∫
Sn−1

〈∇Ptf,∇g〉 dσn−1

]
dt.

It remains to apply (8.5) which leads to the desired representation

covσn−1(f, g) =

∫ ∞
0

[ ∫
Sn−1

〈∇Ptf,∇g〉 dσn−1

]
dt. (9.6)

�

10. Comparison of the two representations

In the Gauss space there is a similar heat semi-group description of the covariance functional

covγn(u, v) =

∫ ∞
0

[ ∫
Rn
〈∇Ttu,∇v〉 dγn

]
dt, (10.1)

where

Ttu(x) =

∫
Rn
u
(
e−tx+

√
1− e−2ty

)
dγn(y), x ∈ Rn, t ≥ 0, (10.2)

denote the Ornstein-Uhlenbeck operators. The identity (10.1) can be obtained with similar
arguments used in the proof of Theorem 1.2. This certainly begs the following question:
May one start from the Gaussian covariance representation (10.1) and obtain the semi-group
representation (9.6) of the covariance on the sphere? This can be indeed done by applying
(10.1) to functions of the form u(x) = f( x

|x|) = f(θ), v(x) = g( x
|x|) = g(θ) by means of

orthogonal polynomials. All of the following on Chebyshev-Hermite polynomials can be
found in the detailed survey by Bogachev on the Ornstein-Uhlenbeck operators [6].
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In dimension one, the normalized Chebyshev-Hermite polynomial of degree m ≥ 0 is
defined as

Hm(x) =
(−1)m√
m!

ex
2/2 dm

dxm
e−x

2/2.

Similarly, given a multi-index m = (k1, . . . , kn) with integer components ki ≥ 0, the corre-
sponding Chebyshev-Hermite polynomial of degree k = |m| = k1 + · · ·+ kn is defined by

Hm(x) =
n∏
i=1

Hki(xi), x = (x1, . . . , xn) ∈ Rn.

These polynomials constitute an orthonormal basis of L2(γn).
The Ornstein-Uhlenbeck operator (10.2) has the following representation

Ttu =

∞∑
k=0

e−kt Ik(u), (10.3)

where Ik denotes the projection on the space spanned by the

(
k + n− 1

k

)
multi-index

Chebyshev-Hermite polynomials Hm of degree k.
They also serve as eigenfunctions for the generator L = ∆−x·∇ of the semi-group (Tt)t≥0,

and more precisely,
−LHm(x) = kHm(x). (10.4)

Let us mention the advantage presented by an examination of the Ornstein-Uhlenbeck oper-
ators from this angle. The domain of the generator is given as follows

D(L) =
{
u ∈ L2(γn) :

∞∑
k=0

k2 ||Ik(u)||L2(γn) <∞
}
.

Turning to the heat semi-group on Sn−1, recall that f in L2(σn−1) admits a unique or-
thogonal decomposition f =

∑∞
d=0 fd over spherical harmonics of degree d. We will need the

following technical result whose proof we leave for an interested reader as an exercise.

Lemma 10.1. Let f and g be in L2(σn−1). For the spherical harmonics fd, define their
extensions ud(x) = fd(

x
|x|) = fd(θ) and let v(x) = g( x

|x|) = g(θ) (x ∈ Rn, x 6= 0). Then∫ ∞
0

[ ∫
Rn
v

∞∑
k=0

ke−kt
∞∑
d=0

Ik(ud) dγn

]
dt

=

∞∑
d=0

[
d(d+ n− 2) e−d(d+n−2)t

∫ ∞
0

∫
Sn−1

gfd dσn−1

]
dt.

Applying this result, let us show that

covσn−1(f, g) =

∫ ∞
0

∫
Sn−1

〈∇SPtf,∇Sg〉 dσn−1 dt.

Integrating by parts with respect to the Gaussian measure, we may rewrite (10.1) as

covγn(u, v) = −
∫ ∞

0

∫
Rn
vL(Ttu) dγn dt.
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Using a decomposition of u into Chebyshev-Hermite polynomials and applying (8.3)-(8.4),
we see that the last double integral is equal to

−
∫ ∞

0

∫
Rn
vL
( ∞∑
k=0

e−ktIk(u)
)
dγn dt = −

∫ ∞
0

∫
Rn
v
∞∑
k=0

e−ktL(Ik(u)) dγn dt

=

∫ ∞
0

∫
Rn
v
∞∑
k=0

ke−kt Ik(u) dγn dt.

Next, using the decomposition of u into spherical harmonics and applying Lemma 10.1 to-
gether with the orthogonal decomposition (8.5) for the Laplacian, the latter expression is∫ ∞

0

∫
Rn
v

∞∑
k=0

ke−kt Ik

( ∞∑
d=0

ud

)
dγn dt =

∫ ∞
0

∫
Rn
v

∞∑
k=0

ke−kt
∞∑
d=0

Ik(ud) dγn dt

=

∞∑
d=0

[
d(d+ n− 2) e−d(d+n−2)t

∫ ∞
0

∫
Sn−1

gfd dσn−1

]
dt

= −
∫ ∞

0

∫
Sn−1

g

∞∑
d=0

e−d(d+n−2)t∆Sfd dσn−1 dt

= −
∫ ∞

0

∫
Sn−1

g∆S

∞∑
d=0

e−d(d+n−2)tfd dσn−1 dt

= −
∫ ∞

0

∫
Sn−1

g∆SPtf dσn−1 dt

=

∫ ∞
0

∫
Sn−1

〈∇SPtf,∇Sg〉 dσn−1 dt.

11. Applications to spherical concentration

We now return to Theorem 1.1 and develop several applications of the covariance identity

covσn−1(f, g) = cn

∫
Sn−1

∫
Sn−1

〈∇Sf(x),∇Sg(y)〉 dµn(x, y). (11.1)

All of them are entirely based on the property that the probability measure µn on Sn−1×Sn−1

(explicitly described in Theorem 4.1) has marginals σn−1, while the constants satisfy

1

n− 1
< cn <

1

n− 2
(n ≥ 3).

As a particular case, (11.1) implies the Poincaré-type inequality

Varσn−1(f) ≤ cn
∫
Sn−1

|∇Sf |2 dσn−1

with an asymptotically correct constant (the optimal one is 1
n−1). More generally, a similar

bound can be given in terms of Lp-norms of gradients

‖∇Sf‖p =
(∫

Sn−1

|∇Sf |p dσn−1

)1/p
, 1 ≤ p ≤ ∞,
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where the case p =∞ corresponds to the maximum (for smooth f).

Corollary 11.1. Let p, q ≥ 1, 1
p + 1

q = 1, For all smooth functions f and g on Sn−1,

|covσn−1(f, g)| ≤ cn ‖∇Sf‖p ‖∇Sg‖q. (11.2)

In particular, if f has a Lipschitz semi-norm ‖f‖Lip ≤ 1, then

|covσn−1(f, g)| ≤ cn
∫
Sn−1

|∇Sg| dσn−1. (11.3)

Proof. By Hölder’s inequality, the absolute value of the double integral in (10.1) does
not exceed∫

Sn−1

∫
Sn−1

|∇Sf(x)| |∇Sg(y)| dµn(x, y) ≤(∫
Sn−1

∫
Sn−1

|∇Sf(x)|p dµn(x, y)
)1/p (∫

Sn−1

∫
Sn−1

|∇Sg(y)|q dµn(x, y)
)1/q

=(∫
Sn−1

|∇Sf(x)|p dσn−1(x)
)1/p (∫

Sn−1

|∇Sg(y)|q dσn−1(y)
)1/q

= ‖∇Sf‖p ‖∇Sg‖q.

The inequality (11.3) corresponds to (11.2) with p =∞, q = 1. �

The representation (11.1) may also be used to recover the spherical concentration.

Corollary 11.2. For any smooth function f on Sn−1 with σn−1-mean zero,∫
Sn−1

ef dσn−1 ≤
∫
Sn−1

∫
Sn−1

exp
{
cn 〈∇Sf(x),∇Sg(y)〉

}
dµn(x, y). (11.4)

In particular, ∫
Sn−1

ef dσn−1 ≤
∫
Sn−1

ecn|∇Sf |2 dσn−1. (11.5)

Proof. The argument involves the entropy functional

Ent(ξ) = E ξ log ξ − E ξ logE ξ.

It is well-defined and non-negative for every random variable ξ ≥ 0, and is known to admit
the variational description

Ent(ξ) = supE ξη,
where the supremum is taken over all random variables η such that Eeη ≤ 1. In particular,

Eeη = 1 =⇒ E ξη ≤ Ent(ξ). (11.6)

We consider the expectations (integrals) and entropy on the probability spaces (Sn−1, σn−1)
and (Sn−1 × Sn−1, µn) and write correspondingly Eσn−1ξ, Entσn−1(ξ), and Eµnξ, Entµn(ξ).

Define the constant β as the logarithm of the right-hand side in (11.4), so that, by (11.6),

Eµn
[(
cn 〈∇Sf(x),∇Sg(y)〉 − β

)
ξ
]
≤ Entµn(ξ) (11.7)
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for any bounded measurable function ξ(x, y) on Sn−1×Sn−1. Choosing ξ(x, y) = g(y) = ef(y),
we have Entµn(ξ) = Entσn−1(g), and (11.1) together with (11.7) give

Eσn−1fe
f − β Eσn−1e

f = covσn−1(f, ef )− β Eσn−1e
f

= cn Eµn 〈∇Sf(x),∇Sg(y)〉 ef(y) − β Eµnef

≤ Entµn(ef ) = Entσn−1(ef )

= Eσn−1(fef )− Eσn−1e
f logEσn−1e

f .

Hence β ≥ logEσn−1e
f , which is the relation (11.4). As for (11.5), it follows from (11.4) using

〈∇Sf(x),∇Sg(y)〉 ≤ 1

2
|∇Sf(x)|2 +

1

2
|∇Sf(y)|2

and applying the Cauchy inequality. �

Proof of Theorem 1.3. The argument is based on the relation (11.2), where the smooth-
ness condition on f may be removed, just keeping the assumption ‖f‖Lip ≤ 1. We may further
assume that f has σn−1-mean zero. Consider g = T (f), where T is a non-decreasing (piece-
wise) differentiable function. Then from (11.2) we get

Eσn−1 fT (f) ≤ cn Eσn−1 T
′(f).

Without loss of generality, assume that f has a continuous density p under the measure
σn−1. Let F (x) = σn−1{f ≤ x} denote the distribution function of f . Choosing T (x) =
min((x− r)+, ε) with parameters r > 0 and ε > 0, the above inequality becomes∫ r+ε

r
x(x− r) dF (x) + ε

∫ ∞
r+ε

x dF (x) ≤ cn (F (r + ε)− F (r)).

Dividing by ε and letting ε tend to zero, we obtain that for all r > 0,

V (r) ≡
∫ ∞
r

xp(x) dx =

∫ ∞
r

x dF (x) ≤ cnp(r).

Hence, the function V satisfies the differential inequality V (r) ≤ −cnV ′(r)/r, that is,

(log V (r))′ ≤ (−r2/2cn)′.

This is the same as saying that log V (r) + r2/2cn is non-increasing, and so is the function
V (r) exp(r2/2cn). Since V (0) = E f+, we get

Eσn−1 f
+ ≥ exp(cnr

2/2)

∫ ∞
r

xp(x) dx ≥ exp(r2/2cn) r(1− F (r)).

Thus,

σn−1{f ≥ r} ≤
1

r
e−r

2/2cn Eσn−1 f
+.

A similar inequality holds when replacing f with −f , that is,

σn−1{f ≤ −r} ≤
1

r
e−r

2/2cn Eσn−1 f
−.

Summing the two bounds, we arrive at (1.8). �
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12. Second order covariance identity in Gauss space

For short, we write Eγn to denote the expectation, that is, the integral with respect to the
Gaussian measure γn on Rn.

Applying the Gaussian covariance identity (1.1) to partial derivatives of u and v of the
first order, we are led to the second covariance identity

covγn(u, v) = 〈Eγn∇u,Eγn∇v〉+

∫
Rn

∫
Rn

〈
u′′(x), v′′(y)

〉
dκn(x, y), (12.1)

where the integrand represents the inner product of square symmetric matrices, which is the
trace Tr(u′′(x) v′′(y)) of the product of the two Hessians. Here, 2κn is a probability measure
on Rn × Rn which may be defined by means of the mixture

κn =

∫ 1

0
(1− t) L

(
X, tX + sZ

)
dt (12.2)

with convention that s =
√

1− t2. This shows that 2κn has γn as marginals, similarly to the
mixing measure πn in the first order covariance representation for the Gaussian measure γn.

In an equivalent form, the identity (12.1) was emphasized in [10]. It may be stated in the
class of all C2-smooth functions u and v on Rn \ {0} such that

Eγn‖u′′‖2HS <∞, Eγn‖v′′‖2HS <∞.

Then the expectations

Eγn(u2 + v2) and Eγn(|∇u|2 + |∇v|2)

are also finite, by the Poincaré-type inequality (2.3) for γn, so that (12.1) makes sense.
In addition, (12.2) implies that κn is absolutely continuous with respect to the Lebesgue

measure on Rn × Rn and has some density

qn(x, y) =
dκn(x, y)

dx dy
.

To write it explicitly, recall that for any bounded Borel measurable function h : Rn×Rn → R,
changing the variable tx+ sz = y, or z = y−tx

s , we have

Eh(X, tX + sZ) =

∫
Rn

∫
Rn
h(x, tx+ sz)ϕn(x)ϕn(z) dx dz

= s−n
∫
Rn

∫
Rn
h(x, y)ϕn(x)ϕn

(y − tx
s

)
dx dy,

and this means that

qn(x, y) =

∫ 1

0
(1− t)s−n ϕn(x)ϕn

(
y − tx
s

)
dt.

But

ϕn(x)ϕn

(
y − tx
s

)
=

1

(2π)n
exp

[
− |x|

2 + |y|2 − 2t 〈x, y〉
2s2

]
.

Hence, one may complement (12.1) with the following assertion, where we write s =
√

1− t2.
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Lemma 12.1. The mixing measure κn in the Gaussian covariance representation (12.1)
has density

qn(x, y) =
1

(2π)n

∫ 1

0
(1− t)s−n exp

[
− |x|

2 + |y|2 − 2t 〈x, y〉
2s2

]
dt, x, y ∈ Rn.

Putting x = rθ, y = r′θ′ (r, r′ > 0, θ, θ′ ∈ Sn−1), this density may be written in polar
coordinates as

qn(rθ, r′θ′) =
1

(2π)n

∫ 1

0
(1− t)s−n exp

[
− r2 + r′2 − 2rr′t 〈θ, θ′〉

2s2

]
dt. (12.3)

13. Second order covariance identities on the sphere

We now develop a spherical variant of the second order covariance identity (12.1). With any
C2-smooth f on Sn−1 we associate the function

u(x) = f(r−1x) = f(θ), where r = |x|, θ = r−1x,

which is defined and C2-smooth in Rn \ {0}. By (7.3) and Proposition 7.3, it has derivatives

∇u(x) = r−1∇Sf(θ),

u′′(x) = r−2Df(θ) = r−2
(
f ′′S (θ)− 2∇Sf(θ)⊗ θ

)
(cf. Definition 7.2 for the symmetrized tensor product). Hence, as in Section 4,∫

∇u dγn = E
1

|Z|

∫
Sn−1

∇Sf dσn−1

and ∫
‖u′′‖2HS dγn = E

1

|Z|4

∫
Sn−1

‖f ′′S (θ)− 2∇Sf(θ)⊗ θ‖2HS dσn−1,

where Z is a standard normal random vector in Rn. By the smoothness assumption, the last
integrand is bounded (so, the last integral is finite), while the expectation is finite for n ≥ 5,
only, in which case, by Lemma 3.1,

E
1

|Z|4
=

1

n− 4
E

1

|Z|2
=

1

(n− 2)(n− 4)
.

Now, let g be another C2-smooth function on Sn−1. Define v(y) = g(θ′) for y ∈ Rn \ {0},
θ′ = y

r′ , r
′ = |y|, so that

∇v(y) =
1

r′
∇Sg(θ′) and v′′(y) =

1

r′2
Dg(θ′).

To simplify the resulting formulas, let us assume that f and g are orthogonal to linear
functions in L2(σn−1). This is equivalent to the similar property of u and v in L2(γn), which
is the same as saying that ∇u and ∇v have γn-mean zero (compare with Proposition 8.2).
We may now apply (12.1) together with Lemma 12.1, which give

covσn−1(f, g) = covγn(u, v) =

∫
Rn

∫
Rn

〈
u′′(x), v′′(y)

〉
qn(x, y) dx dy. (13.1)
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To continue, let us integrate in (13.1) in polar coordinates separately along the x and y
variables in the same manner as we did in Section 4. Then, according to (12.3), we obtain

covσn−1(f, g) =

∫
Sn−1

∫
Sn−1

〈
f ′′S (θ), g′′S(θ′)

〉
ψn(θ, θ′) dσn−1(θ) dσn−1(θ′) (13.2)

with ψn(θ, θ′) representable as

1

2n−2 Γ(n2 )2

∫ 1

0
(1− t)s−n

[ ∫ ∞
0

∫ ∞
0

exp

[
− r2 + r′2 − 2rr′t 〈θ, θ′〉

2s2

]
(rr′)n−3 dr dr′

]
dt.

Changing the variable, this expression is simplified to

1

2n−2 Γ(n2 )2

∫ 1

0
(1−t)sn−4

[ ∫ ∞
0

∫ ∞
0

exp

[
− r

2 + r′2 − 2rr′t 〈θ, θ′〉
2

]
(rr′)n−3 dr dr′

]
dt. (13.3)

Let us see that ψn is integrable over the product measure σn−1⊗σn−1 and serves as density
of some finite positive measure on Sn−1 × Sn−1 with total mass

cn = κn(Sn−1 × Sn−1) =

∫
Sn−1

∫
Sn−1

ψn(θ, θ′) dσn−1(θ) dσn−1(θ′).

Note that, for the finiteness of (13.3), it is necessary that the integral
∫ 1

0 (1 − t)sn−4 dt be
convergent, that is, n ≥ 3. Repeating integration in polar coordinates as before, we have

E
∫ 1

0

1

|X|2 |tX + sZ|2
dt =

∫
Rn

∫
Rn

1

|x|2 |y|2
qn(x, y) dx dy = cn,

where X and Z are independent standard normal random vectors in Rn. But, for any fixed
0 < t < 1, by Cauchy’s inequality,

E
1

|X|2 |tX + sZ|2
≤

(
E |X|−4

)1/2 (E |tX + sZ|−4
)1/2

= E |X|−4 =
1

(n− 2)(n− 4)
.

Thus, cn <
1

(n−2)(n−4) and κn = cnµn for some probability measure µn on Sn−1 × Sn−1.

We have also a natural lower bound on this constant. Indeed, for a fixed value of X,

E |tX + sZ|2 = E (t2|X|2 + s2|Z|2 + 2ts 〈X,Z〉) = t2|X|2 + s2n.

Hence, using E |X|4 = n2 + 2n and t2 + s2 = 1, we get

E |X|2 |tX + sZ|2 = EX |X|2
(
EZ |tX + sZ|2

)
= EX |X|2 (t2|X|2 + s2n) = n2 + 2t2n ≤ n2 + 2n.

Hence, by Jensen’s inequality, using the convexity of the function 1/r in r > 0,

cn =

∫ 1

0
E

1

|X|2 |tX + sZ|2
dt ≥

∫ 1

0

1

E |X|2|tX + sZ|2
dt ≥ 1

n(n+ 2)
.

Note also that ψn(θ, θ′) = ψn(〈θ, θ′〉) depends on θ and θ′ via the inner product only. This
implies that the integral∫

Sn−1

ψn(θ, θ′) dσn−1(θ′) =

∫
Sn−1

ψn(
〈
θ, θ′

〉
) dσn−1(θ′)
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does not depend on θ and is therefore equal to cn. In other words, the marginal distributions
of µn represent spherically invariant measures, hence coincide with σn−1.

As a result, we obtain the following spherical analog of (12.1), using the second order
linear matrix-valued differential operator

Df(x) = f ′′S (x)− 2∇Sf(x)⊗ x, x ∈ Sn−1. (13.4)

Theorem 13.1. On Sn−1 × Sn−1 (n ≥ 5) there exist a probability measure µn with
marginals σn−1 and a constant cn > 0 such that

covσn−1(f, g) = cn

∫
Sn−1

∫
Sn−1

〈Df(x), Dg(y)〉 dµn(x, y) (13.5)

for all C2-smooth f, g on Sn−1 orthogonal to all linear functions in L2(σn−1). Moreover, µn
has density with respect to the product measure σn−1 ⊗ σn−1 of the form ψn(〈x, y〉) for the
positive function ψn given in (13.3), and

1

n(n+ 2)
< cn <

1

(n− 2)(n− 4)
. (13.6)

One may also develop a heat semi-group variant of the identity (13.5) in a full analogy
between the covariance representations (1.4) and (1.7). As a consequence of (1.7) we have
the following identity where the orthogonality hypothesis is not needed.

Theorem 13.2. For all C2-smooth f, g on Sn−1 (n ≥ 3),

covσn−1(f, g) =

∫ ∞
0

[ ∫
Sn−1

t∆SPtf ∆Sg dσn−1

]
dt. (13.7)

Proof. Applying the pointwise bound (9.3) together with Cauchy’s inequality, we have
that, for all t ≥ 0,

t | 〈∇SPtf,∇Sg〉 | ≤ t |∇Ptf | |∇Sg|
≤ te−(n−2)tPt|∇f | |∇Sg|.

Here, the latter expression is vanishing at zero, and the same is true at t =∞, since Pt|∇f | →∫
Sn−1 |∇f | dσn−1 as t→∞. This justifies integration by parts in the representation (1.4):

covσn−1(f, g) =

∫
Sn−1

[ ∫ ∞
0
〈∇SPtf,∇Sg〉 dt

]
dσn−1

= −
∫
Sn−1

[ ∫ ∞
0

t
d

dt
〈∇SPtf,∇Sg〉 dt

]
dσn−1

= −
∫ ∞

0
t

[ ∫
Sn−1

d

dt
〈∇SPtf,∇Sg〉 dσn−1

]
dt.

Moreover, differentiating under the scalar product sign according to the semi-group identity
(9.1) and applying the formula (8.2) on the spherical integration by parts, we see that the
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last inner integral is equal to∫
Sn−1

〈∇S∆SPtf,∇Sg〉 dσn−1 = −
∫
Sn−1

∆SPtf ∆Sg dσn−1.

�

Remark 13.3. The last step in this derivation can be changed to yield an equivalent
representation in place of (12.7), namely

covσn−1(f, g) =

∫ ∞
0

[ ∫
Sn−1

tPtf ∆2
Sg dσn−1

]
dt, (13.8)

where ∆2
Sf = ∆S ∆Sf is the square of the spherical Laplacian.

14. Upper bounds on covariance of order 1/n2

Note that the constants (13.6) are of order 1/n2 in a big contrast with constants in the
covariance representation of Theorem 1.1 which have the rate 1/n (for growing n). It is
therefore reasonable to derive from (13.5) a corresponding analog of Corollary 11.1 in terms
of Lp-norms of spherical derivatives and Hessians

‖∇Sf‖p =
(∫

Sn−1

|∇Sf |p dσn−1

)1/p
, ‖f ′′S ‖p =

(∫
Sn−1

‖f ′′S ‖
p
HS dσn−1

)1/p
(14.1)

in the class of functions as in Theorem 12.1.
Since the inner product of n × n matrices satisfies | 〈A,B〉 | ≤ ‖A‖HS ‖B‖HS (Cauchy’s

inequality), we have, for all x, y ∈ Sn−1,

| 〈Df(x), Dg(y)〉 | ≤ ‖Df(x)‖HS ‖Df(y)‖HS. (14.2)

Now, by the triangle inequality for the Hilbert-Schmidt norm, from (13.4) it follows that

‖Df(x)‖HS ≤ ‖f ′′S(x)‖HS + 2 ‖∇Sf(x)⊗ x‖HS.

In turn, according to Definition 7.2, the symmetrized tensor product ∇Sf(x)⊗ x has entries

(∇Sf(x)⊗ x)ij =
1

2

(
xiDjf(x) + xjDif(x)

)
, 1 ≤ i, j ≤ n,

so that

(∇Sf(x)⊗ x)2
ij ≤

1

2

(
x2
i (Djf(x))2 + x2

j (Dif(x))2
)

and

‖∇Sf(x)⊗ x)‖2HS ≤
n∑
i=1

(Dif(x))2 = |∇Sf(x)|2

for all x ∈ Sn−1. Thus,

‖Df(x)‖HS ≤ ‖f ′′S (x)‖HS + 2 |∇Sf(x)|, (14.3)

and (14.2) gives

| 〈Df(x), Dg(y)〉 | ≤
(
‖f ′′S(x)‖HS + 2 |∇Sf(x)|

)(
‖g′′S(y)‖HS + 2 |∇Sg(y)|

)
.
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As a consequence from (13.5), covσn−1(f, g) is bounded in absolute value by

cn

∫
Sn−1

∫
Sn−1

(
‖f ′′S(x)‖HS + 2 |∇Sf(x)|

)(
‖g′′S(y)‖HS + 2 |∇Sg(y)|

)
dµn(x, y). (14.4)

Moreover, since the marginals of the probability measure µn in Theorem 13.1 coincides
with σn−1, the Lp-norm of the expression in the first bracket in (14.4) with respect to µn and
σn−1 are equal to each other and does not exceed ‖f ′′S ‖p + 2 ‖∇Sf‖p. A similar conclusion is
true about the Lq-norm of the expression in the second bracket, which is needed when q is
the conjugate power. Applying Hölder’s inequality, we may conclude.

Corollary 14.1. Let p, q ≥ 1, 1
p + 1

q = 1. Given C2-smooth functions f, g on Sn−1 (n ≥ 5)

which are orthogonal to all linear functions in L2(σn−1), we have

|covσn−1(f, g)| ≤ 1

(n− 2)(n− 4)

(
‖f ′′S ‖p + 2 ‖∇Sf‖p

)(
‖g′′S‖q + 2 ‖∇Sg‖q

)
, (14.5)

where the Lp and Lq norms are defined in (14.1).

If these norms are of order at most 1, the covariance f and g will be therefore of order at
most 1/n2 for the growing dimension n. As easy to see, the inequality such as (14.5) remains
to hold for 2 ≤ n ≤ 4 with an absolute constant in front of the norms.

In the case p = q = 2, (14.5) can be simplified by removing the norms for the spherical
gradients. Indeed, as was shown in [3], ‖∇Sf‖2 ≤ ‖f ′′S ‖2 for any C2-smooth function f on
Sn−1 (cf. also [4], Proposition 10.1.2). In fact, if f is orthogonal to all linear functions in
L2(σn−1), a much stronger inequality holds true, namely

‖∇Sf‖22 ≤
1

n+ 2
‖f ′′S ‖22.

Applying this in (14.5) with f = g, we obtain a second order Poincaré-type inequality

Varσn−1(f) ≤ c

n2
‖f ′′S ‖22

up to an absolute constant c.
In order to get a more precise relation in this particular case, one may actually employ the

following identity for the L2-norm of the Hessian: Given a C4-smooth function f on Sn−1,

‖f ′′S ‖22 =

∫
Sn−1

f (∆2
Sf + (n− 2) ∆Sf) dσn−1,

where we recall that ∆2
Sf = ∆S ∆Sf . Using the representation (8.5) of this operator in terms

of spherical harmonics, it follows from this identity that

Varσn−1(f) ≤ 1

2n(n+ 2)
‖f ′′S ‖22 (14.6)

for any C2-smooth function f on Sn−1 which is orthogonal to all linear functions in L2(σn−1).
Here, an equality is attained for quadratic harmonics, cf. [3].

Another approach to (14.6) can be based on the semi-group covariance representation
(13.8), cf. Remark 13.3.
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15. Second order concentration on the sphere

Here we employ Theorem 13.1 to strengthen Theorem 1.3 with respect to the growing di-
mension n for a certain class of functions. The next assertion is analogous to Corollary 10.2;
however, we will use the constants cn from (13.6) which are of the order 1/n2.

Corollary 15.1. Given a C2-smooth function f on the sphere Sn−1 (n ≥ 5) which is
orthogonal to all affine functions in L2(σn−1), we have∫

Sn−1

ef dσn−1 ≤
∫
Sn−1

exp
{ 1

(n− 2)(n− 4)
(2 ‖f ′′S ‖2HS + 8 |∇Sf |2)

}
dσn−1. (15.1)

A similar property was proved in [3] under the following assumptions:

a) f is orthogonal to all affine functions in L2(σn−1);

b) ‖f ′′S ‖ ≤ 1 pointwise on the sphere where ‖f ′′S ‖ denotes the operator norm;

c)
∫
‖f ′′S ‖2HS dσn−1 ≤ b.

Then it was shown that ∫
Sn−1

exp
{ n− 1

2(1 + b)
|f |
}
dσn−1 ≤ 2. (15.2)

This implies that f is of the order at most 1/n, and we have a deviation inequality

σn−1

{
(n− 1)|f | ≥ r

}
≤ 2e−r/2(1+b), r ≥ 2.

A similar conclusion can also be made on the basis of (15.1) if the conditions b)− c) are
replaced with, for example, ‖f ′′S ‖HS + |∇Sf | ≤ 1 on the sphere.

Proof of Corollary 15.1. It is rather similar to the proof of Corollary 11.2. Replacing
the spherical gradient with the operator D defined in (13.4) and repeating the same arguments
on the basis of the covariance identity (13.5), we obtain the analog of (11.4), namely∫

Sn−1

ef dσn−1 ≤
∫
Sn−1

∫
Sn−1

exp{cn 〈Df(x), Df(y)〉} dµn(x, y) (15.3)

with constants cn satisfying (13.6). Moreover, using

〈Df(x), Df(y)〉 ≤ ‖Df(x)‖HS ‖Df(y)‖HS

≤ 1

2
‖Df(x)‖2HS +

1

2
‖Df(y)‖2HS

and the property that the measure µn has σn−1 as marginals, the double integral in (15.3)
can be bounded by∫

Sn−1

∫
Sn−1

exp
{cn

2
‖Df(x)‖2HS +

cn
2
‖Df(y)‖2HS

}
dµn(x, y)

≤
(∫

Sn−1

∫
Sn−1

ecn ‖Df(x)‖2HS dµn(x, y)
)1/2(∫

Sn−1

∫
Sn−1

ecn ‖Df(y)‖2HS dµn(x, y)
)1/2

=

∫
Sn−1

ecn ‖Df‖
2
HS dσn−1,
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where we also applied Cauchy’s inequality. It remains to note that, by (14.3),

‖Df(x)‖2HS ≤
(
‖f ′′S (x)‖HS + 2 |∇Sf(x)|

)2
≤ 2 ‖f ′′S (x)‖HS + 8 |∇Sf(x)|2.

�

16. Covariance representations on the line

As we have already emphasized, covariance identities on the Euclidean space Rn of dimension
n ≥ 2 with the usual gradient exist for Gaussian measures, only. However, in dimension n = 1
the situation is completely different. In fact, for any probability measure µ on the real line a
covariance identity such as

covµ(u, v) =

∫ ∞
−∞

∫ ∞
−∞

u′(x)v′(y) dλ(x, y) (16.1)

exists for a suitable measure λ on the plane R×R. In this and next sections, we collect several
results in this direction and refer an interested reader to [5] for more details and historical
references. Denote by C∞b the class of all functions u : R→ R having C∞-smooth, compactly
supported derivatives (in which case u are bounded).

Proposition 16.1. Given a probability measure µ on the real line, (16.1) holds true for
all u, v ∈ C∞b with a unique locally finite measure λ = λµ. This measure is non-negative and
absolutely continuous with respect to the Lebesgue measure on the plane.

Here “locally finite” means that λ is finite on compact sets in the plane. In this case,
both sides of (16.1) are well-defined and finite for all functions in C∞b . Moreover, (16.1) is
extended to all locally absolutely continuous, complex-valued functions u, v such that∫ ∞

−∞

∫ ∞
−∞
|u′(x)| |u′(y)| dλ(x, y) <∞,

∫ ∞
−∞

∫ ∞
−∞
|v′(x)| |v′(y)| dλ(x, y) <∞,

where the derivatives u′ and v′ are understood in the Radon-Nikodym sense. This condition
guarantees that the double integral in (16.1) is finite and that u and v belong to L2(µ).

The equality (16.1) can be further generalized as a covariance identity

cov(u(X), v(Y )) =

∫ ∞
−∞

∫ ∞
−∞

u′(x)v′(y)H(x, y) dx dy (16.2)

for arbitrary random variables X and Y , where

H(x, y) = P{X ≤ x, Y ≤ y} − P{X ≤ x}P{Y ≤ y}, x, y ∈ R.
Here, the particular case of the identical functions u(x) = x and v(y) = y corresponds to the
observation by Höffding [8] (provided that X and Y have finite second moments).

Moreover, when X = Y , and the random variable X is distributed according to µ, (16.2) is
reduced to (16.1). One may therefore conclude that the mixing measure in (16.1) has density

Hµ(x, y) =
dλ(x, y)

dx dy
= F (x ∧ y) (1− F (x ∨ y)), x, y ∈ R, (16.3)

where
F (x) = P{X ≤ x} = µ((−∞, x]), x ∈ R,
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is the distribution function associated to µ, with notations x∧y = min(x, y), x∨y = max(x, y).

Definition 16.2. Following [5], we call λ = λµ the Höffding measure and its density
H = Hµ the Höffding kernel associated to µ.

For example, if µ is the Bernoulli measure assigning the weights p ∈ (0, 1) and q = 1−p to
the points a < b, then λ = pqU where U is the uniform distribution on the square (a, b)×(a, b).

Being applied with u(x) = v(x) = x, the identity (16.1) shows that the total mass of the
Höffding measure is the variance

λ(R× R) =

∫ ∞
−∞

∫ ∞
−∞

H(x, y) dx dy = Var(X).

Thus, λ is finite, if and only if µ has finite second moment.
Once the measure λ is finite, it may also be described via its Fourier-Stieltjes transform

in terms of the characteristic function of the random variable X,

f(t) = E eitX =

∫ ∞
−∞

eitx dµ(x), t ∈ R.

Namely, applying (16.1) to the exponential functions u(x) = eitx and v(y) = eisy (t, s ∈ R),
we obtain an explicit formula

λ̂(t, s) =

∫ ∞
−∞

∫ ∞
−∞

eitx+isy dλ(x, y) =
f(t)f(s)− f(t+ s)

ts
(t, s 6= 0). (16.4)

In particular, this provides the uniqueness part in Theorem 1.1.
Thus, the expression on the above right-hand side represents a positive definite function

in two real variables, as long as the characteristic function f is twice differentiable.
Moreover, there is a similar property of Höffding’s kernels: every such function H = Hµ

defined in (16.3) is positive definite on the plane, that is,
∑n

i,j=1 aiajH(xi, xj) ≥ 0 for any
collection ai, xi ∈ R. More generally,∫ ∞

−∞

∫ ∞
−∞

f(x)f(y)H(x, y) dx dy ≥ 0,

for any (bounded) measurable function f on the real line.
Being positive definite, every Höffding kernel satisfies H(x, y)2 ≤ H(x, x)H(y, y), which

may be used to construct a pseudometric

d(x, y) =
(
H(x, x)− 2H(x, y) +H(y, y)

)1/2
.

This property can be strengthened in terms of the Höffding measure. In particular,

λ(A×B)2 ≤ λ(A×A)λ(B ×B)

for all Borel sets A,B ⊂ R.
Since the kernel H = Hµ is symmetric about the diagonal x = y, the Höffding measure

λ = λµ has equal marginals Λ = Λµ defined by

Λ(A) = λ(A× R) =

∫ ∞
A

∫ ∞
−∞

H(x, y) dx dy, A ⊂ R (Borel). (16.5)
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Obviously, it is absolutely continuous with respect to the Lebesgue measure. More precisely,
we have the following density description. As before, assume that the random variable X is
distributed according to µ.

Proposition 16.3. If X has finite first absolute moment, then the marginal Λ is finite
and has density

h(x) =
dΛ(x)

dx
=

∫ ∞
x

(y − a) dF (y), a = EX. (16.6)

In particular, it is unimodal with mode at the point a, that is, h(x) is non-decreasing on the
half-axis x < a and is non-increasing for x > a. Moreover, it is continuous at x = a with

h(a−) = h(a+) =
1

2
E |X − a|. (16.7)

In the case E |X| =∞, the density of Λ is a.e. infinite on the support interval of µ.

Proposition 16.4. Assuming that X has finite first absolute moment, the marginal Λ is
a multiple of µ, if and only if µ is Gaussian.

Once Λ = σ2µ with some constant σ2, the measures Λ and λ are necessarily finite, so that
µ must have a finite second moment. If EX = 0 (without loss of generality), it follows from
(16.4) that the Fourier-Stieltjes transform of Λ is given by

Λ̂(t) = λ̂(t, 0) =

∫ ∞
−∞

eitx h(x) dx = −f
′(t)

t
, t ∈ R, t 6= 0,

where f is the characteristic function of X. Hence, Λ = σ2µ if and only if f ′(t) = −σ2tf(t),
t ∈ R. But this is only possible when µ is Gaussian with mean zero and variance σ2.

Often, the marginals of Höffding’s measures appear in the particular case of the covariance
representation (16.1) with the function v(x) = x. Then we arrive at

cov(X,u(X)) =

∫ ∞
−∞

u′(x)h(x) dx,

holding true as long as the integral is convergent. If µ is supported on an interval ∆ and has
there an a.e. positive density p, this formula may be rewritten as

cov(X,u(X)) = E τ(X)u′(X). (16.8)

Here the function

τ(x) =
h(x)

p(x)
=

1

p(x)

∫ ∞
x

(y − a) p(y) dy, x ∈ ∆,

is called the Stein kernel. We have τ(x) = 1 (a.e. on ∆), if and only if µ is the standard
Gaussian measure, in which case (16.8) becomes Stein’s equation

EXu(X) = Eu′(X).

After the pioneering work [15], the identity (16.8) served as a starting point for the ex-
tensive development of Stein’s method as an approach to various forms of the central limit
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theorem and estimating the distances to the normal law. For a comprehensive exposition of
this theory, we refer an interested reader to the book [7] and survey [14].

17. Periodic covariance representations

The spherical covariance representation (1.4) of Theorem 1.3 in dimension n = 2, that is, on
the circle S1, can be reduced to the covariance representation

covµ(u, v) =

∫ 1

0

∫ 1

0
u′(x)v′(y) dλ(x, y) (17.1)

for the uniform distribution µ = m on (0, 1) in the class of all 1-periodic smooth functions.

Definition 17.1. We call a signed symmetric measure λ on [0, 1)×[0, 1) a mixing measure
for a given probability measure µ on [0, 1), if (17.1) holds true for all 1-periodic smooth
functions u and v on the real line.

Following [5], let us now describe several results about this type of covariance represen-
tations. As we discussed before, the identity (17.1) always holds with the Höffding measure
λ = λµ. But, its marginals may be a multiple of µ in the Gaussian case only. This motivates
the following question. Given µ, is it possible to choose a mixing measure λ whose marginals
are multiples of µ? If so, how to describe all of them and choose a best one (in some sense)?

Proposition 17.2. Let µ be a probability measure on [0, 1) with Höffding’s measure λµ.
Subject to the constraint that the marginal distribution of λ in (17.1) is equal to cµ for a
prescribed value c ∈ R, the mixing measure λ exists, is unique, and is given by

λ = λµ + (σ2 − c)m⊗m
+ c (µ⊗m+m⊗ µ)− (Λµ ⊗m+m⊗ Λµ),

where Λµ is the marginal of λµ and σ2 is the variance of µ.

Here and in the sequel, m denotes the uniform distribution on (0, 1).
One can specialize this characterization to the measue m and consider identities

covm(u, v) =

∫ 1

0

∫ 1

0
u′(x)v′(y) dλ(x, y). (17.2)

Using Proposition 16.1, Proposition 17.2 leads to the following assertion which will be needed
in the study of covariance identities on the circle.

Corollary 17.3. Subject to the constraint that the marginal distribution of a mixing
measure λ in (17.2) is equal to cm, c ∈ R, the measure λ is unique and has density

λ(x, y)

dx dy
= Q(|x− y|) +

(
c− 1

24

)
, x, y ∈ (0, 1),

where

Q(h) =
1

8

[
1− 4h(1− h)

]
, 0 ≤ h ≤ 1. (17.3)
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Note that Q(h) ≥ 0 for all h ∈ [0, 1] and the inequality becomes an equality for h = 1
2 .

Moreover, the mixing measure λ is non-negative, if and only if c ≥ 1
24 . Hence, the smallest

positive measure (for the usual comparison) corresponds to the parameter c = 1
24 . In this

sense, the optimal variant of (18.2) is given by the covariance representation

covm(u, v) =
1

24

∫ 1

0

∫ 1

0
u′(x)v′(y) dν(x, y)

with a probability measure dν(x, y) = 24Q(|x−y|) dx dy on (0, 1)× (0, 1). It has the uniform
distribution m on (0, 1) as a marginal one.

If we want to write down a similar representation on the interval (0, T ), T > 0, one may
use a linear transform. Let mT denote the uniform distribution on (0, T ). Then we get that,
for all smooth T -periodic functions u and v, and for all c ≥ 1/24,

covmT (u, v) =

∫ T

0

∫ T

0
u′(x)v′(y) dλT (x, y) (17.4)

with a positive measure having the density

dλT (x, y)

dx dy
= Q

(∣∣∣ x
T
− y

T

∣∣∣)+
(
c− 1

24

)
(17.5)

on (0, T )× (0, T ). It has the marginal cTmT (dx) = c dx on (0, T ).

18. From the circle to the interval

Let us now return to the covariance representations on the circle

covσ1(f, g) =

∫
S1

∫
S1
〈∇Sf(x),∇Sg(y)〉 dν(x, y), (18.1)

where we admit that ν may be a signed measure on the torus S1 × S1. The question of
whether such a measure ν exists is settled in Proposition 6.6 with ν = ν2. Here we relate
(18.1) to the similar covariance identity

covm2π(u, v) =

∫ 2π

0

∫ 2π

0
u′(t)v′(s) dλ(t, s) (18.2)

on the semi-open interval [0, 2π) with respect to the uniform measure m2π in the class of all
2π-periodic functions u and v on the real line.

Identifying R2 with the complex plane C, to every smooth function f on S1 one associates

u(t) = f(eit) = f(cos t, sin t), t ∈ R, (18.3)

which is a smooth, 2π-periodic function on the real line. Conversely, starting with such u(t),
(18.3) defines a smooth function f(x) on the circle in a unique way. Given another smooth
function g on S1, define similarly v(t) = g(eit) = g(cos t, sin t), t ∈ R, so that

covσ1(f, g) = covm2π(u, v). (18.4)

One can also rewrite the double integral in (18.1) explicitly in terms of u and v. Recall
that the spherical gradient w = ∇Sf(x) at the point x ∈ Sn−1 for a smooth function f
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represents the unique vector in Rn with the smallest Euclidean norm such that

f(x′)− f(x) =
〈
w, x′ − x

〉
+ o(|x′ − x|), x′ → x (x′ ∈ Sn−1).

In the case of the circle, one can put x = eit, x′ = ei(t+ε) and rewrite the above as

u(t+ ε)− u(t) =
〈
w, ei(t+ε) − eit

〉
+ o(ε) =

〈
w, ieit

〉
ε+ o(ε), ε→ 0. (18.5)

Since ieit = (− sin t, cos t), we have〈
w, ieit

〉
= −w1 sin t+ w2 cos t, w = (w1, w2).

Thus, by (18.5),
u′(t) = −w1 sin t+ w2 cos t, (18.6)

implying that |u′(t)| ≤ |w|. Moreover, the equality here is attained for w1 = −u′(t) sin t
and w2 = u′(t) cos t. These numbers are therefore the coordinates of the shortest vector w
satisfying (18.5). One may conclude that

∇Sf(x) = u′(t) (− sin t, cos t), x = (cos t, sin t),

and similarly
∇Sg(y) = v′(s) (− sin s, cos s), y = (cos s, sin s),

which gives
〈∇Sf(x),∇Sg(y)〉 = u′(t)v′(s) cos(t− s).

Denote by ν̃ the measure on [0, 2π)× [0, 2π) such that ν is the image of ν̃ under the map
T (t, s) = (eit, eis). In view of (18.4), one may rewrite (18.1) as a covariance identity

covm2π(u, v) =

∫ 2π

0

∫ 2π

0
u′(t)v′(s) cos(t− s) dν̃(t, s),

Thus, we obtain:

Lemma 18.1. The representation (18.1) on the circle with a signed measure ν on S1×S1

is equivalent to the covariance representation (18.2) in the class of all 2π-periodic smooth
functions u and v with a signed measure λ on [0, 2π)× [0, 2π) defined by

dλ(t, s) = cos(t− s) dν̃(t, s), t, s ∈ [0, 2π). (18.7)

Note that cos(t − s) = 0 if and only if 〈x, y〉 = 0 for x = eit, y = eis. Hence, the map
ν ∼ ν̃ → λ in (18.7) transfers the part of the measure ν supported on the set

∆ =
{

(x, y) ∈ S1 × S1 : 〈x, y〉 = 0
}

(18.8)

to zero. With this in mind, one may always assume that ν is supported outside ∆.
To proceed, we will need to clarify the correspondence ν ∼ ν̃ for an important class of

measures on the torus.

Lemma 18.2. A finite measure ν on the torus S1 × S1 has density ψ(x, y) = ψ(〈x, y〉)
with respect to σ1 ⊗ σ1 depending on the inner product 〈x, y〉 if and only if ν̃ has density

dν̃(t, s)

dt ds
=

1

(2π)2
ψ(cos(t− s)), 0 < t, s < 2π, (18.9)
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with respect to the Lebesgue measure on the square [0, 2π)× [0, 2π).

Proof. The assumption that ν appears as the image of ν̃ under the map (t, s)→ (eit, eis)
may be equivalently stated as an integral identity∫

S1

∫
S1
w(x, y) dν(x, y) =

∫ 2π

0

∫ 2π

0
w(eit, eis) dν̃(t, s), (18.10)

holding for all Borel measurable functions w : S1×S1 → R (assuming that the integrals exist
in the Lebesgue sense). Since this map transfers the uniform distribution on [0, 2π)× [0, 2π)
to the uniform distribution on the torus, we also have a similar general identity∫

S1

∫
S1
w(x, y) dσ1(x) dσ1(y) =

1

(2π)2

∫ 2π

0

∫ 2π

0
w(eit, eis) dt ds. (18.11)

If ν has density ψ(x, y) = ψ(〈x, y〉) with respect to σ1 ⊗ σ1, then (18.10) becomes∫
S1

∫
S1
w(x, y)ψ(〈x, y〉) dσ1(x) dσ1(y) =

∫ 2π

0

∫ 2π

0
w(eit, eis) dν̃(t, s). (18.12)

On the other hand, applying (18.11) to functions of the form w(x, y)ψ(〈x, y〉) and using
〈x, y〉 = cos(t− s) for x = eit, y = eis, we then obtain that∫

S1

∫
S1
w(x, y)ψ(〈x, y〉) dσ1(x) dσ1(y) =

1

(2π)2

∫ 2π

0

∫ 2π

0
w(eit, eis)ψ(cos(t− s)) dt ds.

The right-hand side in this equality should be equalized with the right-hand side in (18.12).
Since in these equalities w may be an arbitrary bounded, Borel measurable function on the
torus, the desired relation (18.9) readily follows.

The argument in the opposite direction is similar. �

19. Mixing measures on the circle and the interval

How can one describe all measures ν in (18.1) under natural constraints? As we have already
explained, ν is not unique: If a signed measure κ is supported on the set ∆ defined in (18.8),
and (18.1) holds true with ν, this relation will continue to hold for the measure ν + κ. In
addition, κ may have σ1 as marginals. However, being supported on the set of measure zero,
any such measure κ may not be absolutely continuous with respect to σ1 ⊗ σ1.

Since (18.1) has been related to (18.2), the question of possible measures ν may be refor-
mulated in terms of the latter covariance representation in terms of λ. If we require that ν
should have marginals being multiples of σ1, one may then apply Corollary 17.3.

Moreover, let us require that the measure ν in (18.1) has density ψ(x, y) = ψ(〈x, y〉) with
respect to σ1 ⊗ σ1 depending on the inner product 〈x, y〉 on the torus S1 × S1. Recall that ν̃
was defined as a signed measure on [0, 2π) × [0, 2π) such that ν appears as the distribution
of ν̃ under the map (t, s)→ (eit, eis). Then, by Lemma 18.2, ν̃ has density 1

(2π)2
ψ(cos(t− s))

with respect to the Lebesgue measure on the square [0, 2π)× [0, 2π). Hence, by Lemma 18.1,
the measure λ has density

dλ(t, s)

dt ds
=

1

(2π)2
cos(t− s)ψ(cos(t− s)), t, s ∈ (0, 2π).

In particular, this measure is symmetric and has a marginal distribution proportional to m2π.
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On the other hand, we are in position to apply Corollary 17.3 in the form (17.5) with
T = 2π and conclude that, for some constant c ∈ R,

dλ(t, s)

dt ds
= Q

( |t− s|
2π

)
+ c′,

where

Q(h) =
1

8

[
1− 4h(1− h)

]
, c′ = c− 1

24
.

In this case, λ has as a marginal c times the Lebesgue measure on [0, 2π). Equalizing the two
formulas, we arrive at

1

(2π)2
(cosh)ψ(cosh) = Q

( h
2π

)
+ c′, (19.1)

which holds for almost all h ∈ (0, 2π), or equivalently a.e.

ψ(sinh) =
(2π)2

sinh

(
Q
(h+ π

2

2π

)
+ c′

)
, −π

2
< h <

3π

2
.

Here, sinh ∼ h in the neighborhood of zero, over which the left-hand side is integrable.
However, as h→ 0,

Q
(h+ π

2

2π

)
+ c′ → Q(1/4) + c′ =

1

32
+ c′,

which shows that, for the integrability of the right-hand side, it is necessary that c′ = − 1
32 .

Similarly, as h→ π,

Q
(h+ π

2

2π

)
+ c′ → Q(3/4) + c′ =

1

32
+ c′,

so that we do not obtain a new restriction. Note that

K(h) ≡ Q(h)− 1

32
=

1

8

[
1− 4h(1− h)

]
− 1

32

=
3

32
− 1

2
h(1− h) =

1

2

(
h− 1

4

)(
h− 3

4

)
.

This new kernel is symmetric about the point 1/2, with

K(0) = K(1) =
3

32
, K(1/2) = − 1

32
, K(1/4) = K(3/4) = 0,

so that it is positive in 0 < h < 1/4 and 3/4 < h < 1, and is negative in the interval
1/4 < h < 3/4. This behavior is rather similar to the one of the function cos( h

2π ).

Thus, with the necessary value c′ = − 1
32 from (19.1) we obtain that

ψ(cosh) = (2π)2 K
(
h
2π

)
cosh

, 0 ≤ h ≤ 2π, (19.2)

In particular, applying this equality with h = π, h = π
2 , and h = 0, we have

ψ(−1) =
π2

8
, ψ(0) =

π

2
, ψ(1) =

3π2

8
.

In this case, c = c′ + 1
24 = − 1

32 + 1
24 = 1

96 which is the total mass of the measure λ.
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Let us now describe the total mass of the measure ν, that is, ν̃. Applying (18.12) with
w = 1, we have

ν(S1 × S1) =

∫
S1

∫
S1
ψ(〈x, y〉) dσ1(x) dσ1(y)

=
1

(2π)2

∫ 2π

0

∫ 2π

0
ψ(cos(t− s)) dt ds =

∫ 1

0

∫ 1

0
ψ(cos(2π(t− s))) dt ds

=

∫ 1

−1
ψ(cos(2πh)) (1− |h|) dh = 2

∫ 1

0
ψ(cos(2πh)) (1− h) dh

= 2 (2π)2

∫ 1

0

K(h)

cos(2πh)
(1− h) dh. (19.3)

One can now refine Proposition 6.1, in which necessarily ψ2 = ψ.

Proposition 19.1. On the torus S1× S1 there exists a unique measure ν with density of
the form ψ(〈x, y〉) with respect to σ1 ⊗ σ1 such that, for all smooth functions f, g on S1,

covσ1(f, g) =

∫
S1

∫
S1
〈∇Sf(x),∇Sg(y)〉 dν(x, y). (19.4)

The function ψ(α) is positive, increasing, continuous for |α| ≤ 1, and is given by (19.2) with

K(h) =
1

32
(4h− 1)(4h− 3), 0 ≤ h ≤ 1.

In addition π2

8 ≤ ψ(α) ≤ 3π2

8 , where equalities are attained for α = −1 and α = 1.

One may rewrite (19.4) equivalently as

covσ1(f, g) = c

∫
S1

∫
S1
〈∇Sf(x),∇Sg(y)〉 dµ(x, y)

with the assumption that µ is a probability measure on S1 × S1 with marginals equal to σ1.
Here the constant c is described in (19.3).

As an alternative variant for (19.5), we have the following modified representation.

Proposition 19.2. On the torus S1 × S1 there exists a finite positive measure ν such
that, for all smooth functions f, g on S1,

covσ1(f, g) =

∫
S1

∫
S1

〈∇Sf(x),∇Sg(y)〉
〈x, y〉

dν(x, y). (19.5)

Proof. Recall that in the case 〈x, y〉 = 0, necessarily 〈∇Sf(x),∇Sg(y)〉 = 0. Hence,
there is no uncertainty in the integrand in (19.5). Moreover, for x = eit, y = eis, we have
〈x, y〉 = cos(t−s). Transferring the circle to [0, 2π) and the torus to the square [0, 2π)×[0, 2π)
via the inverse of the map T , the representation (19.5) will take the form

covm2π(u, v) =

∫ 2π

0

∫ 2π

0
u′(t)v′(s) dν̃(t, s)

for the functions u(t) = f(eit) and v(s) = g(eis).
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Here for ν̃ one may take the Höffding measure on the square (0, 2π) × (0, 2π) in the
covariance representation for the uniform measure m2π, that is, with positive density

dν̃(t, s)

dt ds
= ψ(t, s) = F (t ∧ s) (1− F (t ∨ s)), t, s ∈ (0, 2π),

where F (t) = t/(2π) is the distribution function for m2π. The measure ν in (19.5) will then
appear as the image of ν̃ under the map T .

Remark 19.3. As was mentioned in section 16, the measure ν has a total mass

ν(S1 × S1) = ν̃
(
(0, 2π)× (0, 2π)

)
=

∫ 2π

0

∫ 2π

0
ψ(t, s) dt ds = Var(U) =

π2

3
,

where U is a random variable distributed according to m2π. The marginal distributions of ν̃
coincide and have a positive density on (0, 2π) given by∫ 2π

0
ψ(t, s) ds =

1

4π
t(2π − t), 0 < t < 2π.

After transferring this marginal distribution to the circle, we will obtain the marginal distri-
bution of ν which is however not the uniform measure σ1.

Note also that ψ is vanishing on the boundary of the square [0, 2π] × [0, 2π]. Hence ν is
absolutely continuous and has a continuous density on the torus with respect to the product
measure σ1⊗σ1. However, in contrast with higher dimensions, this density does not represent
a function of the inner product 〈x, y〉 (since ψ(t, s) is not a function of cos(t− s)).
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