HOFFDING’S KERNELS AND PERIODIC
COVARIANCE REPRESENTATIONS

SERGEY G. BOBKOV! AND DEVRAJ DUGGAL?

ABSTRACT. We start with a brief survey on Hoffding’s kernels, its properties, related spec-
tral decompositions, and discuss marginal distributions of Héffding measures. In the second
part of this note, one-dimensional covariance representations are considered over compactly
supported probability distributions in the class of periodic smooth functions. Héffding’s ker-
nels are used in the construction of mixing measures whose marginals are multiples of given
probability distributions, leading to optimal kernels in periodic covariance representations.

1. Generalized Ho6ffding’s formula

Given two random variables X and Y, the generalized Hoffding’s covariance formula indicates
that, for all “regular” functions u and v on the real line,

cov(u(X),v(Y)) = /OO /OO o' (z)v' (y) H(z,y) dx dy, (1.1)

where
H(z,y) =P{X <2,Y <y} —P{X <z} P{Y <y}, zycR (1.2)
The case of the identical functions f(z) = x and g(y) = y corresponds to Hoffding [8]
(provided that X and Y finite second moments). The history of this remarkable identity may
be found in Lo [11], together with generalizations and refinements of the previous results by
Mardia [12], Sen [13], Cuadras [5, 6]; see also recent works by Saumard and Wellner [14, 15].
Block and Fang [1] proposed an extension of the original Hoffding’s formula to more than
two variables. Let us however restrict ourselves to the particular case of (1.1) with X =Y
and rewrite this relation as a covariance identity with respect to the distribution p of X:

cov,u(u, v) = /_ Z /_ Z o ()0 () dA(z, y). (1.3)

Here, one may require that A be a positive, locally finite measure on the plane R x R (that
is, finite on compact sets). According to (1.1)-(1.2), the identity (1.3) holds true, when A is
absolutely continuous over the Lebesgue measure with density

dX(x,y
o) = B0~ P np) (1= Favy), nyeR (14)
where F(x) = P{X < x} = p((—o0, z]) is the associated distribution function. We adopt the

standard notations x A y = min(z,y),  V y = max(z,y).
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Definition. We call A = )\, the Hoffding measure and its density H = H,, the Hoffding
kernel associated to pu.

For example, if y = pd, + ¢dp is the Bernoulli measure assigning the weights p € (0, 1) and
g = 1 — p to the points a < b, then A\, = pqU where U is the uniform distribution on the
square (a,b) x (a,b).

Let us state this consequence of (1.1)-(1.2) once more in the next statement with emphasis
on the uniqueness part in the representation (1.3). As the weakest requirement, one may
consider the latter identity in the class C3° of all functions u,v : R — R having C*°-smooth,
compactly supported derivatives (in which case u and v are bounded).

Theorem 1.1. Given a probability measure p on the real line, (1.3) holds true for all
u,v € Cp° with a unique positive, locally finite measure X = X\,,. Moreover, (1.3) extends to
all locally absolutely continuous, complex-valued functions u,v such that

/Z /Z [/ (2)| [ (y)] dA(z, y) < o0, /Z /Z W' ()] [/ ()] dA(z, y) < oo, (1.5)

where the derivatives u' and v’ are understood in the Radon-Nikodym sense. The Hoffding
measure A is finite, if and only if u has a finite second moment.

The condition (1.5) insures that the function u/(x)v'(y) is integrable over A, and also
implies that u(X) and v(X) have finite second moments. Hence both sides in (1.3) are well-
defined and finite. For the sake of completeness, we sketch a short proof of Theorem 1.1 and
give a few remarks on the existing (slightly different) formulations in the end (Section 10).

Let us note that, being applied with u(z) = v(x) = z, the identity (1.3) shows that the
total mass of the Hoffding measure is the variance

AR x R) :/Z/ZH(x,y)dxdy:Var(X).

Once this measure is finite, it may also be described via its Fourier-Stieltjes transform in
terms of the characteristic function of the random variable X,

f(t) =EetX = / e du(x), teR.

—0o0

Namely, applying (1.3) to the exponential functions u(x) = € and v(y) = €Y (t,s € R),
we obtain an explicit formula

5\(72 S) — /_oo /_OO eitx—i—isy d)\(.%’,y) _ f(t)f(s)t_s f(t + S) (t, s 7& 0) (16)

In particular, this provides the uniqueness part in Theorem 1.1.

Thus, the expression on the right-hand side of (1.6) represents a positive definite function
in two real variables, as long as the characteristic function f is twice differentiable. Moreover,
there is a similar property of Hoffding’s kernels themselves.
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2. Positive definiteness of Hoffding’s kernels

Let X be a random variable with a non-degenerate distribution p, so that the associated
Hoffding measure A is non-zero. From (1.5) we have a variance representation

Var(u / / y) d\(z, y), (2.1)

and the substitution f = v leads to

/_ h / " (@) f () H ) drdy > 0, (2.2)

which holds for any measurable function f on the real line such that the integral is well-defined
in the Lebesgue sense. In other words:

Corollary 2.1. Every Héffding kernel is positive definite: For any collection a;, x; € R,

Zazaj (xi,25) > 0. (2.3)
1,j=1

Usually, the equivalence of (2.2) and (2.3) is stated under the assumption that a kernel
is continuous. In the case of Hoffding’s kernels, this is however not important. Indeed, for
the uniform distribution U on the unit interval (0,1), the corresponding kernel Hy (x,y) =
(x ANy) (1 —x Vy) is positive definite on the square 0 < z,y < 1. Hence the same is true for
H,(z,y) = Hy(F(x),F(y)) on the plane.

Being positive definite, every Hoffding kernel satisfies

H(z,y)’ < H(z,2)H(y,y), x,y€R, (2.4)
which may be used to construct a pseudometric

This property can be strengthened in terms of the Hoffding measure A. Since, by the Cauchy
inequality, cov,,(u,v)? < Var,(u)Var,(v), we get from Theorem 1.1 that

([ [ swsmaen) < [~ [ ssmaen [ [ soam ey

for all non-negative measurable functions f and g on the real line. In particular,
MA x B)? < MA x A)X(B x B) (2.5)
for all Borel sets A, B C R. Hence (2.4) appears as an infinitesimal version of (2.5).

1/2

3. Spectral decompositions

Since H = H,, is positive definite, one may follow the advanced Mercer’s theory on metric
spaces and develop a canonical representation

y) = Zanfn(x)fn(?/) (3.1)
n=1
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in terms of the eigenfunctions and eigenvalues of the linear operator

Tf) = [ H)iw)dy

Let
ap =inf{z e R: F(z) >0}, a3 =sup{zeR: F(z) <1}, (3.2)

where F'is the distribution function of X. Applying Theorem 2.4 from Ferreira and Menegatto
[7] in the setting of Hoffding’s kernels, we obtain:

Corollary 3.1. Suppose that p has finite first absolute moment, and F' is continuous
on the interval (ag,a1). There exists an orthonormal system of continuous functions f, in
L?(ag,a1) and a non-increasing sequence o, > 0 such that (3.1) holds for all z,y € (ag, a1).
This series is absolutely and uniformly convergent on finite proper subintervals of (ag, ay).

The moment assumption on p guarantees that the Hoffding’s kernel is square integrable
over the rectangle (ag, a1) X (ag,a1). In particular, T is acting on the Hilbert space L?(ag,a1)
as a compact and self-adjoint operator. Moreover, it is a trace class so that

b 00 00
tr(T) = / H(z,x)d = / Fa)(1 - F@))de = an,
a —o0 n=1

where the series is convergent. The latter integral may also be recognized as %E | X — X'|
with X’ being an independent copy of X.
As a consequence of (2.6), the variance representation (2.1) may be expressed in the form

Var(u(X)) = i o ( / @) @) da:)Q.

n=1 ao

For example, for the uniform distribution p = U, (2.6) holds for all z,y € (0,1) with
an = 1/(nm)? and f,(z) = V2 sin(nrz).

In the general situation, let © have a continuous positive density p(z) in ap < = < a;. As
easy to see, the spectral equation T'f = «a.f is reduced to the Sturm-Liouville equation

a(?)l-i-f:O.

When p is continuous and positive on the finite interval [ag, a1], we thus arrive at the regular
Sturm-Liouville problem with boundary conditions f(ag) = f(a1) = 0, for which the spectral
theory is well-developed as well.

4. Marginals of Hoffding measures

Since the kernel H = H, is symmetric about the diagonal x = y, the Hoffding measure
A = A\, has equal marginals A = A, defined by

A(A) =A(AxR) = /AOO /00 H(z,y)dxdy, A CR (Borel). (4.1)
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Obviously, it is absolutely continuous with respect to the Lebesgue measure and is supported
on the interval (ag, a1 ), finite or not, defined in (3.2). Concerning its density, let us emphasize
the following two simple properties.

Proposition 4.1. If X has finite first absolute moment, then the marginal A is finite and
has density
dA(x)

() = 0 = / Ty a)dF(y), a=EX. (4.2)

In particular, it is unimodal with mode at the point a, that is, h(z) is non-decreasing on the
half-axis x < a and is non-increasing for x > a. Moreover, it is contintuous at x = a with

1
h(a—) = h(a+) = §E | X — al. (4.3)
IfE|X| = oo, then the density of A is a.e. infinite on (ag,a1).

Proof. According to (4.1), the measure A has density

Ma) = [ F@ay - Fave)dy

—0o0
o

x
— -F@) [ Fudy+F@) [ - F@)dy (1.4
—0o0 T

If E|X| = oo, then at least one of the two last integrals must be infinite for all ap < x < ay,
which means that h(z) = oo a.e. on (ag, ay).

If E|X| < oo, both integrals in (4.4) are finite. Assuming without loss of generality that
F is continuous at the point z, one may integrate by parts in (4.4) to obtain (4.2). Finally,
since the function x — x — a is vanishing at the point a, it follows that

oo
1
h(a+) :/ (y—a)dF(y) =E(X —a)t = §E‘X —al.
a
A similar equality is also true for h(a—), thus implying (4.3). O

Proposition 4.2. Assuming that X has finite first absolute moment, the marginal A is
a multiple of u, if and only if p is Gaussian.

Proof. Without loss of generality we may assume that EX = 0. Since A(R) = A(R x R),
the property A = o?; with some constant ¢? implies that A and )\ are finite and forces p
to have a finite second moment. In that case, it follows from (1.6) that the Fourier-Stieltjes
transform of A is given by

At) = At 0) :/

—00

o0

/
e h(z) dx = —ft<t), teR, t#£0,

where f is the characteristic function of X. Hence, A = oy if and only if
f'(t) = —ctf(t) forall tecR.

But this is only possible when j is the Gaussian measure with mean zero and variance 2. [0
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Let us conclude with a few remarks. Often, the marginals of Hoffding’s measures appear
in the particular case of the covariance representation (1.3) with the function v(z) = x. Then

we arrive at
o0

cov(X,u(X)):/ o' (z) h(z) dz,

—0o0
holding true as long as the integral is convergent. If u is supported on an interval A and has
there an a.e. positive density p, this formula may be rewritten as

cov(X,u(X)) = E7(X)u'(X). (4.5)
Here the function
h(z) 1 /°°
(@)= —==—"=[ (—a)plydy, z€A,
p(x)  plx) Jy
is called the Stein kernel. We have 7(z) = 1 (a.e. on A), if and only if u is the standard
Gaussian measure v, in which case (4.5) becomes Stein’s equation E Xu(X) = Eu/(X).

After the pioneering work [17], the identity (4.5) served as a starting point in the extensive
development of Stein’s method as an approach to various forms of the central limit theorem
and estimating the distances to the normal law ~ avoiding the method of characteristic
functions. For example, Cacoullos, Papathansiou and Utev [3] proposed a general upper
bound for the total variation distance

I =Allry < 4E|7(X) =1+ 4|1 — a

and applied it in the proof of the CLT with respect to this strong distance. For a compre-
hensive exposition of the whole theory, we refer an interested reader to the book by Chen,
Goldstein and Shao [4] and survey [16].

5. Periodic covariance representations

A natural multidimensional extension of the covariance representation (1.3) for a given prob-
ability measure p on R™ could be the identity

covy(u,v) = /n /n (Vu(z), Vou(y)) dA(z,y), (5.1)

where A is a suitable measure on R™ x R™. This is indeed possible when p is Gaussian
with covariance matrix o?I (a multiple of the identity matrix). In this case, A is unique
and can be described in several equivalent ways including Ornstein-Uhlenbeck semigroups
and interpolation ([10], [9]). In [2], it was shown that the existence of A in (5.1) forces
the measure p be Gaussian which gives another characterization of this class in terms of
covariance representations. Nevertheless, some other variants of (5.1) could be applicable in
order to involve larger classes of probability distributions in such identities. In particular,
one can show that there is a spherical counterpart of (5.1),

v (o) = [ [ (Tsu(w). Tusto)) Az, (52)

with respect to the uniform distribution o,_; on the unit sphere S~ in R” for some specific
measure A on S" ! x §"~! having multiples of 0,_; as marginals. Here Vgu denotes the
spherical gradient of a smooth function » on the sphere.
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However, the measures A in such representations are not unique anymore. This can be
seen already in the case of the circle S, when (5.2) is reduced to the covariance representation

covy(u,v) / / y) d\(z,y) (5.3)

for the uniform distribution p = m on (0, 1) in the class of all 1-periodic smooth functions u
and v on the real line. Here, ) is a certain finite measure on the square which we allow to be
a signed measure for the sake of generality. Without loss of generality, we require that it is
symmetric about the diagonal x = y.

Keeping aside the multidimensional setting for a separate consideration, in what follows
we focus on (5.3), assuming that p is a given probability measure on [0, 1).

Definition. We call a signed symmetric Borel measure A on [0,1) %[0, 1) a mixing measure
for p, if (5.3) holds true for all 1-periodic smooth functions w and v on the real line.

As we discussed before, this identity always holds with the Hoffding measure A = ),. But,
its marginals may be a multiple of p in the Gaussian case only. This motivates the following:

Question. Given p, is it possible to choose a mixing measure A whose marginals are
multiples of u? If so, how to describe all of them and choose a best one (in some sense)?

Towards this question, we prove the next assertion.

Theorem 5.1. Let u be a probability measure on [0,1) with the Héffding measure \,,.
Subject to the constraint that the marginal distribution of X\ in (5.3) is equal to cu for a
prescribed value ¢ € R, the mixing measure \ exists, is unique, and is given by

A=+ (@@ —comeamtc(pem+meu) — (A, @m+meA,), (5.4)

where A, is the marginal of \,, and o2 is the variance of .

6. Covariance representations for the uniform distribution

We postpone the proof of Theorem 5.1 to Sections 8-9. The most interesting case in the
periodic representation (5.3) is the one where y represents a uniform distribution m on (0,1).
Let us specialize Theorem 5.1 to this case and consider identities of the form

cov, (u, v) / / y) d\(z,y). (6.1)

As a consequence of Theorem 5.1, we obtain the following statement needed in the study of
covariance identities on the circle (as part of multidimensional spherical identities (5.2)).

Corollary 6.1. Subject to the constraint that the marginal distribution of a mixing
measure \ in (6.1) is equal to cm, ¢ € R, the measure X is unique and has density

YD Dl + (e ). @D, 62)
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where

D(h)==[1-4h(1-h)], 0<h<1. (6.3)

OOM—*

Note that D(h) > 0 for all h € [0, 1] and the inequality becomes an equality for h = %

Moreover, the mixing measure A is non-negative, if and only if ¢ > i. Hence, the smallest
positive measure (for the usual comparison) corresponds to the parameter ¢ = 2%1, when it
has the density ¢(x,y) = D(|]z — y|). In this sense, the optimal variant of (6.1) is given by
the covariance representation

covp,(u,v) = // D(|lz —y|) dx dy

= / / y) dv(z,y)

with a probability measure dv(x,y) = 24 D(|x —y|) dz dy on (0,1) x (0,1). It has the uniform
distribution m on (0,1) as a marginal one.

Proof. Returning to (5.4), note that, if ;1 has density p, then the measure A has density

U(x,y) = h(z,y) + (0" — ) + c(p(x) + p(y) — (a(x) + q(y)) (6.4)

on [0,1) x [0,1), where h denotes the density of the marginal A, of the Hoffding measure A,
with density H(x,y) = F(z Ay) (1 — F(z V y)). Recall that according to (4.1), if the mean
of pis a = EX, then

1
W)= [ up)dy—a(1 - F@), 0=z <1,

In the case of the uniform distribution p = m, the distribution function and density are
given by F(z) =z and p(x) =1, 0 < 2 < 1. Then, by (6.4),

U(z,y) = H(z,y) + (0° +¢) — (h(z) + h(y)) (6.5)

with H(z,y) = (z Ay) (1 — (zVy)) and 0% = % To simplify, assume that 0 < z < y < 1.
Then

Yoy = (ot 5) +o—p) — 5 (@ -+ —47)

_ (c+11—2)—%((y—w)(1—(y—$))>
- (c QL) + D(|z - yl).
0

Remark. If we want to write down a similar representation on the interval (0,7, T' > 0,
one may use a linear transform. Let my denote the uniform distribution on (0,7"). Then we
get that, for all smooth T-periodic functions u and v, and for all ¢ > 1/24,

cova Uu, ’U / / d/\T(JU Z/)
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with a positive measure having the density
dAr(z,y) Ty 1
B 22+ - )
dz dy T 7)) T\ %
on (0,7) x (0,T). It has the marginal ¢cI'my(dx) = c¢dz on (0,T).

7. Densities bounded away from zero

In the general situation, the question of whether or not the mixing measure \ is positive for
a certain value of ¢ is rather interesting (in which case this constant has to be positive as
well). Here we give one sufficient condition generalizing the previous example of the uniform
distribution. As usual, we denote by o the standard deviation of a random variable X
distributed according to u.

Corollary 7.1. Suppose that the probability measure p on (0,1) has a density p such

that p(z) > « for all z € (0,1) with some constant a > . Then there exists a positive

mixing measure X\ in the periodic covariance representation

1,1
covy(u,v)—/o /0 o (2)v (y) dX(z, y), (7.1)

whose marginal is a multiple cp of pu. One may choose
o(l—o)
 2a—1"

Proof. According to (5.4), subject to the constraint that the marginal distribution of A
in (7.1) is equal to cp, the mixing measure A has density

p(z,y) = H(z,y) + o + c(p(x) + p(y) — 1) — (h(z) + h(y)), =,y € (0,1),

where H(z,y) is the Hoffding kernel and h(z) is the density of the mariginal distribution A.
Hence, it is non-negative, as long as

c(p(x) +ply) — 1) > h(z) + h(y) — o>
By the assumption, p(z) + p(y) — 1 > 2a — 1, so that, it is sufficient to require that
c(2a—1) > h(z) + h(y) — 0% (7.2)

Now, let us recall that, by Proposition (4.1), h(x) is unimodal and continuous. Morever,
according to (4.3), for all z € (0,1),

2h(z) <2h(a) =E|X —a|] <o, a=EX,

where we applied Cauchy’s inequality. Note that 02 < o. Hence, the right-hand side of (7.2)
is bounded from above by o — o2. O

Example. The symmetric beta distribution with parameters (%, %), that is, with density

1
p(r) = —F/——m, 0<z<1,
my/z(l — )
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satisfies the conditions of Corollary 7.1 with a = % and 0% = %. Hence, the conclusion in this
corollary is true with ¢ = g7 (V8 — 1) ~ 0.8364.... In fact, a more careful analysis shows

that one may take ¢ = % in this example (which is optimal).

8. Characterization of mixing measures

Let us first comment on the uniqueness issue in the problem of characterization of mixing
measures in the covariance representation (5.3). Applying this identity to the exponential
functions u(z) = €™ and v(y) = €™, we get the relation

Fle+0 = f(k)f(1) = —(2m)2 KIA(K, 1) (8.1)

for all integers k, [, where

1 1
A(k‘,l)z/ / 2Rt Y) gX(z,y), k1€ Z,
0 0

denotes the Fourier transform of A restricted to integers. By the Stone-Weierstrass theorem
(applied on the circle), A determines any signed Borel measure A on [0,1) x [0,1) in a unique
way. This transform is explicitly defined in (8.1) as long as k,l # 0. Otherwise, both sides of
(8.1) are vanishing. The fact that (8.1) does not define X for all integers does not allow us to
reconstruct A.

Moreover, due to the periodicity of u and v, we have

/ / y) A, ( / / dm(x) dAs(y) = 0

for all signed measures A; and A\ on [0, 1), where m denotes the uniform probability measure
on that interval. Hence, once (5.3) is fulfilled for a measure A, in particular, for the Hoffding
measure \,, it is also fulfilled for

A=A +A@m+me A (8.2)

for any choice of signed measures A; and Az on [0,1). We also have the converse statement
(where the symmetry requirement is not required for a moment).

Lemma 8.1. Let u be a Borel probability measure on [0,1). The covariance representa-

tion
covy(u,v) / / y) d\(z,y) (8.3)

holds true for all smooth, 1-periodic functions u and v, if and only if A has the form (8.2) for
some (arbitrary) signed measures A1 and Ay on [0, 1).

Proof. We only need to consider the necessity part. Assume that (8.3) holds true for all
C'-smooth periodic functions u and v, so that

// y) d\u(x,y) // y) dA(z,y). (8.4)
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Putting f = u/, g = v/, we then have

//f y) d\u(x,y) //f y) d\(z,y). (8.5)

Due to the periodicity of u and v, necessarily

1 1
/ f(x) dm(z) = / g(y) dm(y) =0 (8.6)
0 0

and
f0) = f(1), g(0) =g(1). (8.7)

Conversely, starting from continuous f an g on [0, 1] satisfying (8.6)-(8.7), we may define the

functions
x Yy
:/ f(t)dt, v(y):/ g(s)ds,
0 0

which have Cl-smooth 1-periodic extensions from [0,1) to the whole real line and satisfy
(8.4). Thus, our hypothesis (8.3) is equivalent to (8.5) subject to (8.6)—(8.7).

Let us reformulate the latter by identifying [0, 1) with the circle S* via the map x — e
It pushes forward m to the uniform probability measure o1 on the circle and pushes A — A,
to some signed measure L on the torus S* x S1. Hence, (8.5) subject to (8.6)—(8.7) is the
same as the requirement

2mix

/ £(Om(s)dL(t, s) = 0 (8.8)
st Jg1

in the class of all continuous functions &, 7 on the circle such that [ g1 §doy = J q1ndoy = 0.
The latter assumption may be dropped, if we rewrite (8.8) as

/ / (€(t) — &) (n(s) — 1) dL(t, 5) = 0, (8.9)
Sl Sl

i— [ cdon, ﬁz/ ndot.
S1

S1
In this step, (8.9) is readily extended to the class of all bounded, Borel measurable functions
¢ and n on S'. Using the marginal measures

Li(A) = L(Ax SY), LyB)=L(S'x B),

one may now rewrite the equality (8.9) as

//g $)dL(t, s) /g ) do (1 /n(s)dol(s)
+ [ewan) [oaras) + [ [as)dns).

L=01®0c1+01®Ly+ L1 ®0o1.
Pushing o1 and L; back to [0,1) with images A; and L to [0,1) x [0,1), we arrive at

where

But this means that

A=dp=mem+m® A+ A @m.
This is an equivalent form for (8.2). O
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9. Proof of Theorem 5.1

Recall that the mixing measure A in (5.3) has to be supported on [0,1) x [0, 1) and is required
to be symmetric about the diagonal of this square. This is fulfilled for the Héffding measure
Au. Hence, the measure A of the form (8.2) is symmetric about the diagonal of the square, if
and only if As — A; is proportional to the uniform measure m. In other words, the class of
all symmetric measures A satisfying the covariance representation (5.3) is described by the
formula
A=A Fbmeam+A@m+meA (9.1)
with arbitrary b € R and arbitrary signed measures A on [0,1).
Such measures have equal marginals

ProjA\) =A,+ (b+Q)m+A, A, =Proj(\,),
where @ = A([0,1)) and A, is the marginal of A\, described in (4.1). We want this measure
to be a multiple of the original probability measure p on [0,1), that is,

en =N, +(b+Q)m+A
for some prescribed value ¢ € R. Then, necessarily with some d € R
A=cp—A,+dm
To determine the value of d, we plug this into (9.1) and get
A= dApg+bmm+ (cp—Ag+dm)@m+me (cu — Ay + dm)

= M+ O0+2dmeem+c(p@m+meu) —(Ay@m+meA,). (9.2)
On marginals this equality becomes the relation
b+c+2d—o0%=0, (9.3)

where

o? = A,([0,1)) = A\.([0,1) x [0, 1))
is variance of a random variable distributed according to w. This is how d should be deter-
mined in terms of the free parameters b and c. In that case,

2
—b—
A:cu—A“—l—%cm. (9.4)

It remains to apply (9.3) in (9.2). Theorem 5.1 is now proved.

10. Proof of Theorem 1.1

One may assume that the locally absolutely functions u and v are real-valued and have Borel
measurable Radon-Nikodym derivatives u’ and v’ (which are locally integrable).

Step 1. Assume that u and v have non-negative v’ and v’. In view of the monotonicity
of u and v, the covariance of u(X) and v(X) is well-defined and is given by

cov(u(X),v(X)) = / / _ u(y))(v(z) — v(y)) dp(z) duly)

- / / / / ) Lpcray) Lincocyy dt ds du(z) du(y)
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as the Lebesgue integral on R* over the product measure L ® L ® pu ® pu (where L is the
Lebesgue measure on the real line). By Fubini’s theorem, we obtain that

cov(u(X),v(X)) = /OO /00 o' (z)v'(y) H(z,y) dz dy. (10.1)
In particular,

Var(u / / H(z,y)dz dy, (10.2)
and similarly for v. As a by-product, using |cov(u(X),v(X))|? < Var(u(X)) Var(v(X)),

</OO /OO u'(2)0' (y) H(z, y) dx dy>2 <
/ / H ) dedy / / H(z,y)dzdy.  (10.3)

Step 2. In the general case, define locally absolutely continuous, non-decreasing functions

:/O ! (t)] dt, ﬁ(x):/o [v'(t)] dt,

which have Radon-Nikodym derivatives |u'| and |[v'|. Since |a(z) — @(y)| > |u(z) — u(z)| for
all z,y € R, we have
Var(u(X)) > Var(u(X)),

and similarly for v. By the previous step,

V(i / / @) [ ()| H () d dy,

and the same is true for ¥. Since this and a similar integral for v are supposed to be finite,
we conclude that both u(X) and v(X) have finite second moments.

One may now repeat the arguments from Step 1, using the inequality (10.3) with |u/| and
|v'| in place of u" and v’ respectively. This will justify an application of the Fubini’s theorem,
and then we obtain the identity (10.1) under the conditions in (1.5). This also insures the
integrability of u/(x)v'(y) over A as a consequence of (1.5) and (10.2).

Step 3. For the uniqueness issue, let A be a locally finite measure on the plane satisfying
(1.3) in the class Cp°. Using a simple approximation, we obtain that A(A x B) = A\,(A x B)
for all bounded intervals A and B. Hence, this equality is true for all Borel subsets of R2.

Remarks. In [11], Theorem 1.1 is proved in a more general setting of random variables
X and Y as the identity (1.1), assuming that u and v are absolutely continuous (not just
locally), that is,

/_IU( )| dx < oo, / )| dx < oo, (10.4)

and such that u(X), v(Y), u(X)v(Y') have finite first absolute moments (cf. Theorem 3.1 in
[11]). Note, however, that the condition (10.4) insures that both u and v are bounded, so
that the moment assumptions are fulfilled automatically. A similar assertion with X =Y is
given in [14], Corollary 4, where in addition to the absolute continuity it is assumed that

E|u(X)]P < 0o, Elu(X)]?< oo (10.5)
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for some p, g > 1 such that %—{—% = 1. Again, the latter assumption is not needed, if we assume

(10.4). As for the more general case of locally absolutely continuous u and v, the condition
(10.5) and even the assumption on the boundedness of these functions do not guarantee that
the integral in (1.3) is convergent in the Lebesgue sense, that is,

//ru 1 ()] H, ) dirdy < .

For example, for u(x) = v(x) = cos z, this integral is divergent as long as E | X| =
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