Refinements of Berry-Esseen Inequalities in Terms of Lyapunov Coefficients

Sergey G. Bobkov ${ }^{1}$

Received: 15 June 2022 / Revised: 18 August 2023 / Accepted: 18 August 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

We discuss some variants of the Berry-Esseen inequality in terms of Lyapunov coefficients which may provide sharp rates of normal approximation.

Keywords Central limit theorem • Berry-Esseen inequality • Fourier-Stieltjes transform

Mathematics Subject Classification Primary 60E - 60F

1 Introduction

Given independent random variables $\left(X_{k}\right)_{1 \leq k \leq n}$ with mean $\mathbb{E} X_{k}=0$ and finite variances $\sigma_{k}^{2}=\operatorname{Var}\left(X_{k}\right)$, denote by $F_{n}(x)=\mathbb{P}\left\{S_{n} \leq x\right\}$ the distribution function of the sum

$$
\begin{equation*}
S_{n}=X_{1}+\cdots+X_{n} . \tag{1.1}
\end{equation*}
$$

For normalization reason, we assume that $\mathbb{E} S_{n}^{2}=\sigma_{1}^{2}+\cdots+\sigma_{n}^{2}=1$.
It is well-known that, under the Lindeberg condition, F_{n} is close in the weak topology to the standard normal distribution function

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-y^{2} / 2} d y, \quad x \in \mathbb{R}
$$

[^0]In order to quantify the normal approximation, one often considers upper bounds for the Kolmogorov distance

$$
\Delta_{n}=\sup _{x}\left|F_{n}(x)-\Phi(x)\right|
$$

in terms of the Lyapunov coefficients

$$
L_{p}=\sum_{k=1}^{n} \mathbb{E}\left|X_{k}\right|^{p}, \quad p>2
$$

In the case of independent, identically distributed (i.i.d.) summands $X_{k}=\frac{1}{\sqrt{n}} \xi_{k}$ with finite absolute moment $\beta_{p}=\mathbb{E}\left|\xi_{1}\right|^{p}$, these quantities have a polynomial decay with respect to n :

$$
L_{p}=\beta_{p} n^{-\frac{p-2}{2}} .
$$

A basic fundamental relation in this direction is the classical Berry-Esseen inequality which indicates that

$$
\begin{equation*}
\Delta_{n} \leq c L_{3}, \tag{1.2}
\end{equation*}
$$

cf. e.g. [18]. Here and below, we use c to denote positive absolute constants which may vary from place to place (otherwise, we add parameters which these constants may depend on). In the i.i.d. scenario, (1.2) leads to the standard rate of normal approximation under the 3rd moment assumption,

$$
\begin{equation*}
\Delta_{n} \leq c \frac{\beta_{3}}{\sqrt{n}} \tag{1.3}
\end{equation*}
$$

Much of the work has been done in order to polish the constants in these inequalities. The best known results in this respect are due to Shevtsova [22], who showed that one may take $c=0.56$ in (1.2) and $c=0.47$ in (1.3).

The Berry-Esseen inequality (1.2) may be sharpened as a non-uniform bound

$$
\sup _{x}\left[\left(1+|x|^{3}\right)\left|F_{n}(x)-\Phi(x)\right|\right] \leq c L_{3},
$$

which is due to Nagaev [14] in the i.i.d. case and Bikelis [2] in general. See also [15, 19].

On the other hand, (1.2) can be sharpened and generalized by removing the hypothesis on the finiteness of the 3rd absolute moments. This may be done in terms of the truncated Lyapunov coefficients

$$
R_{3}=\sum_{k=1}^{n} \mathbb{E} \min \left\{1,\left|X_{k}\right|\right\} X_{k}^{2}
$$

While L_{3} may be large and even infinite, we have $0 \leq R_{3} \leq \min \left(1, L_{3}\right)$. A suitable application of Jensen's inequality leads to the lower bound $R_{3} \geq \frac{c}{\sqrt{n}}$ similarly to $L_{3} \geq \frac{1}{\sqrt{n}}$. An appropriate sharpening of (1.2) is

$$
\begin{equation*}
\Delta_{n} \leq c R_{3} . \tag{1.4}
\end{equation*}
$$

Representing a natural quantified form of the Lindeberg theorem, this inequality has a long and rich history. It goes back to the works by Katz [10], Petrov [17], Studnev [23, 24], Osipov [16], Feller [7], among others, although (1.4) is often stated in the equivalent setting of the normalized sums $S_{n}=\frac{1}{B_{n}} \sum_{k=1}^{n} \xi_{k}$. Let us only mention that one may take $c=2.02$ and even $c=1.87$, as was shown in [13], [12]; cf. also [8] for discussions and related results.

For an illustration of the advantage of (1.4) over (1.2), let us note that $R_{3} \leq L_{2+\delta}$ for any $\delta \in(0,1]$, which follows from the simple inequality $\min \{1,|x|\} x^{2} \leq|x|^{2+\delta}$, $x \in \mathbb{R}$. Hence, (1.4) yields another useful relation

$$
\Delta_{n} \leq c L_{2+\delta}
$$

which in the i.i.d. case becomes

$$
\Delta_{n} \leq c \frac{\beta_{2+\delta}}{n^{\delta / 2}}
$$

Necessary and sufficient conditions for the validity of the rate $\Delta_{n}=O\left(n^{-\delta / 2}\right)$ in terms of the distribution of ξ_{1} have been obtained by Ibragimov [9].

2 Combination of Several Lyapunov Coefficients

In general, the standard rate as in (1.3) cannot be improved, even if higher order moments of X_{k} are finite (for example, for normalized sums of Bernoulli random variables). Similarly, one may not replace L_{3} with other Lyapunov coefficients in the more general bound (1.2). Nevertheless, in the non-i.i.d. case, (1.2) may be sharpened by using L_{4} in combination with other L_{p}. In a typical situation, these quantities are getting smaller for growing values of p, while in general $L_{p}^{1 /(p-2)}$ is non-decreasing in $p>2$ (cf. Remark 6.2 below). In particular,

$$
L_{2+\delta}^{1 / \delta} \leq L_{3} \leq \sqrt{L_{4}} \text { for any } \delta \in(0,1]
$$

To describe the possible range of Δ_{n}, first let us complement (1.2) with two natural lower bounds for the weighted sums

$$
\begin{equation*}
S_{n}=a_{1} \xi_{1}+\cdots+a_{n} \xi_{n}, \quad a_{1}^{2}+\cdots+a_{n}^{2}=1 \quad\left(a_{k} \in \mathbb{R}\right) \tag{2.1}
\end{equation*}
$$

of the i.i.d. random variables ξ_{k} with mean zero and variance one. Put $\alpha_{3}=\mathbb{E} \xi_{1}^{3}$, $\beta_{p}=\mathbb{E}\left|\xi_{1}\right|^{p}$.

Theorem 2.1 (a) Let $\alpha_{3} \neq 0$ and $\beta_{4}<\infty$. If the coefficients a_{k} in (2.1) have equal signs, then

$$
\begin{equation*}
c^{\prime} L_{3} \leq \Delta_{n} \leq c L_{3}, \tag{2.2}
\end{equation*}
$$

where the constant $c^{\prime}>0$ depends on α_{3} and β_{4} only.
(b) If $\beta_{4} \neq 3$ and $\beta_{5}<\infty$, then

$$
\begin{equation*}
c^{\prime} L_{4} \leq \Delta_{n} \leq c L_{3}, \tag{2.3}
\end{equation*}
$$

where the constant $c^{\prime}>0$ depends on β_{4} and β_{5} only.
Thus, the Berry-Esseen bound (1.2) is sharp for the sums (2.1) with $\alpha_{3} \neq 0$, when all a_{k} have equal signs. On the other hand, (2.2) is not applicable in the case $\alpha_{3}=0$, while (2.3) may describe a large interval which the values of Δ_{n} belong to. Indeed, using

$$
L_{p}=\beta_{p}\left(\left|a_{1}\right|^{p}+\cdots+\left|a_{n}\right|^{p}\right) \geq \beta_{p}\left(\max _{k}\left|a_{k}\right|\right)^{p}
$$

with $p=3$, it follows that

$$
L_{4} \leq c L_{3}^{4 / 3}, \quad c=\beta_{4} \beta_{3}^{-1 / 3}
$$

So, L_{4} is essentially smaller than L_{3} when the latter is small.
The main purpose of this note is to replace L_{3} in (1.2) with potentially smaller quantities. Let us return to the general scheme of the sums as in (1.1).

Theorem 2.2 Suppose that the random variables X_{k} have finite 4-th moments with $\mathbb{E} X_{k}^{3}=0$. Then, for any $\delta \in(0,1]$,

$$
\begin{equation*}
\Delta_{n} \leq c\left(\frac{1}{\delta} L_{4}+L_{2+\delta}^{1 / \delta}\right) . \tag{2.4}
\end{equation*}
$$

Moreover, if the distributions of X_{k} are symmetric about the origin and have finite absolute moments of order $2+\delta$, then

$$
\begin{equation*}
\Delta_{n} \leq c\left(\frac{1}{\delta} R_{4}+L_{2+\delta}^{1 / \delta}\right) . \tag{2.5}
\end{equation*}
$$

Here, we use the 4-th order truncated Lyapunov coefficient

$$
R_{4}=\sum_{k=1}^{n} \mathbb{E} \min \left\{1, X_{k}^{2}\right\} X_{k}^{2},
$$

which does not require the finiteness of any absolute moments of X_{k} of order higher than 2 and satisfies $R_{4} \leq R_{3} \leq L_{3}$ and $R_{4} \leq L_{4}$. Thus, the inequality (2.5) is
sharper than (2.4) under the symmetry hypothesis and only requires the finiteness of absolute moments of order $2+\delta$. Note also that (2.5) with $\delta=1$ is equivalent to the Berry-Esseen bound (1.2).

As for the term $L_{2+\delta}^{1 / \delta}$, it is not only smaller than L_{3}, but may also be of the same order or even smaller than R_{4}. On the other hand, this quantity admits a simple lower bound

$$
\begin{equation*}
L_{2+\delta}^{1 / \delta} \geq \frac{1}{\sqrt{n}} \tag{2.6}
\end{equation*}
$$

Hence, the bounds (2.4)-(2.5) may not provide rates for Δ_{n} which would be better than the standard $\frac{1}{\sqrt{n}}$-rate.

Example 2.3 Let the i.i.d. random variables ξ_{k} have mean zero, variance one, with $\mathbb{E} \xi_{1}^{3}=0$ and $\beta_{4}=\mathbb{E} \xi_{1}^{4}<\infty$. We examine an asymptotic behaviour of Δ_{n} as $n \rightarrow \infty$ for the weighted sums

$$
S_{n}=\frac{1}{b_{n}} \sum_{k=1}^{n} \frac{1}{k^{q}} \xi_{k}
$$

with a fixed positive parameter $q<\frac{1}{2}$. The normalizing constant in front of the sum should be chosen such that

$$
b_{n}^{2}=\sum_{k=1}^{n} \frac{1}{k^{2 q}}, \quad b_{n} \sim n^{\frac{1}{2}-q} .
$$

Here and below, we write $Q_{1} \sim Q_{2}$ for positive quantities $Q_{j}=Q_{j}(n)$, if $c_{1} Q_{1} \leq$ $Q_{2} \leq c_{2} Q_{1}$ for all n with some constants $c_{j}>0$ depending on q and β_{p} only.

As a main case, let $\frac{1}{3}<q<\frac{1}{2}$. Then, for any fixed $\delta \in\left(0, \frac{1}{q}-2\right)$,

$$
L_{3} \sim n^{-3\left(\frac{1}{2}-q\right)}, \quad L_{4} \sim n^{-4\left(\frac{1}{2}-q\right)} \sim L_{3}^{4 / 3}, \quad L_{2+\delta}^{1 / \delta} \sim \frac{1}{\sqrt{n}}=o\left(L_{3}\right)
$$

So, with this choice of $\delta,(2.4)$ is sharper than the classical Berry-Esseen bound (1.2). Moreover, as $n \rightarrow \infty$,

$$
L_{2+\delta}^{1 / \delta}=O\left(L_{4}\right) \Longleftrightarrow q \geq \frac{3}{8} .
$$

Hence, in the region $\frac{3}{8} \leq q<\frac{1}{2}$, and if $\beta_{4} \neq 3, \beta_{5}<\infty$, we get that $\Delta_{n} \sim L_{4}$, which follows from (2.4) and the lower bound in (2.3).

However, a similar conclusion cannot be made for the region $\frac{1}{4}<q<\frac{1}{3}$. Then

$$
L_{3} \sim L_{2+\delta}^{1 / \delta} \sim \frac{1}{\sqrt{n}}
$$

while $L_{4} \sim n^{-4\left(\frac{1}{2}-q\right)}$ is of a smaller order.
As we will see, the inequality (2.4) may further be sharpened under higher order moment assumptions when replacing the normal distribution function $\Phi(x)$ by the corresponding Chebyshev-Edgeworth correction (this may be illustrated on the same example as above). One should emphasize, however, that this improvement may not be better than the standard rate (in view of the lower bound (2.6)). Let us mention in this connection that, for the sums S_{n} as in (2.1), the rate of normal approximation may be of the order $1 / n$ (even in the Bernoulli case). This can be achieved either for some explicit coefficients a_{k} (with a certain arithmetic structure), or for typical coefficients randomly selected as coordinates of a point on the unit sphere in \mathbb{R}^{n} (cf. [5, 11]).

In the next section we remind basic Fourier-analytic tools and discuss upper bounds for the deviations of the characteristic functions $f_{n}(t)$ of S_{n} from the standard normal characteristic function in terms of R_{3} and R_{4}. Some technical preparations are put in Sects. 4 and 5. In Sects. 6 and 7 we collect basic properties of the truncated Lyapunov coefficients. Section 8 deals with general Gaussian-type upper bounds on $\left|f_{n}(t)\right|$, and then we turn to the proof of Theorem 2.2 in the symmetric case (Sect.9). The construction of Chebyshev-Edgeworth corrections is discussed separately in Sect. 10, which are used to state and prove a more general version of the first part in Theorem 2.2 in Sect. 11. The proof of Theorem 2.1 is postponed to the last Sect. 12.

3 Berry-Esseen Bounds in Terms of Fourier-Stieltjes Transforms

The basic Fourier analytic approach to the estimation of the Kolmogorov distance

$$
\rho(F, G)=\sup _{x}|F(x)-G(x)|
$$

is a general Berry-Esseen bound

$$
\begin{equation*}
\rho(F, G) \leq c \int_{-T}^{T}\left|\frac{f(t)-g(t)}{t}\right| d t+\frac{c A}{T}, \tag{3.1}
\end{equation*}
$$

holding true with some absolute constant $c>0$ for all $T>0$ (cf. e.g. [18], p. 104). Here F and G may be respectively an arbitrary non-decreasing bounded function and a function of bounded total variation on the real line with finite Lipschitz semi-norm $A=\|G\|_{\text {Lip }}$ such that $F(-\infty)=G(-\infty)$, with Fourier-Stieltjes transforms

$$
f(t)=\int_{-\infty}^{\infty} e^{i t x} d F(x), \quad g(t)=\int_{-\infty}^{\infty} e^{i t x} d G(x)
$$

Let $S_{n}=X_{1}+\cdots+X_{n}$ be the sum of the independent random variables with mean zero and variances $\sigma_{k}^{2}=\operatorname{Var}\left(X_{k}\right)$ such that $\sigma_{1}^{2}+\cdots+\sigma_{n}^{2}=1$. The relation (3.1) may be applied to the distribution function $F=F_{n}$ of S_{n} with its characteristic
function

$$
f_{n}(t)=\mathbb{E} e^{i t S_{n}}=\int_{-\infty}^{\infty} e^{i t x} d F_{n}(x)
$$

and with the standard normal distribution function $G=\Phi$. Then (3.1) provides a well-known upper bound for the Kolmogorov distance $\Delta_{n}=\rho\left(F_{n}, \Phi\right)$, namely

$$
\begin{equation*}
\Delta_{n} \leq c \int_{-T}^{T}\left|\frac{f_{n}(t)-e^{-t^{2} / 2}}{t}\right| d t+\frac{c}{T} \tag{3.2}
\end{equation*}
$$

It is also a standard fact that

$$
\begin{equation*}
\left|f_{n}(t)-e^{-t^{2} / 2}\right| \leq c L_{3} \min \left(1, t^{3}\right) e^{-t^{2} / 6}, \quad|t| \leq \frac{1}{L_{3}} \tag{3.3}
\end{equation*}
$$

Here, the coefficient $1 / 6$ in the exponent may be chosen to be as close to $1 / 2$ as we wish by reducing the interval to the form $|t| \leq \frac{c}{L_{3}}$ with a sufficiently small $c>0$. Applying (3.3) in (3.2) with $T=1 / L_{3}$, one obtains the Berry-Esseen bound (1.2) in terms of the Lyapunov coefficient L_{3}.

Similarly, (1.4) follows from (3.2) with $T=1 / R_{3}$ and the following statement of independent interest (which is stronger and more general compared to (3.3)).

Proposition 3.1 We have

$$
\begin{equation*}
\left|f_{n}(t)-e^{-t^{2} / 2}\right| \leq c R_{3} \min \left(1, t^{2}\right) e^{-t^{2} / 6}, \quad|t| \leq \frac{1}{32 R_{3}} . \tag{3.4}
\end{equation*}
$$

In a slightly different form, this relation was derived by Osipov [16] as a main step in the proof of the Berry-Esseen-type bound (1.4). In other works, (1.4) is obtained on the basis of (1.2) by using a truncation argument. Nevertheless, (3.4) is more relevant, since the finiteness of the 3rd moments of X_{k} is not required and since this inequality may have further applications such as local limit theorems, for example. For completeness, we will include the proof of Proposition 3.1 together with a closely related assertion in the symmetric case, which will be needed for the derivation of inequality (2.5) of Theorem 2.2.

Proposition 3.2 Suppose that the distributions of the random variables X_{k} are symmetric about the origin. Then

$$
\begin{equation*}
\left|f_{n}(t)-e^{-t^{2} / 2}\right| \leq c R_{4} \min \left(1, t^{2}\right) e^{-t^{2} / 6}, \quad|t| \leq \frac{1}{32 R_{3}} \tag{3.5}
\end{equation*}
$$

4 Characteristic Functions for Single Random Variables

As a next preliminary step, it is useful to fix a few elementary assertions about characteristic functions for single random variables. In this section, we assume that a
random variable X has mean zero and (finite) variance $\sigma^{2}=\operatorname{Var}(X)$. Introduce its characteristic function

$$
f(t)=\mathbb{E} e^{i t X}, \quad t \in \mathbb{R}
$$

Lemma 4.1 For all $t \in \mathbb{R}$, with some complex number $\theta=\theta(t),|\theta| \leq 1$, we have

$$
\begin{equation*}
f(t)=1-\frac{\sigma^{2} t^{2}}{2}+\theta t^{2} \mathbb{E} \min \left\{1, \frac{1}{2}|t X|\right\} X^{2} \tag{4.1}
\end{equation*}
$$

Moreover, if the distribution of X is symmetric about the origin, then

$$
\begin{equation*}
f(t)=1-\frac{\sigma^{2} t^{2}}{2}+\theta t^{2} \mathbb{E} \min \left\{1, \frac{1}{4}(t X)^{2}\right\} X^{2} . \tag{4.2}
\end{equation*}
$$

As a consequence, we get:
Lemma 4.2 For all $t \in \mathbb{R}$,

$$
\begin{align*}
|f(t)|^{2} & \leq 1-\sigma^{2} t^{2}+8 t^{2} \mathbb{E} \min \left\{1,(t X)^{2}\right\} X^{2} \\
& \leq 1-\sigma^{2} t^{2}+8 t^{2} \mathbb{E} \min \{1,|t| X \mid\} X^{2} \tag{4.3}
\end{align*}
$$

Proof By the moment assumptions, the characteristic function $f(t)$ has two continuous derivatives with $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)=-\sigma^{2}$ (assuming without loss of generality that $\sigma>0$). Hence, by the integral Taylor's formula, for all $t \in \mathbb{R}$,

$$
\begin{aligned}
f(t) & =1+t^{2} \int_{0}^{1} f^{\prime \prime}(s t)(1-s) d s \\
& =1-\frac{\sigma^{2} t^{2}}{2}-t^{2} \int_{0}^{1}\left(f^{\prime \prime}(0)-f^{\prime \prime}(s t)\right)(1-s) d s
\end{aligned}
$$

which implies that

$$
\begin{equation*}
f(t)=1-\frac{\sigma^{2} t^{2}}{2}+\frac{\theta t^{2}}{2} \max _{0 \leq s \leq|t|}\left|f^{\prime \prime}(0)-f^{\prime \prime}(s)\right| \tag{4.4}
\end{equation*}
$$

with some complex number θ such that $|\theta| \leq 1$.
In order to bound the last maximum, suppose that $u(t)$ is the characteristic function of a random variable with distribution function $U(x)$, that is,

$$
1-u(t)=\int_{-\infty}^{\infty}\left(1-e^{i t x}\right) d U(x)
$$

Using $\left|1-e^{i s}\right| \leq 2$ and $\left|1-e^{i s}\right| \leq|s|, s \in \mathbb{R}$, we have

$$
|1-u(t)| \leq \int_{-\infty}^{\infty} \min \{2,|t x|\} d U(x)
$$

Moreover, if the measure U is symmetric about the origin, then $u(t)$ is real-valued and the above inequality may be sharpened. In this case

$$
\begin{aligned}
1-u(t) & =2 \int_{-\infty}^{\infty} \sin ^{2}\left(\frac{t x}{2}\right) d U(x) \\
& \leq 2 \int_{-\infty}^{\infty} \min \left\{1, \frac{(t x)^{2}}{4}\right\} d U(x)
\end{aligned}
$$

Since the right-hand sides in both inequalities represent non-decreasing functions in $t \geq 0$, we respectively get stronger bounds

$$
\begin{aligned}
& \max _{|s| \leq|t|}|1-u(s)| \leq \int_{-\infty}^{\infty} \min \{2,|t x|\} d U(x) \\
& \max _{|s| \leq|t|}(1-u(s)) \leq 2 \int_{-\infty}^{\infty} \min \left\{1, \frac{(t x)^{2}}{4}\right\} d U(x) .
\end{aligned}
$$

To obtain (4.1)-(4.2), it remains to apply these bounds in (4.4) with

$$
d U(x)=\frac{1}{\sigma^{2}} x^{2} d F(x), \quad u(t)=-\frac{1}{\sigma^{2}} f^{\prime \prime}(t)
$$

where $F(x)=\mathbb{P}\{X \leq x\}$ denotes the distribution function of X.
Turning to the next lemma, let X^{\prime} be an independent copy of X. Applying (4.2) to the random variable $Y=X-X^{\prime}$, we have

$$
\begin{equation*}
|f(t)|^{2}=1-\sigma^{2} t^{2}+\theta t^{2} \mathbb{E} \psi(Y), \quad \psi(x)=\min \left\{1, \frac{(t x)^{2}}{4}\right\} x^{2} \tag{4.5}
\end{equation*}
$$

The function $\psi(x)$ is non-negative, even and non-decreasing in $x>0$, so is the function

$$
w(x)=\psi(2 x)=4 \min \left\{1,(t x)^{2}\right\} x^{2} .
$$

Hence, given $x_{1} \geq x_{2} \geq 0$, we have

$$
\psi\left(x_{1}+x_{2}\right) \leq \psi\left(2 x_{1}\right)=w\left(x_{1}\right) \leq w\left(x_{1}\right)+w\left(x_{2}\right) .
$$

The resulting inequality holds for $x_{2} \geq x_{1} \geq 0$ as well. Therefore, for all $x_{1}, x_{2} \in \mathbb{R}$,

$$
\psi\left(x_{1}+x_{2}\right)=\psi\left(\left|x_{1}+x_{2}\right|\right) \leq \psi\left(\left|x_{1}\right|+\left|x_{2}\right|\right) \leq w\left(x_{1}\right)+w\left(x_{2}\right) .
$$

Applying this subadditivity property in (4.5), we obtain that

$$
\mathbb{E} \psi(Y) \leq \mathbb{E} w(X)+\mathbb{E} w\left(X^{\prime}\right)=2 \mathbb{E} w(X)
$$

so that

$$
|f(t)|^{2} \leq 1-\sigma^{2} t^{2}+2 \theta t^{2} \mathbb{E} w(X)
$$

5 Some Moment Inequalities

Towards the proof of Theorem 2.2, we will need the following moment inequality due to Cox and Kemperman [6].

Proposition 5.1 Given independent random variables X and Y with mean zero and finite absolute moments of order $p \geq 2$, we have

$$
\begin{equation*}
\mathbb{E}|X+Y|^{p} \leq 2^{p-2}\left(\mathbb{E}|X|^{p}+\mathbb{E}|Y|^{p}\right) \tag{5.1}
\end{equation*}
$$

With a worse constant, (5.1) is obtained by applying Jensen's inequality. In the present formulation, it is sharp with an equality when both X and Y have a symmetric Bernoulli distribution. As was shown in [6], the inequality (5.1) follows from the "non-random" relation

$$
|x+y|^{p} \leq 2^{p-2}\left(|x|^{p}+|y|^{p}+x \operatorname{sign}(y)|y|^{p-1}+y \operatorname{sign}(x)|x|^{p-1}\right),
$$

which is valid for all $x, y \in \mathbb{R}$. For the sake of completeness, let us describe an alternative argument which covers the range $2 \leq p \leq 4$. It is based on the following:

Lemma 5.2 Let $2 \leq p \leq 4$. If X^{\prime} and Y^{\prime} are respectively independent copies of independent random variables X and Y with mean zero, then

$$
\begin{equation*}
\mathbb{E}|X+Y|^{p} \leq \frac{1}{2} \mathbb{E}\left|X-X^{\prime}\right|^{p}+\frac{1}{2} \mathbb{E}\left|Y-Y^{\prime}\right|^{p} . \tag{5.2}
\end{equation*}
$$

This interesting relation was obtained by Ushakov in [27], where it was additionally assumed that X and Y have symmetric distributions, and by Pinelis [20] in the general case. Their proofs are similar and short, so, we reproduce here.

Proof Given a random variable X with finite $\beta_{p}=\mathbb{E}|X|^{p}, p>0$, define the moments $\alpha_{k}=\mathbb{E} X^{k}$ for integers $0 \leq k \leq p$ (with the convention that $\alpha_{0}=1$). It is known that the moment β_{p} may be expressed in terms of the characteristic function $f(t)=\mathbb{E} e^{i t X}$. The following representation was given by von Bahr [28]: If p is not an even integer, then

$$
\begin{equation*}
\beta_{p}=C(p) \int_{-\infty}^{\infty}\left[\operatorname{Re}(f(t))-\sum_{k=0}^{[p / 2]}(-1)^{k} \alpha_{2 k} \frac{t^{2 k}}{(2 k)!}\right] \frac{d t}{t^{p+1}}, \tag{5.3}
\end{equation*}
$$

where

$$
\begin{equation*}
C(p)=\frac{1}{\pi} \Gamma(p+1) \cos \left(\frac{(p+1) \pi}{2}\right) \tag{5.4}
\end{equation*}
$$

In particular, $C(p)>0$ for $2<p<4$, and if X has mean zero and variance $\sigma^{2}=\operatorname{Var}(X)$, the equality (5.3) takes the form

$$
\begin{equation*}
\beta_{p}=C(p) \int_{-\infty}^{\infty}\left[\operatorname{Re}(f(t))-1+\frac{\sigma^{2} t^{2}}{2}\right] \frac{d t}{t^{p+1}} . \tag{5.5}
\end{equation*}
$$

Moreover, it was shown by Ushakov [26], p. 89, that in the case where X has mean zero and variance σ^{2}, we have

$$
\operatorname{Re}(f(t)) \geq 1-\frac{\sigma^{2} t^{2}}{2}
$$

for all $t \in \mathbb{R}$. Hence, the integrand in (5.5) is non-negative.
Returning to (5.2), we may assume that X and Y have finite absolute moments of order $p \in(2,4)$. Put $\sigma_{1}^{2}=\operatorname{Var}(X), \sigma_{2}^{2}=\operatorname{Var}(Y)$, so that $X+Y$ has variance $\sigma^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}$. Let $f_{1}(t)$ and $f_{2}(t)$ be the characteristic functions of X and Y, respectively. Then $X-X^{\prime}$ and $Y-Y^{\prime}$ have characteristic functions $\left|f_{1}(t)\right|^{2}$ and $\left|f_{2}(t)\right|^{2}$, while $X+Y$ has characteristic function $f_{1}(t) f_{2}(t)$. Using

$$
\left|f_{1}(t)\right|^{2}+\left|f_{2}(t)\right|^{2} \geq 2\left|f_{1}(t) f_{2}(t)\right| \geq 2 \operatorname{Re}\left(f_{1}(t) f_{2}(t)\right)
$$

and applying (5.5) to $X-X^{\prime}, Y-Y^{\prime}$ and $X+Y$, it follows that

$$
\begin{aligned}
& \mathbb{E}\left|X-X^{\prime}\right|^{p}+\mathbb{E}\left|Y-Y^{\prime}\right|^{p}=C(p) \int_{-\infty}^{\infty}\left[\left|f_{1}(t)\right|^{2}-1+\sigma_{1}^{2} t^{2}\right] \frac{d t}{t^{p+1}} \\
& \quad+C(p) \int_{-\infty}^{\infty}\left[\left|f_{2}(t)\right|^{2}-1+\sigma_{2}^{2} t^{2}\right] \frac{d t}{t^{p+1}} \\
& \quad \geq 2 C(p) \int_{-\infty}^{\infty}\left[\operatorname{Re}\left(f_{1}(t) f_{2}(t)\right)-1+\frac{\sigma^{2} t^{2}}{2}\right] \frac{d t}{t^{p+1}}=2 \mathbb{E}|X+Y|^{p}
\end{aligned}
$$

Proof of Proposition 5.1 ($2 \leq p \leq 4$). As a first step, let us show that, if a random variable X takes at most two values, and X^{\prime} is an independent copy of X, then, for any $p \geq 2$,

$$
\begin{equation*}
\mathbb{E}\left|X-X^{\prime}\right|^{p} \leq 2^{p-1} \mathbb{E}|X|^{p} \tag{5.6}
\end{equation*}
$$

Note that, by Jensen's inequality, one has a similar relation with an additional factor of 2 .

Suppose that X takes two non-zero values x_{1} and x_{2} with respective probabilities $q_{1}>0$ and $q_{2}>0$. Then the inequality of the form $\mathbb{E}\left|X-X^{\prime}\right|^{p} \leq c \mathbb{E}|X|^{p}$ may be rewritten as

$$
2 q_{1} q_{2}\left|x_{1}-x_{2}\right|^{p} \leq c\left(q_{1}\left|x_{1}\right|^{p}+q_{2}\left|x_{2}\right|^{p}\right)
$$

Here the worst case is attained for

$$
q_{1}=\frac{\left|x_{2}\right|^{p / 2}}{\left|x_{1}\right|^{p / 2}+\left|x_{2}\right|^{p / 2}}, \quad q_{2}=\frac{\left|x_{1}\right|^{p / 2}}{\left|x_{1}\right|^{p / 2}+\left|x_{2}\right|^{p / 2}}
$$

and then we are reduced to

$$
2\left|x_{1}-x_{2}\right|^{p} \leq c\left(\left|x_{1}\right|^{p / 2}+\left|x_{2}\right|^{p / 2}\right)^{2} .
$$

It is easy to see that this inequality holds true with best constant $c=2^{p-1}$.
Turning to the inequality (5.1), we assume that $2<p<4$ and that both X and Y are bounded and take values in some closed interval Δ. Denote by μ and v the distributions of X and Y and rewrite (5.1) as

$$
2^{2-p} \int_{\Delta}|x+y|^{p} d \mu(x) d \nu(y) \leq \int_{\Delta}|x|^{p} d \mu(x)+\int_{\Delta}|x|^{p} d \nu(x)
$$

Since it is bi-linear with respect to (μ, ν), it is sufficient to verify this inequality for all extreme points in the space of all probability measures on Δ with barycenter at the origin. But, such points have at most two atoms, in view of the linear constraint $\int_{\Delta} x d \mu(x)=0$. As a consequence, we are reduced in (5.1) to the case where the random variables X and Y take at most two values. In this case, let X^{\prime} and Y^{\prime} be independent copies of X and Y, respectively. Combining the inequalities (5.2) and (5.6), we then get

$$
\mathbb{E}|X+Y|^{p} \leq \frac{1}{2} \mathbb{E}\left|X-X^{\prime}\right|^{p}+\frac{1}{2} \mathbb{E}\left|Y-Y^{\prime}\right|^{p} \leq 2^{p-2} \mathbb{E}|X|^{p}+2^{p-2} \mathbb{E}|Y|^{p}
$$

6 Truncated Lyapunov Coefficients

Let us now return to the scheme of independent random variables X_{1}, \ldots, X_{n} that are defined on some probability space (Ω, \mathbb{P}) and are such that $\mathbb{E} X_{k}=0, \mathbb{E} X_{k}^{2}=\sigma_{k}^{2}$, $\sigma_{1}^{2}+\cdots+\sigma_{n}^{2}=1$.

The truncated Lyapunov coefficient of order $p>2$ for the sequence $\left(X_{k}\right)_{k \leq n}$ is defined by

$$
R_{p}=\sum_{k=1}^{n} \mathbb{E} \min \left\{1,\left|X_{k}\right|^{p-2}\right\} X_{k}^{2} .
$$

More generally, define the truncated Lyapunov function by

$$
\begin{equation*}
R_{p}(t)=\sum_{k=1}^{n} \mathbb{E} \min \left\{1,\left|t X_{k}\right|^{p-2}\right\} X_{k}^{2}, \quad t \in \mathbb{R} \tag{6.1}
\end{equation*}
$$

so that $R_{p}=R_{p}(1)$. Note that $0 \leq R_{p}(t) \leq 1, R_{p}(0)=0, R_{p}(\infty)=1$. Hence $R_{p}(t)$ may be treated as a distribution function.

In the special case $p=3$, it is connected with the Lindeberg function

$$
L(x)=\sum_{k=1}^{n} \int_{|y| \geq x} y^{2} d F_{k}(y)
$$

where $F_{k}(x)=\mathbb{P}\left\{X_{k} \leq x\right\}$ stand for the distribution functions of X_{k}. Namely,

$$
R_{3}(t)=|t| \int_{0}^{\frac{1}{|t|}} L(x) d x
$$

In addition, $\lim _{p \rightarrow \infty} R_{p}(t)=L(1 /|t|)$.
Let us give a few basic properties of the truncated Lyapunov functions.
Proposition 6.1 For each $t \in \mathbb{R}$, the function $p \rightarrow R_{p}(t)$ is non-increasing, while the function $p \rightarrow R_{p}(t)^{\frac{1}{p-2}}$ is non-decreasing in $p>2$. In particular,

$$
\begin{equation*}
R_{4}(t) \leq R_{3}(t) \leq R_{4}(t)^{1 / 2} \tag{6.2}
\end{equation*}
$$

Proof The first claim is obvious. Let ξ be a random variable with distribution

$$
d F(x)=\sum_{k=1}^{n} x^{2} d F_{k}(x)
$$

Then

$$
R_{p}(t)^{\frac{1}{p-2}}=\left(\mathbb{E} \min (1,|t \xi|)^{p-2}\right)^{\frac{1}{p-2}}
$$

Here, the right-hand side represents the $L^{p-2}-$ norm of the random variable $\min (1,|t \xi|)$, so, it is non-decreasing in p.

Remark 6.2 The second claim in Proposition 6.1 is analogous to the property that the function $p \rightarrow L_{p}^{\frac{1}{p-2}}$ is non-decreasing in $p>2$. This follows from the representation

$$
L_{p}^{\frac{1}{p-2}}=\left(\mathbb{E}|\xi|^{p-2}\right)^{\frac{1}{p-2}}
$$

Proposition 6.3 There is a smallest value $T \in(0, \infty]$ such that $R_{p}(t)$ is increasing and continuous in $0 \leq t<T$, with $R_{p}(T-)=1$. Moreover, T does not depend on p.
Proof Clearly, $R_{p}(t)$ is non-decreasing and continuous in $t \geq 0$, by the Lebesgue dominated convergence theorem. Moreover, suppose that it is constant on some interval, that is,

$$
\sum_{k=1}^{n} \mathbb{E} \min \left\{1,\left|t X_{k}\right|^{p-2}\right\} X_{k}^{2}=\sum_{k=1}^{n} \mathbb{E} \min \left\{1,\left|s X_{k}\right|^{p-2}\right\} X_{k}^{2}
$$

for some $0<t<s$. Then a.s.

$$
\sum_{k=1}^{n} \min \left\{1,\left|t X_{k}\right|^{p-2}\right\} X_{k}^{2}=\sum_{k=1}^{n} \min \left\{1,\left|s X_{k}\right|^{p-2}\right\} X_{k}^{2}
$$

But this is equivalent to the statement that a.s. $\min \left\{1, t\left|X_{k}\right|\right\}=\min \left\{1, s\left|X_{k}\right|\right\}$ for any $k \leq n$. If $X_{k}(\omega) \neq 0$ for some $\omega \in \Omega$, the latter is only possible when $t\left|X_{k}(\omega)\right| \geq 1$, that is,

$$
t \geq T \equiv \max _{1 \leq k \leq n} \text { ess } \sup _{\omega \in \Omega}\left[\frac{1}{\left|X_{k}(\omega)\right|} 1_{\left\{X_{k}(\omega) \neq 0\right\}}\right]
$$

In addition, if T is finite and $t \geq T$, then $R_{p}(t)=1$.
Proposition 6.4 For any $p>2$,

$$
\begin{equation*}
R_{p}(t) \leq 2|t|^{p-2} R_{p}, \quad|t| \geq 1 \tag{6.3}
\end{equation*}
$$

Proof Recalling the definition (6.1), introduce

$$
u(t)=R_{p}\left(t^{\frac{1}{p-2}}\right)=\sum_{k=1}^{n} \mathbb{E} \min \left\{1, t\left|X_{k}\right|^{p-2}\right\} X_{k}^{2}, \quad t \geq 0
$$

It is a continuous, non-decreasing function such that $u(0)=0$. Moreover, it is concave due to the concavity of the functions $t \rightarrow \min \left\{1, t\left|X_{k}\right|^{p-2}\right\}$. Therefore, u is subadditive:

$$
u\left(s_{1}+\cdots+s_{l}\right) \leq u\left(s_{1}\right)+\cdots+u\left(s_{l}\right) \text { for all } s_{1}, \ldots, s_{l} \geq 0
$$

In particular, $u(l s) \leq l u(s)$ for all $s \geq 0$. Hence, for all $t \geq 1$, putting $l=2[t]$ and $s=t / l$, we have $u(t)=u(l s) \leq 2[t] u(1) \leq 2 t u(1)$, and (6.3) follows.

Proposition 6.5 For any $p>2$ and $\alpha \in[0,1)$, the equation $R_{p}(t)=\alpha$ has a unique solution $t \in[0, \infty)$. Moreover, if $R_{p} \leq \alpha$, then

$$
\begin{equation*}
t \geq\left(\frac{\alpha}{2 R_{p}}\right)^{\frac{1}{p-2}} \tag{6.4}
\end{equation*}
$$

Proof By Proposition 6.3, the inequality $R_{p}(t) \leq \alpha$ is equivalent to $t \in[-T, T]$ for a certain number $T>0$ such that $R_{p}(T)=\alpha$ and $R_{p}(t)>\alpha$ for $|t|>T$. Here necessarily $T \geq 1$ in the case $R_{p} \leq \alpha$. Then, applying (6.3) with $t=T$, we get $\alpha=R_{p}(T) \leq 2 T^{p-2} R_{p}$, which is the same as (6.4).

7 Bounds on Variances in Terms of Lyapunov Coefficients

Let us keep notations and assumptions as in the previous section. The Lyapunov coefficients

$$
\begin{equation*}
L_{p}=\sum_{k=1}^{n} \mathbb{E}\left|X_{k}\right|^{p}, \quad p>2, \tag{7.1}
\end{equation*}
$$

may be used to control the variances $\sigma_{k}^{2}=\mathbb{E} X_{k}^{2}$. Indeed, since $\mathbb{E}\left|X_{k}\right|^{p} \geq\left(\mathbb{E} X_{k}^{2}\right)^{p / 2}$, it follows from (7.1) that

$$
\max _{1 \leq k \leq n} \sigma_{k} \leq\left(\sum_{k=1} \sigma_{k}^{p}\right)^{1 / p} \leq L_{p}^{1 / p}
$$

Thus, the smallness of L_{p} implies that all variances σ_{k}^{2} are uniformly small.
We need a certain analog of this property for the truncated Lyapunov coefficients, as well as for the functions

$$
R_{p}(t)=\sum_{k=1}^{n} \mathbb{E} \min \left\{1,\left|t X_{k}\right|^{p-2}\right\} X_{k}^{2}, \quad t \in \mathbb{R}
$$

Given $p>2, t \neq 0$, define $q=\frac{p-2}{2}, s=|t|^{p-2}$, and consider

$$
u(y)=\min \left\{1, s y^{q}\right\} y, \quad y \geq 0
$$

This function is nearly convex and therefore satisfies a weak form of Jensen's inequality. Indeed, it has derivative

$$
u^{\prime}(y)=\left\{\begin{array}{cc}
s(q+1) y^{q} & \text { for } 0<y<s^{-1 / q} \\
1 & \text { for } y>s^{-1 / q}
\end{array}\right.
$$

with $u^{\prime}\left(s^{-1 / q}-\right)=\frac{p}{2}>1$, which shows that u is not convex. Let us modify it to get a convex function. Put

$$
y_{0}=(s(q+1))^{-1 / q}
$$

and define the function \tilde{u} on the positive half-axis by requiring that $\tilde{u}(0)=0$ and

$$
\tilde{u}^{\prime}(y)=\left\{\begin{array}{cl}
s(q+1) y^{q} & \text { for } 0<y<y_{0} \\
1 & \text { for } y>y_{0}
\end{array}\right.
$$

By the construction,

$$
\tilde{u}(y)=\left\{\begin{array}{cl}
s y^{q+1} & \text { for } 0 \leq y \leq y_{0} \\
s y_{0}^{q+1}+\left(y-y_{0}\right) & \text { for } y \geq y_{0}
\end{array}\right.
$$

In particular, $\tilde{u}(y)=u(y)$ for $0 \leq y \leq y_{0}$, while on the interval $y_{0} \leq y \leq s^{-1 / q}$,

$$
\frac{\tilde{u}(y)}{u(y)}=\frac{y-\frac{q}{q+1} y_{0}}{s y^{q+1}}=\frac{1}{s} y^{-q}-\frac{q y_{0}}{s(q+1)} y^{-q-1} \equiv g(y) .
$$

We have

$$
g^{\prime}(y)=-\frac{q}{s} y^{-q-1}+\frac{q y_{0}}{s} y^{-q-2}=0 \Longleftrightarrow y=y_{0} .
$$

This shows that $g(y)$ is monotone on this interval with values at the end points

$$
g\left(y_{0}\right)=1, \quad g\left(s^{-1 / q}\right)=1-\frac{q}{(q+1)^{1+1 / q}} \equiv d(q)<1
$$

Also, on the interval $y \geq s^{-1 / q}$,

$$
\frac{\tilde{u}(y)}{u(y)}=\frac{s y_{0}^{q+1}+\left(y-y_{0}\right)}{y}=1-\frac{q y_{0}}{q+1} y^{-1}
$$

which is an increasing function. This implies that

$$
\tilde{u}(y) \geq d(q) u(y) \text { for all } y \geq 0
$$

with equality attainable at $y=s^{-1 / q}$.
One may now apply Jensen's inequality. Since $u \geq \tilde{u}$, while \tilde{u} is convex, we get

$$
\begin{aligned}
\mathbb{E} \min \left\{1,\left|t X_{k}\right|^{p-2}\right\} X_{k}^{2} & =\mathbb{E} u\left(X_{k}^{2}\right) \geq \mathbb{E} \tilde{u}\left(X_{k}^{2}\right) \\
& \geq \tilde{u}\left(\sigma_{k}^{2}\right) \geq d(q) u\left(\sigma_{k}^{2}\right)=d(q) \min \left\{1,\left|t \sigma_{k}\right|^{p-2}\right\} \sigma_{k}^{2}
\end{aligned}
$$

One may summarize. Note that $1-d(q)=\frac{p-2}{p}\left(\frac{2}{p}\right)^{\frac{2}{p-2}}$.
Lemma 7.1 For every $t \in \mathbb{R}$ and $k \leq n$,

$$
c_{p} \min \left\{1,\left(|t| \sigma_{k}\right)^{p-2}\right\} \sigma_{k}^{2} \leq \mathbb{E} \min \left\{1,\left|t X_{k}\right|^{p-2}\right\} X_{k}^{2}
$$

with constant

$$
c_{p}=1-\frac{p-2}{p}\left(\frac{2}{p}\right)^{\frac{2}{p-2}} .
$$

In particular,

$$
\sum_{k=1}^{n} \sigma_{k}^{3} \leq \frac{27}{23} R_{3}, \quad \sum_{k=1}^{n} \sigma_{k}^{4} \leq \frac{4}{3} R_{4} .
$$

More generally,

$$
R_{p} \geq c_{p} \sum_{k=1}^{n} \sigma_{k}^{p} \geq c_{p} n^{-\frac{p-2}{2}}
$$

where the equality in the last inequality is attained for equal variances $\sigma_{k}^{2}=1 / n$.

8 Upper Bounds for the Product of Characteristic Functions

As before, let X_{1}, \ldots, X_{n} be independent random variables with mean zero and variances $\sigma_{k}^{2}=\mathbb{E} X_{k}^{2}$ such that $\sigma_{1}^{2}+\cdots+\sigma_{n}^{2}=1$. Then the sum $S_{n}=X_{1}+\cdots+X_{n}$ has mean zero, variance one, and characteristic function

$$
f_{n}(t)=v_{1}(t) \ldots v_{n}(t), \quad t \in \mathbb{R}
$$

where $v_{k}(t)=\mathbb{E} e^{i t X_{k}}$ denote the characteristic functions of X_{k}.
Lemma 4.2 and Propositions 6.3-6.5 can be used to bound the absolute value of $f_{n}(t)$.

Proposition 8.1 We have

$$
\begin{equation*}
\left|f_{n}(t)\right| \leq 2 e^{-t^{2} / 4}, \quad|t| \leq \frac{1}{32 R_{3}} \tag{8.1}
\end{equation*}
$$

Proof By the inequality (4.3) applied to X_{k}, and using $1+x \leq e^{x}(x \in \mathbb{R})$, we have

$$
\begin{aligned}
\left|v_{k}(t)\right|^{2} & \leq 1-\sigma_{k}^{2} t^{2}+8 t^{2} \mathbb{E} \min \left\{1,\left|t X_{k}\right|\right\} X_{k}^{2} \\
& \leq \exp \left\{-\sigma_{k}^{2} t^{2}+8 t^{2} \mathbb{E} \min \left\{1,\left|t X_{k}\right|\right\}\right\} X_{k}^{2}
\end{aligned}
$$

Multiplying these inequalities, we obtain that

$$
\left|f_{n}(t)\right| \leq \exp \left\{-\frac{t^{2}}{2}+4 t^{2} R_{3}(t)\right\}
$$

Let T be the positive solution to the equation $R_{3}(T)=\frac{1}{16}$. Hence, in the interval $|t| \leq T$, there is a subgaussian bound

$$
\begin{equation*}
\left|f_{n}(t)\right| \leq e^{-t^{2} / 4} \tag{8.2}
\end{equation*}
$$

Note that $T \geq \frac{1}{32 R_{3}}$ as long as $R_{3} \leq \frac{1}{16}$, according to Proposition 6.5 with $p=3$ and $\alpha=\frac{1}{16}$. Thus, (8.1) is fulfilled in the interval $|t| \leq \frac{1}{32 R_{3}}$ if $R_{3} \leq \frac{1}{16}$.

In the case $R_{3}>\frac{1}{16}$, the inequality (8.2) remains valid in the same interval in a slightly weaker form such as (8.1). Then $|t| \leq \frac{1}{32 R_{3}}<\frac{1}{2}$ and therefore the right-hand side of (8.1) is greater than $2 \cdot e^{-1 / 16}>1$.

It is well-known that the inequality (8.1) holds true for $|t| \leq c / L_{3}$. In fact, this interval may be enlarged in terms of other Lyapunov coefficients, if we allow a slower decay.

Proposition 8.2 For all $\delta \in(0,2]$, we have

$$
\begin{equation*}
\left|f_{n}(t)\right| \leq e^{-\delta t^{2} / 6}, \quad|t| \leq \frac{1}{L_{2+\delta}^{1 / \delta}} \tag{8.3}
\end{equation*}
$$

In particular,

$$
\left|f_{n}(t)\right| \leq e^{-t^{2} / 6}, \quad|t| \leq \frac{1}{L_{3}}
$$

Proof Suppose that every summand X_{k} has a finite absolute moment of order $2+\delta$. We employ Proposition 5.1 which provides the moment inequality

$$
\begin{equation*}
\mathbb{E}\left|X_{k}-Y_{k}\right|^{2+\delta} \leq 2^{1+\delta} \mathbb{E}\left|X_{k}\right|^{2+\delta}, \quad 0 \leq \delta \leq 2, \tag{8.4}
\end{equation*}
$$

where Y_{k} is an independent copy of X_{k}.
We need an upper bound for the cosine function of the form

$$
\begin{equation*}
\cos x \leq 1-\frac{1}{2} x^{2}+\frac{1}{2} c_{\delta}|x|^{2+\delta}, \quad x \in \mathbb{R} . \tag{8.5}
\end{equation*}
$$

As was shown by Ushakov for the range $0<\delta \leq 1$ (cf. [26], Lemma 2.1.10), this holds with $c_{\delta}=\frac{2}{(2+\delta) \delta^{1+\delta}}(\theta-\sin \theta)$, where $\theta \in(0,2 \pi)$ is the unique solution to the equation

$$
\frac{\delta}{2(2+\delta)} \theta^{2}+\frac{1}{2+\delta} \theta \sin \theta+\cos \theta=1
$$

Let us derive a simple explicit expression for (non-optimal) constants in (8.5) which will be sufficient for our purposes. By Taylor's formula, for all $x \in \mathbb{R}$,

$$
\cos x \leq 1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}
$$

Fix a parameter $a>1$. For all $|x| \leq a$,

$$
\frac{1}{24} x^{4} \leq \frac{1}{2} c|x|^{2+\delta} \Longleftrightarrow \frac{1}{12} a^{2-\delta} \leq c .
$$

Hence, in this interval one may put $c_{\delta}=\frac{a^{2}}{12} \cdot a^{-\delta}$. For $|x| \geq a$, one may use $\cos x \leq 1$ and

$$
1 \leq 1-\frac{1}{2} x^{2}+\frac{1}{2} c|x|^{2+\delta} \Longleftrightarrow|x|^{-\delta} \leq c
$$

Hence, in this region one may put $c_{\delta}=a^{-\delta}$. Equalizing the two choices, one may take $a=\sqrt{12}$. Thus, we obtain (8.5) in the form

$$
\cos x \leq 1-\frac{1}{2} x^{2}+\frac{1}{2} \cdot 12^{-\delta / 2}|x|^{2+\delta}
$$

As a consequence, applying this inequality with $x=t\left(X_{k}-Y_{k}\right)$ and then (8.4), we get

$$
\begin{aligned}
\left|v_{k}(t)\right|^{2} & =\mathbb{E} \cos \left(t\left(X_{k}-Y_{k}\right)\right) \\
& \leq 1-\sigma_{k}^{2} t^{2}+\frac{1}{2} \cdot 12^{-\delta / 2}|t|^{2+\delta} \mathbb{E}\left|X_{k}-Y_{k}\right|^{2+\delta} \\
& \leq 1-\sigma_{k}^{2} t^{2}+3^{-\delta / 2}|t|^{2+\delta} \mathbb{E}\left|X_{k}\right|^{2+\delta} \\
& \leq \exp \left\{-\sigma_{k}^{2} t^{2}+3^{-\delta / 2}|t|^{2+\delta} \mathbb{E}\left|X_{k}\right|^{2+\delta}\right\} .
\end{aligned}
$$

Thus, for all $t \in \mathbb{R}$,

$$
\left|v_{k}(t)\right| \leq \exp \left\{-\frac{\sigma_{k}^{2} t^{2}}{2}+\frac{1}{2} \cdot 3^{-\delta / 2}|t|^{2+\delta} \mathbb{E}\left|X_{k}\right|^{2+\delta}\right\}
$$

Multiplying these inequalities over $k=1, \ldots, n$, we conclude that

$$
\left|f_{n}(t)\right| \leq \exp \left\{-\frac{1}{2} t^{2}+\frac{1}{2} \cdot 3^{-\delta / 2}|t|^{2+\delta} L_{2+\delta}\right\} .
$$

As a result, if $|t|^{\delta} L_{2+\delta} \leq 1$, we arrive at the general subgaussian bound

$$
|f(t)| \leq \exp \left\{-\frac{1}{2}\left(1-3^{-\delta / 2}\right) t^{2}\right\}
$$

To simplify, one may use $1-3^{-\delta / 2} \geq \frac{1}{3} \delta$ for the range $0<\delta \leq 2$, which leads to (8.3).

9 Proof of Propositions 3.1 and 3.2 and Theorem 2.2 (Symmetric Case)

Our next step is to derive an approximation for the product characteristic function

$$
f_{n}(t)=v_{1}(t) \ldots v_{n}(t)
$$

by the characteristic function of the standard normal law, in which the error terms are estimated by means of the truncated Lyapunov coefficients R_{3} and R_{4}. First, we establish the bounds in Propositions 3.1-3.2 on smaller intervals.

As before, we denote by $v_{k}(t)=\mathbb{E} e^{i t X_{k}}$ the characteristic functions of the independent random variables X_{k} with mean zero and variances σ_{k}^{2} such that $\sigma_{1}^{2}+\cdots+\sigma_{n}^{2}=$ 1.

Lemma 9.1 We have

$$
\begin{equation*}
\left|f_{n}(t)-e^{-t^{2} / 2}\right| \leq c R_{3} \max \left(t^{2},|t|^{3}\right) e^{-t^{2} / 2}, \quad|t| \leq R_{3}^{-1 / 3} \tag{9.1}
\end{equation*}
$$

Moreover, if the distributions of all X_{k} are symmetric about the origin, then

$$
\begin{equation*}
\left|f_{n}(t)-e^{-t^{2} / 2}\right| \leq c R_{4} \max \left(t^{2}, t^{4}\right) e^{-t^{2} / 2}, \quad|t| \leq R_{4}^{-1 / 4} \tag{9.2}
\end{equation*}
$$

We employ the following elementary assertion.
Lemma 9.2 Given complex numbers $z_{k}, 1 \leq k \leq n$, we have

$$
\left|\prod_{k=1}^{n}\left(1+z_{k}\right)-1\right| \leq e^{a}-1, \quad a=\sum_{k=1}^{n}\left|z_{k}\right|
$$

Proof Write

$$
\prod_{k=1}^{n}\left(1+z_{k}\right)-1=\sum_{k=1}^{n} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} z_{i_{1}} \ldots z_{i_{k}} .
$$

For every $k \leq n$, the inner sum does not exceed in absolute value the number

$$
\frac{1}{k!} \sum_{i_{1} \neq \cdots \neq i_{k}}\left|z_{i_{1}}\right| \ldots\left|z_{i_{k}}\right| \leq \frac{1}{k!} \sum_{1 \leq i_{1}, \ldots, i_{k} \leq n}\left|z_{i_{1}}\right| \ldots\left|z_{i_{k}}\right|=\frac{a^{k}}{k!}
$$

Hence

$$
\left|\prod_{k=1}^{n}\left(1+z_{k}\right)-1\right| \leq \sum_{k=1}^{n} \frac{a^{k}}{k!} \leq e^{a}-1 .
$$

Proof of Lemma 9.1 We use Lemma 9.2 to quantify the closeness of the product

$$
e^{t^{2} / 2} f_{n}(t)=\prod_{k=1}^{n} e^{\sigma_{k}^{2} t^{2} / 2} v_{k}(t)
$$

to 1 on corresponding t-intervals. By Lemma 7.1,

$$
\max _{1 \leq k \leq n}\left(\sigma_{k}|t|\right)^{3} \leq|t|^{3} \sum_{k=1}^{n} \sigma_{k}^{3} \leq \frac{27}{23}|t|^{3} R_{3} \leq \frac{27}{23}
$$

for $|t| \leq R_{3}^{-1 / 3}$ and

$$
\begin{equation*}
\max _{1 \leq k \leq n}\left(\sigma_{k} t\right)^{4} \leq t^{4} \sum_{k=1}^{n} \sigma_{k}^{4} \leq \frac{4}{3} t^{4} R_{4} \leq \frac{4}{3} \tag{9.3}
\end{equation*}
$$

for $|t| \leq R_{4}^{-1 / 4}$ in the second scenario. In both cases,

$$
\sigma_{k}|t| \leq \alpha=\left(\frac{4}{3}\right)^{1 / 4}<1.1, \quad 1 \leq k \leq n
$$

which implies that $e^{\sigma_{k}^{2} t^{2} / 2} \leq e^{\alpha^{2} / 2}<2$.
Now, applying the representations (4.1)-(4.2) of Lemma 4.1 to the random variable X_{k}, we obtain that, for some $\theta_{k}=\theta_{k}(t),\left|\theta_{k}\right| \leq 1$,

$$
\begin{equation*}
z_{k}(t) \equiv e^{\sigma_{k}^{2} t^{2} / 2} v_{k}(t)=e^{\sigma_{k}^{2} t^{2} / 2}\left(1-\frac{\sigma_{k}^{2} t^{2}}{2}\right)+e^{\sigma_{k}^{2} t^{2} / 2} \delta_{k}(t) \tag{9.4}
\end{equation*}
$$

with

$$
\delta_{k}(t)=\theta_{k} t^{2} \mathbb{E} \min \left\{1,\left|t X_{k}\right|\right\} X_{k}^{2}
$$

in general, and with

$$
\delta_{k}(t)=\theta_{k} t^{2} \mathbb{E} \min \left\{1,\left(t X_{k}\right)^{2}\right\} X_{k}^{2}
$$

in the symmetric case.
The function $w(s)=e^{s}(1-s)$ appearing on the right-hand side of (9.4) satisfies $w(0)=1, w^{\prime}(0)=0, w^{\prime \prime}(s)=-e^{s}(1+s)$. Hence, by Taylor's formula,

$$
|w(s)-1| \leq \frac{1}{2} e^{s_{0}}\left(1+s_{0}\right) s^{2}, \quad 0 \leq s \leq s_{0}
$$

Applying this inequality with $s=\sigma_{k}^{2} t^{2} / 2$ and $s_{0}=\alpha^{2} / 2$, we get

$$
\left|e^{\sigma_{k}^{2} t^{2} / 2}\left(1-\frac{\sigma_{k}^{2} t^{2}}{2}\right)-1\right| \leq \frac{1}{8} e^{\alpha^{2} / 2}\left(1+\frac{\alpha^{2}}{2}\right) \sigma_{k}^{4} t^{4} \leq \frac{1}{2} \sigma_{k}^{4} t^{4}
$$

and (9.4) gives

$$
\left|z_{k}(t)-1\right| \leq \frac{1}{2} \sigma_{k}^{4} t^{4}+2\left|\delta_{k}(t)\right|
$$

One may now apply Lemma 9.2 with $z_{k}=z_{k}(t)-1$, which yields

$$
\begin{equation*}
|z-1| \leq e^{a}-1, \quad z=f_{n}(t) e^{t^{2} / 2}, \quad a=\sum_{k=1}^{n}\left(\frac{1}{2} \sigma_{k}^{4} t^{4}+2\left|\delta_{k}(t)\right|\right) \tag{9.5}
\end{equation*}
$$

Recall that, by Lemma 7.1 with $p=4$ and the constant $c_{4}=3 / 4$,

$$
R_{4}(t) \geq c_{4} \sum_{k=1}^{n} \min \left\{1,\left(t \sigma_{k}\right)^{2}\right\} \sigma_{k}^{2} \geq \frac{c_{4}}{1.1^{2}} \sum_{k=1}^{n} t^{2} \sigma_{k}^{4} \geq \frac{1}{2} t^{2} \sum_{k=1}^{n} \sigma_{k}^{4}
$$

Hence, for the first claim of Lemma 9.1, from (9.5) we have

$$
\begin{equation*}
a \leq t^{2} R_{4}(t)+2 t^{2} R_{3}(t) \leq 3 t^{2} R_{3}(t) \tag{9.6}
\end{equation*}
$$

where we used $R_{4}(t) \leq R_{3}(t)$. In the case $|t| \geq 1$, we employ the relation $R_{3}(t) \leq$ $2|t| R_{3}$ from Proposition 6.4 with $p=3$. This gives $a \leq 6|t|^{3} R_{3} \leq 6$. Since

$$
e^{a}-1 \leq \frac{e^{6}-1}{6} a, \quad 0 \leq a \leq 6
$$

we get, applying (9.5) and the previous bound $a \leq 6|t|^{3} R_{3}$,

$$
|z-1| \leq \frac{e^{6}-1}{6} \cdot 6|t|^{3} R_{3}=\left(e^{6}-1\right)|t|^{3} R_{3} .
$$

This is the required relation (9.1). If $|t| \leq 1$, by (9.6), we have $a \leq 3 R_{3}(t) \leq 3$. Since

$$
e^{a}-1 \leq \frac{e^{3}-1}{3} a, \quad 0 \leq a \leq 3,
$$

we get, applying (9.5) and the bounds $a \leq 3 t^{2} R_{3}(t) \leq 3 t^{2} R_{3}$,

$$
|z-1| \leq \frac{e^{3}-1}{3} \cdot 3 t^{2} R_{3}=\left(e^{3}-1\right) t^{2} R_{3}
$$

Thus, (9.1) is proved for all t in the region $|t| \leq R_{3}^{-1 / 3}$.

Returning to (9.5), for the second claim of the lemma we have

$$
\begin{equation*}
a \leq 3 t^{2} R_{4}(t), \tag{9.7}
\end{equation*}
$$

where we applied Lemma 7.1 once more. If $|t| \geq 1$, one may use the relation $R_{4}(t) \leq$ $2 t^{2} R_{4}$ from (6.3) with $p=4$. This gives $a \leq 6 t^{4} R_{4} \leq 6$. Thus, by (9.5) and using a similar argument as in the previous step, we get

$$
|z-1| \leq\left(e^{6}-1\right) t^{4} R_{4} .
$$

If $|t| \leq 1$, (9.7) yields $a \leq 3$. Using $R_{4}(t) \leq R_{4}$, we also have $a \leq 3 t^{2} R_{4}$. By (9.5), both estimates imply $|z-1| \leq\left(e^{3}-1\right) t^{2} R_{4}$. Thus, (9.2) is proved for all $|t| \leq R_{4}^{-1 / 4}$.

Proof of Propositions 3.1-3.2 The inequality (9.1) implies a bound of the form

$$
\begin{equation*}
\left|f_{n}(t)-e^{-t^{2} / 2}\right| \leq c R_{3} \min \left(1, t^{2}\right) e^{-t^{2} / 6} \tag{9.8}
\end{equation*}
$$

in the interval $|t| \leq R_{3}^{-1 / 3}$, while, by Proposition 8.1,

$$
\begin{equation*}
\left|f_{n}(t)\right| \leq 2 e^{-t^{2} / 4}, \quad|t| \leq \frac{1}{32 R_{3}} \tag{9.9}
\end{equation*}
$$

Hence, in order to extend (9.8) to the interval as in (9.9), we only need a bound

$$
2 e^{-t^{2} / 4}+e^{-t^{2} / 2} \leq c R_{3} e^{-t^{2} / 6}
$$

for the region $|t| \geq R_{3}^{-1 / 3}$. Since $R_{3} \leq 1$, the latter is obvious.
Similarly, (9.2) implies an upper bound of the form

$$
\begin{equation*}
\left|f_{n}(t)-e^{-t^{2} / 2}\right| \leq c R_{4} \min \left(1, t^{2}\right) e^{-t^{2} / 6} \tag{9.10}
\end{equation*}
$$

for $|t| \leq R_{4}^{-1 / 4}$. In view of (9.9), in order to extend the latter bound to the interval as in (9.9), we only need a relation

$$
2 e^{-t^{2} / 4}+e^{-t^{2} / 2} \leq c R_{4} e^{-t^{2} / 6}
$$

for the region $|t| \geq R_{4}^{-1 / 4}$. Since $R_{4} \leq 1$, the latter is clear as well.
Proof of Theorem 2.2 (the symmetric case). We are prepared to derive the inequality (2.5). Put $T_{0}=1 /\left(32 R_{3}\right)$ and choose $T=L_{2+\delta}^{-1 / \delta}$ in the Berry-Esseen inequality (3.2) with a fixed value $\delta \in(0,1]$. Then we get

$$
\begin{equation*}
c \Delta_{n} \leq \int_{-T_{0}}^{T_{0}}\left|\frac{f_{n}(t)-e^{-t^{2} / 2}}{t}\right| d t+\int_{T_{0}<|t|<T}\left|\frac{f_{n}(t)-e^{-t^{2} / 2}}{t}\right| d t+\frac{1}{T} \tag{9.11}
\end{equation*}
$$

Here, the first integral does not exceed a multiple of R_{4}, according to Proposition 3.2, cf. (9.10). Applying the inequality (8.3) of Proposition 8.2 , we also see that the second integral does not exceed

$$
2 \int_{T_{0}}^{\infty} \frac{e^{-\delta t^{2} / 6}}{t} d t \leq c e^{-\delta T_{0}^{2} / 6} \leq \frac{c^{\prime}}{\delta T_{0}^{2}}
$$

It remains to recall that $R_{3}^{2} \leq R_{4}$, cf. (6.2).

10 Chebyshev-Edgeworth Corrections

If the random variables X_{k} have finite absolute moments of an integer order $p \geq 4$, the approximation for the characteristic functions $f_{n}(t)$ as in (3.4) may be sharpened on the interval $|t| \leq 1 / L_{3}$ by means of the Lyapunov coefficient L_{p}. However, for this aim one should properly modify the standard normal characteristic function $g(t)=e^{-t^{2} / 2}$. Namely, put

$$
\begin{equation*}
g_{p-1}(t)=e^{-t^{2} / 2}+e^{-t^{2} / 2} \sum \frac{1}{k_{1}!\ldots k_{p-3}!}\left(\frac{\gamma_{3}}{3!}\right)^{k_{1}} \cdots\left(\frac{\gamma_{p-1}}{(p-1)!}\right)^{k_{p-3}}(i t)^{k} \tag{10.1}
\end{equation*}
$$

with

$$
k=3 k_{1}+\cdots+(p-1) k_{p-3}
$$

where the summation runs over all collections of non-negative integers k_{1}, \ldots, k_{p-3} that are not all zero and are such that

$$
k_{1}+2 k_{2}+\cdots+(p-3) k_{p-3} \leq p-3 .
$$

The definition (10.1) involves the cumulants

$$
\gamma_{r}=\gamma_{r}\left(S_{n}\right)=\sum_{k=1}^{n} \gamma_{r}\left(X_{k}\right), \quad \gamma_{r}\left(X_{k}\right)=\left.\frac{d^{r}}{i^{r} d t^{r}} \log \mathbb{E} e^{i t X_{k}}\right|_{t=0},
$$

which are well-defined for $r=1,2, \ldots, p$. Every cumulant $\gamma_{r}\left(X_{k}\right)$ may be represented as a polynomial in the first r moments of X_{k}. Note, however, that only the cumulants and the moments of X_{k} up to order $p-1$ participate in the definition of g_{p-1}. In particular, assuming that $\mathbb{E} X_{k}=0$ for all $k \leq n$ and $\mathbb{E} X_{k}^{2}=\sigma_{k}^{2}$, we have

$$
\begin{equation*}
\gamma_{3}=\sum_{k=1}^{n} \mathbb{E} X_{k}^{3}, \quad \gamma_{4}=\sum_{k=1}^{n}\left(\mathbb{E} X_{k}^{4}-3 \sigma_{k}^{4}\right) . \tag{10.2}
\end{equation*}
$$

The first two expansions in (10.1) corresponding to $p=4$ and $p=5$ are given by

$$
\begin{equation*}
g_{3}(t)=e^{-t^{2} / 2}\left(1+\gamma_{3} \frac{(i t)^{3}}{3!}\right) \tag{10.3}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{4}(t)=e^{-t^{2} / 2}\left(1+\gamma_{3} \frac{(i t)^{3}}{3!}+\gamma_{4} \frac{(i t)^{4}}{4!}+\gamma_{3}^{2} \frac{(i t)^{6}}{2!3!^{2}}\right) \tag{10.4}
\end{equation*}
$$

The function g_{p-1} represents the Fourier-Stieltjes transform of a certain signed Borel measure μ_{p-1} on the real line, that is,

$$
g_{p-1}(t)=\int_{-\infty}^{\infty} e^{i t x} d \mu_{p-1}(x), \quad t \in \mathbb{R}
$$

This measure is called the Chebyshev-Edgeworth approximation of order $p-1$ for the distribution of the sum $S_{n}=X_{1}+\cdots+X_{n}$ (or an Edgeworth correction of the normal law). It has a total mass one, and moreover, the moments of S_{n} and μ_{p-1} coincide up to order $p-1$.

Denote by

$$
\varphi(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad x \in \mathbb{R}
$$

the standard normal density on the real line, and by

$$
H_{k}(x)=(-1)^{k}\left(e^{-x^{2} / 2}\right)^{(k)} e^{x^{2} / 2}, \quad k=0,1,2, \ldots
$$

the Chebyshev-Hermite polynomial of degree k. In particular, $H_{1}(x)=x$,

$$
\begin{array}{cc}
H_{2}(x)=x^{2}-1, & H_{4}(x)=x^{4}-6 x^{2}+3 \\
H_{3}(x)=x^{3}-3 x, & H_{5}(x)=x^{5}-10 x^{3}+15 x .
\end{array}
$$

From (10.1) it follows that μ_{p-1} has density

$$
\begin{equation*}
\varphi_{p-1}(x)=\varphi(x)+\varphi(x) \sum \frac{1}{k_{1}!\ldots k_{p-3}!}\left(\frac{\gamma_{3}}{3!}\right)^{k_{1}} \ldots\left(\frac{\gamma_{p-1}}{(p-1)!}\right)^{k_{p-3}} H_{k}(x) \tag{10.5}
\end{equation*}
$$

with summation as in (10.1). The corresponding "distribution function" is given by

$$
\Phi_{p-1}(x)=\mu_{p-1}((-\infty, x])=\Phi(x)-\varphi(x) Q_{p-1}(x), \quad x \in \mathbb{R}
$$

where

$$
Q_{p-1}(x)=\sum \frac{1}{k_{1}!\ldots k_{p-3}!}\left(\frac{\gamma_{3}}{3!}\right)^{k_{1}} \ldots\left(\frac{\gamma_{p-1}}{(p-1)!}\right)^{k_{p-3}} H_{k-1}(x)
$$

It is a polynomial of degree at most $3(p-3)-1$. For the first values, similarly to (10.3)-(10.4) we have

$$
\begin{aligned}
& Q_{3}(x)=\frac{\gamma_{3}}{3!} H_{2}(x), \\
& Q_{4}(x)=\frac{\gamma_{3}}{3!} H_{2}(x)+\frac{\gamma_{4}}{4!} H_{3}(x)+\frac{\gamma_{3}^{2}}{2!3!^{2}} H_{5}(x) .
\end{aligned}
$$

If $\gamma_{3}=0$ (for example, when the distributions of all X_{k} are symmetric about the origin), we return to the standard normal distribution function $\Phi_{3}=\Phi$, while the next approximating function is simplified to

$$
\Phi_{4}(x)=\Phi(x)-\frac{\gamma_{4}}{4!} H_{3}(x) \varphi(x) .
$$

If L_{p} is small, the measure μ_{p-1} is close to the standard normal law in weak metrics. Indeed, from Bikjalis' inequality

$$
\left|\gamma_{r}\left(X_{k}\right)\right| \leq(r-1)!\mathbb{E}\left|X_{k}\right|^{r}
$$

it follows that

$$
\begin{equation*}
\left|\gamma_{r}\right| \leq(r-1)!L_{r}, \quad 3 \leq r \leq p, \tag{10.6}
\end{equation*}
$$

and therefore

$$
\left|\gamma_{r}\right| \leq(r-1)!L_{p}^{\frac{r-2}{p-2}}, \quad 3 \leq r \leq p-1
$$

(cf. [4] and Remark 6.2 on the monotonicity of the Lyapunov coefficients). Hence, writing

$$
k=d+2\left(k_{1}+k_{2}+\cdots+k_{p-3}\right), \quad d=k_{1}+2 k_{2}+\cdots+(p-3) k_{p-3}
$$

we have

$$
\begin{aligned}
\left|\left(\frac{\gamma_{3}}{3!}\right)^{k_{1}} \ldots\left(\frac{\gamma_{p-1}}{(p-1)!}\right)^{k_{p-3}}\right| & \leq\left(\frac{L_{3}}{3}\right)^{k_{1}} \cdots\left(\frac{L_{p-1}}{(p-1)}\right)^{k_{p-3}} \\
& \leq \frac{L_{p}^{\frac{d}{p-2}}}{3^{k_{1}} \ldots(p-1)^{k_{p-3}}} .
\end{aligned}
$$

Since $3 \leq k \leq 3(p-3), 1 \leq d \leq p-3$, and using the elementary bound

$$
\sum \frac{1}{k_{1}!\ldots k_{p-3}!} \frac{1}{3^{k_{1}} \ldots(p-1)^{k_{p-3}}}<e^{1 / 3} \ldots e^{1 /(p-1)}<p-1
$$

from (10.1) we get

$$
\begin{equation*}
\left|g_{p-1}(t)-g(t)\right| \leq(p-1) \max \left\{L_{p}^{\frac{1}{p-2}}, L_{p}^{\frac{p-3}{p-2}}\right\} \max \left\{1,|t|^{3(p-3)}\right\} e^{-t^{2} / 2} \tag{10.7}
\end{equation*}
$$

By a similar argument, from (10.5) we get

$$
\begin{equation*}
\left|\varphi_{p-1}(x)-\varphi(x)\right| \leq c_{p} \max \left\{L_{p}^{\frac{1}{p-2}}, L_{p}^{\frac{p-3}{p-2}}\right\} \max \left\{1,|x|^{3(p-3)}\right\} \varphi(x) \tag{10.8}
\end{equation*}
$$

Here, the right-hand side is uniformly small over all $x \in \mathbb{R}$ as long as L_{p} is small. As a consequence, we also have a similar bound on the total variation distance between μ_{p-1} and the standard Gaussian measure,

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|\varphi_{p-1}(x)-\varphi(x)\right| d x \leq c_{p} \max \left\{L_{p}^{\frac{1}{p-2}}, L_{p}^{\frac{p-3}{p-2}}\right\} \tag{10.9}
\end{equation*}
$$

We refer the interested reader to [4] for more details on this subject.

11 Generalization of Theorem 2.2

The importance of Edgeworth corrections is explained by the following standard result, cf. e.g. [4]. As before, the independent random variables X_{k} have mean zero and variances σ_{k}^{2} such that $\sigma_{1}^{2}+\cdots+\sigma_{n}^{2}=1$. We use notations and remarks from the previous section.

Lemma 11.1 If $L_{p}<\infty$ for an integer $p \geq 4$, then the characteristic function $f_{n}(t)$ of the sum $S_{n}=X_{1}+\cdots+X_{n}$ satisfies

$$
\begin{equation*}
\left|f_{n}(t)-g_{p-1}(t)\right| \leq c_{p} L_{p} \min \left(1,|t|^{p}\right) e^{-t^{2} / 8}, \quad|t| \leq \frac{1}{L_{3}} \tag{11.1}
\end{equation*}
$$

up to some constant $c_{p}>0$ depending on p only.
One can now give a more general version of the first claim in Theorem 2.2.
Theorem 11.2 Suppose that the random variables X_{k} have finite p-th absolute moments for an integer $p \geq 4$. Then, for any $\delta \in(0,1]$,

$$
\begin{equation*}
\sup _{x}\left|F_{n}(x)-\Phi_{p-1}(x)\right| \leq c_{p}\left(\delta^{-\frac{p-2}{2}} L_{p}+L_{2+\delta}^{1 / \delta}\right) \tag{11.2}
\end{equation*}
$$

where the constant $c_{p}>0$ depends on p only.
Theorem 2.2 corresponds to (11.2) with $p=4$ under an additional assumption $\mathbb{E} X_{k}^{3}=0$ for all $k \leq n$, which implies that $\Phi_{3}=\Phi$.

Proof If $L_{p}>1$, the inequality (11.2) is fulfilled automatically. In this case, the maximum in (10.9) does not exceed a multiple of L_{p}. Hence, applying this inequality, one may bound the left-hand side of (11.2) by

$$
\begin{aligned}
\sup _{x}\left|F_{n}(x)-\Phi(x)\right| & +\sup _{x}\left|\Phi_{p-1}(x)-\Phi(x)\right| \\
& \leq 1+\int_{-\infty}^{\infty}\left|\varphi_{p-1}(x)-\varphi(x)\right| d x \leq c_{p} L_{p}
\end{aligned}
$$

On the other hand, the right-hand side of (11.2) is greater than a multiple of L_{p}.
Now assume that $L_{p} \leq 1$, so that also $L_{3} \leq L_{p}^{\frac{1}{p-2}} \leq 1$ (cf. Remark 6.2). Put $T_{0}=1 / L_{3}$ and apply the Berry-Esseen inequality (3.1) with

$$
f(t)=f_{n}(t), \quad g(t)=g_{p-1}(t) \quad \text { and } \quad T=L_{2+\delta}^{-1 / \delta}
$$

Then, the supremum in (11.2) can be bounded from above by a multiple of

$$
\begin{equation*}
\int_{|t| \leq T_{0}}\left|\frac{f_{n}(t)-g_{p-1}(t)}{t}\right| d t+\int_{T_{0}<|t|<T}\left|\frac{f_{n}(t \mid}{t}\right| d t+\int_{|t| \geq T_{0}}\left|\frac{g_{p-1}(t)}{t}\right| d t+\frac{A}{T} \tag{11.3}
\end{equation*}
$$

with $A=\left\|\Phi_{p-1}\right\|_{\text {Lip }}$. Here, the first integral does not exceed $c_{p} L_{p}$, according to (11.1).

Applying the inequality (8.3), we also see that the second integral does not exceed

$$
\begin{equation*}
2 \int_{T_{0}}^{\infty} \frac{e^{-\delta t^{2} / 6}}{t} d t \leq c e^{-\delta T_{0}^{2} / 6}=c e^{-\delta /\left(6 L_{3}^{2}\right)} \tag{11.4}
\end{equation*}
$$

Since $L_{3}^{2} \leq L_{p}^{\frac{2}{p-2}}$ and $x^{\frac{p-2}{2}} e^{-x} \leq c_{p}(x>0)$, the last expression in (11.4) can be bounded by $c_{p} L_{p} \delta^{-\frac{p-2}{2}}$ up to some constant $c_{p}>0$ depending on p only.

In order to bound the third integral, note that, by (10.7), $\left|g_{p-1}(t)\right| \leq c_{p} e^{-t^{2} / 4}$ for all $t \in \mathbb{R}$. Hence, this integral does not exceed

$$
2 \int_{T_{0}}^{\infty} \frac{e^{-t^{2} / 4}}{t} d t \leq c e^{-1 /\left(4 L_{3}^{2}\right)} \leq c_{p} L_{3}^{\frac{p-2}{2}} \leq c_{p} L_{p}
$$

Finally, the Lipschitz semi-norm $A=\sup _{x}\left|\varphi_{p-1}(x)\right|$ of Φ_{p-1} in (11.3) is bounded by a p-dependent constant, according to (10.8). Hence, the whole expression in (11.3) is bounded by the right-hand side of (11.2).

Example 11.3 Given a positive parameter $q \in\left(\frac{1}{3}, \frac{1}{2}\right)$, let us return to the weighted sums

$$
S_{n}=\frac{1}{b_{n}} \sum_{k=1}^{n} \frac{1}{k^{q}} \xi_{k}, \quad b_{n}=\left(\sum_{k=1}^{n} \frac{1}{k^{2 q}}\right)^{1 / 2} \sim n^{\frac{1}{2}-q},
$$

assuming that ξ_{k} are i.i.d. random variables with mean zero, variance one, and with finite moment $\beta_{p}=\mathbb{E}\left|\xi_{1}\right|^{p}$ of an integer order $p \geq 4$. The Berry-Esseen bound (1.2) gives

$$
\sup _{x}\left|F_{n}(x)-\Phi(x)\right| \leq c_{q} \beta_{3} \frac{1}{n^{3\left(\frac{1}{2}-q\right)}},
$$

where the constant c_{q} depends on q only. Here, the right-hand side is worse than the standard rate. This bound may be improved by virtue of Theorem 11.2, by replacing the standard normal distribution function with a suitable Chebyshev-Edgeworth correction. Using any fixed value $\delta \in\left(0, \frac{1}{q}-2\right)$, we have $L_{2+\delta}^{1 / \delta} \sim \frac{1}{\sqrt{n}}$, while $L_{p} \sim n^{-p\left(\frac{1}{2}-q\right)}$ has a better decay for $p \geq \frac{1}{1-2 q}$. Hence, by (11.2),

$$
\sup _{x}\left|F_{n}(x)-\Phi_{p-1}(x)\right| \leq c_{p, q} \beta_{p} \frac{1}{\sqrt{n}}, \quad p \geq \frac{1}{1-2 q}
$$

12 Lower Bounds (Proof of Theorem 2.1)

Lemma 11.1 can also be used to derive the lower bounds in Theorem 2.1. In addition, we need the following general relation derived in [3].

Lemma 12.1 Let U be a function of bounded total variation on the real line with $U(-\infty)=U(\infty)=0$. For any $T>0$, we have

$$
\sup _{x}|U(x)| \geq \frac{1}{3 T}\left|\int_{0}^{T} u(t)\left(1-\frac{t}{T}\right) d t\right|
$$

where

$$
u(t)=\int_{-\infty}^{\infty} e^{i t x} d U(x), \quad t \in \mathbb{R}
$$

is the Fourier-Stieltjes transform of U.
Proof of Theorem 2.1. Put $g(t)=e^{-t^{2} / 2}$. Being applied to the function $U(x)=$ $F_{n}(x)-\Phi(x)$ with its Fourier-Stieltjes transform $u(t)=f_{n}(t)-g(t)$, Lemma 12.1 leads to

$$
\begin{equation*}
\Delta_{n} \geq \frac{1}{3 T}\left|\int_{0}^{T}\left(f_{n}(t)-g(t)\right)\left(1-\frac{t}{T}\right) d t\right| \tag{12.1}
\end{equation*}
$$

To further bound from below the integral on the right-hand side, we use the approximation of the characteristic function $f_{n}(t)$ by the Fourier-Stieltjes transforms $g_{3}(t)$ and $g_{4}(t)$ of the Chebyshev-Erdgeworth corrections μ_{3} and μ_{4} in parts a) and b), respectively.

First, by the triangle inequality, from (12.1) we get, for any $T>0$,

$$
\begin{align*}
\Delta_{n} \geq & \frac{1}{3 T}\left|\int_{0}^{T}\left(g_{3}(t)-g(t)\right)\left(1-\frac{t}{T}\right) d t\right| \\
& -\frac{1}{3 T}\left|\int_{0}^{T}\left(f_{n}(t)-g_{3}(t)\right)\left(1-\frac{t}{T}\right) d t\right| \tag{12.2}
\end{align*}
$$

Assuming that $T \leq \min \left(1,1 / L_{3}\right)$ and choosing $p=4$ in (11.1), Lemma 11.1 yields

$$
\left|f_{n}(t)-g_{3}(t)\right| \leq c L_{4} t^{4} e^{-t^{2} / 8}, \quad|t| \leq T
$$

Hence, the second term in (12.2) does not exceed

$$
\frac{c L_{4}}{3 T} \int_{0}^{T} t^{4} e^{-t^{2} / 8}\left(1-\frac{t}{T}\right) d t \leq c L_{4} T^{4}
$$

Furthermore, according to (10.3),

$$
g_{3}(t)-g(t)=\gamma_{3} e^{-t^{2} / 2} \frac{(i t)^{3}}{3!}
$$

Since $T \leq 1$, the first term in (12.2) is greater than or equal to $c\left|\gamma_{3}\right| T^{3}$. Hence

$$
\begin{equation*}
\frac{1}{c T^{3}} \Delta_{n} \geq\left|\gamma_{3}\right|-c L_{4} T, \quad 0<T \leq \min \left(1,1 / L_{3}\right) \tag{12.3}
\end{equation*}
$$

Similarly, for part b) of the theorem, write

$$
\begin{align*}
\Delta_{n} \geq & \frac{1}{3 T}\left|\int_{0}^{T}\left(g_{4}(t)-g(t)\right)\left(1-\frac{t}{T}\right) d t\right| \\
& -\frac{1}{3 T}\left|\int_{0}^{T}\left(f_{n}(t)-g_{4}(t)\right)\left(1-\frac{t}{T}\right) d t\right| \tag{12.4}
\end{align*}
$$

For the value $p=5$, the bound (11.1) yields

$$
\left|f_{n}(t)-g_{4}(t)\right| \leq c L_{5} t^{5} e^{-t^{2} / 8}, \quad|t| \leq T
$$

where $T \leq \min \left(1,1 / L_{3}\right)$. In this case, the second term in (12.4) does not exceed

$$
\frac{c L_{5}}{3 T} \int_{0}^{T} t^{5} e^{-t^{2} / 8}\left(1-\frac{t}{T}\right) d t \leq c L_{5} T^{5}
$$

In order to bound from below the first term in (12.4), note that, according to (10.4),

$$
\operatorname{Re}\left(g_{4}(t)-g(t)\right)=e^{-t^{2} / 2}\left(\gamma_{4} \frac{t^{4}}{4!}-\gamma_{3}^{2} \frac{t^{6}}{2!3!^{2}}\right)
$$

Hence

$$
\left|\int_{0}^{T}\left(g_{4}(t)-g(t)\right)\left(1-\frac{t}{T}\right) d t\right| \geq c_{1}\left|\gamma_{4}\right| T^{5}-c_{2} \gamma_{3}^{2} T^{7}
$$

Here, $\gamma_{3}^{2} \leq 4 L_{3}^{2} \leq 4 L_{4}$, by the cumulant inequality (10.6) with $r=3$. Hence, the first term in (12.4) is greater than or equal to $c_{1}\left|\gamma_{4}\right| T^{4}-c_{2} L_{4} T^{6}$. Thus,

$$
\begin{equation*}
\frac{1}{c T^{4}} \Delta_{n} \geq\left|\gamma_{4}\right|-c\left(L_{5} T+L_{4} T^{2}\right), \quad T \leq \min \left(1,1 / L_{4}^{1 / 2}\right) \tag{12.5}
\end{equation*}
$$

where we strengthened the assumption on T by using $L_{3} \leq L_{4}^{1 / 2}$.
One can now specialize the relations (12.3) and (12.5) to the scheme of the weighted sums

$$
S_{n}=a_{1} \xi_{1}+\cdots+a_{n} \xi_{n}, \quad a_{1}^{2}+\cdots+a_{n}^{2}=1
$$

where $\left(\xi_{k}\right)_{1 \leq k \leq n}$ are i.i.d. random variables with mean zero and variance one, assuming that the coefficients a_{k} are non-negative in part a). Putting

$$
\ell_{p}=\sum_{k=1}^{n}\left|a_{k}\right|^{p}, \quad \beta_{p}=\mathbb{E}\left|\xi_{1}\right|^{p}, \quad \alpha_{3}=\mathbb{E} \xi_{1}^{3},
$$

we then have

$$
L_{p}=\beta_{p} \ell_{p}, \quad \gamma_{3}=\alpha_{3} \ell_{3}, \quad \gamma_{4}=\left(\beta_{4}-3\right) \ell_{4}
$$

Note also that $L_{3} \leq \beta_{3}$ and $\beta_{3} \geq 1$, so that $\min \left(1,1 / L_{3}\right) \geq 1 / \beta_{3}$. Hence, in part a), using $\ell_{4} \leq \ell_{3}$, (12.3) yields

$$
\begin{aligned}
\frac{1}{c T^{3}} \Delta_{n} & \geq\left|\alpha_{3}\right| \ell_{3}-c \beta_{4} \ell_{4} T \\
& \geq \ell_{3}\left(\left|\alpha_{3}\right|-c \beta_{4} T\right)=\frac{L_{3}}{\beta_{3}}\left(\left|\alpha_{3}\right|-c \beta_{4} T\right), \quad 0<T \leq \frac{1}{\beta_{3}}
\end{aligned}
$$

Choosing $T=\left|\alpha_{3}\right| /\left(2 c \beta_{4}\right)$, we arrive at the required lower bound in (2.2).
For part b), using $\ell_{5} \leq \ell_{4}$ and $L_{4} \leq \beta_{4}, \beta_{3}^{2} \leq \beta_{4}$, (12.5) implies that

$$
\begin{equation*}
\frac{1}{c T^{4}} \Delta_{n} \geq \ell_{4}\left(\left|\beta_{4}-3\right|-c \beta_{5} T-c \beta_{4} T^{2}\right), \quad T \leq \frac{1}{\beta_{4}^{1 / 2}} \tag{12.6}
\end{equation*}
$$

For a sufficiently small value of $T=T\left(\beta_{4}, \beta_{5}\right)$, the expression in the brackets is larger than $c \beta_{4}$ with a constant $c>0$ depending on β_{4} and β_{5}, only, and then the right-hand side dominates a corresponding multiple of L_{4}. Hence (12.6) leads to the lower bound in (2.3).

Acknowledgements This work was partially supported by the NSF grant DMS-2154001 and the BSF grant 2016050. We would like to thank Iosif Pinelis for the reference to the Cox-Kemperman inequality and two referees for careful reading and valuable remarks.

References

1. Bhattacharya, R.N., Ranga Rao, R.: Normal Approximation and Asymptotic Expansions. Wiley (1976). Also: Soc. for Industrial and Appl. Math., Philadelphia (2010)
2. Bikjalis, A.: Estimates of the remainder term in the central limit theorem. Litovsk. Mat. Sb. 6, 323-346 (1966). (Russian)
3. Bobkov, S.G.: Closeness of probability distributions in terms of Fourier-Stieltjes transforms. Uspekhi Mat. Nauk 71(6) (432), 37-98 (2016) (Russian); translation in Russian Math. Surveys 71(6), 10211079 (2016)
4. Bobkov, S.G.: Asymptotic expansions for products of characteristic functions under moment assumptions of non-integer orders. In: Convexity and Concentration, IMA, Math. Appl., vol. 161, pp. 297-357. Springer, New York (2017)
5. Bobkov, S.G.: Edgeworth corrections in randomized central limit theorems. In: Geometric Aspects of Functional Analysis. Vol. I, Lecture Notes in Math., vol. 2256, pp. 71-97. Springer, Cham (2020)
6. Cox, D.C., Kemperman, J.H.B.: Sharp bounds on the absolute moments of a sum of two i.i.d. random variables. Ann. Probab. 11(3), 765-771 (1983)
7. Feller, W.: On the Berry-Esseen theorem. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 10, 261-268 (1968)
8. Gabdullin, R.A., Makarenko, V.A., Shevtsova, I.G.: Esseen-Rozovskii type estimates for the rate of convergence in the Lindeberg theorem. J. Math. Sci. (NY) 234(6), 847-885 (2018)
9. Ibragimov, I.A.: On the accuracy of approximation by the normal distribution of distribution functions of sums of independent random variables. Teor. Verojatnost. i Primenen 11, 632-655 (1966). (Russian)
10. Katz, M.L.: Note on the Berry-Esseen theorem. Ann. Math. Stat. 84, 1107-1108 (1963)
11. Klartag, B., Sodin, S.: Variations on the Berry-Esseen theorem. Teor. Veroyatn. Primen. 56(3), 514-533 (2011) (Russian summary); reprinted in Theory Probab. Appl. 56(3), 403-419 (2012)
12. Korolev, V.Y., Dorofeeva, A.: Bounds of the accuracy of the normal approximation to the distributions of random sums under relaxed moment conditions. Lithuanian Math. J. 57(1), 38-58 (2017)
13. Korolev, V.Yu., Popov, S.V.: Improvement of estimates for the rate of convergence in the central limit theorem when moments of order greater than two are absent. Teor. Veroyatn. Primen. 56(4), 797-805 (2011) (Russian); translation in Theory Probab. Appl. 56(4), 682-691 (2012)
14. Nagaev, S.V.: Some limit theorems for large deviations. Teor. Verojatnost. i Primenen. 10, 231-254 (1965). (Russian)
15. Nefedova, Yu.S., Shevtsova, I.G.: On nonuniform convergence rate estimates in the central limit theorem. Theory Probab. Appl. 57(1), 28-59 (2013). (English summary)
16. Osipov, L.V.: A refinement of Lindeberg's theorem. Teor. Verojatnost. i Primenen. 11, 339-342 (1966). (Russian)
17. Petrov, V.V.: A bound for the deviation of the distribution of a sum of independent random variables from the normal law. Dokl. Akad. Nauk SSSR 160, 1013-1015 (1965). (Russian)
18. Petrov, V.V.: Sums of independent random variables. Translated from the Russian by A. A. Brown. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82. Springer, New York (1975). Russian ed.: Moscow, Nauka (1972)
19. Pinelis, I.: On the Nonuniform Berry-Esseen Bound. Inequalities and Extremal Problems in Probability and Statistics, pp. 103-138, Academic Press, London (2017)
20. Pinelis, I.: Contrast between populations versus spread within populations. Stat. Probab. Lett. 121, 99-100 (2017)
21. Shevtsova, I.G.: Refinement of estimates for the rate of convergence in Lyapunov's theorem. Dokl. Akad. Nauk 435(1), 26-28 (2010) (Russian); translation in Dokl. Math. 82(3), 862-864 (2010)
22. Shevtsova, I.G.: On the absolute constant in the Berry-Esseen inequality and its structural and nonuniform improvements. Informatics Appl. 7(1), 124-125 (2013)
23. Studnev, Yu. P.: On the role of Lindeberg's conditions. Dopovidi Akad. Nauk Ukrain. RSR, 239-242 (1958) (Ukrainian)
24. Studnev, Yu.P.: A remark in connection with the Katz-Petrov theorem. Teor. Verojatnost. i Primenen. 10, 751-753 (1965). (Russian)
25. Studnev, Ju.P., Ignat, Ju.I.: A refinement of the central limit theorem and of its global version. Teor. Verojatnost. i Primenen. 12, 562-567 (1967). (Russian)
26. Ushakov, N.G.: Selected topics in characteristic functions. Modern Probability and Statistics. VSP, Utrecht (1999)
27. Ushakov, N.G.: Some inequalities for absolute moments. Stat. Probab. Lett. 81(12), 2011-2015 (2011)
28. von Bahr, B.: On the convergence of moments in the central limit theorem. Ann. Math. Stat. 36, 808-818 (1965)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

[^0]: Communicated by Vladimir Protasov.
 \boxtimes Sergey G. Bobkov
 bobko001@umn.edu
 1 School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

