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DECAY OF CONVOLVED DENSITIES VIA LAPLACE TRANSFORM

BY SERGEY G. BOBKOVa

School of Mathematics, University of Minnesota, abobkov@math.umn.edu

Upper pointwise bounds are considered for convolution of bounded den-
sities in terms of the associated Laplace and Legendre transforms. Applica-
tions of these bounds are illustrated in the central limit theorem with respect
to the Rényi divergence.

1. Introduction. Given a random vector X in R
d with density p, we address the follow-

ing question which often appears in a natural way: Under what conditions can one guarantee
a certain decay of the density p(x) at infinity? If p has a convolution structure, it turns out
that an affirmative answer may be given under general moment-type conditions in terms of
the associated Laplace transform. To give a precise statement, assume that

(1.1) X = X1 + · · · + Xn

for some independent random vectors Xk in R
n with bounded densities pk satisfying

(1.2) pk(x) ≤ Mk

(
x ∈R

d, k = 1, . . . , n
)

for some constants Mk (the number n does not need tend to infinity). Suppose that the convex
function

V (t) = logEe〈t,X〉, t ∈ R
d,

is finite near zero, and introduce the corresponding Legendre transform

V ∗(x) = sup
t∈Rd

[〈t, x〉 − V (t)
]
.

Here and elsewhere, we denote by 〈·, ·〉 the canonical inner product in R
d , and by | · | the

Euclidean norm.

THEOREM 1.1. Assume that X has mean zero. Under the conditions (1.1)–(1.2) with
n ≥ 2, the density p of X is continuous and satisfies

(1.3) p(x) ≤ M exp
{
−1

2
V ∗(x)

}
, x ∈ R

d,

where the positive quantity M may be chosen as a function of M1, . . . ,Mn.

Under moment-type conditions on Xk , it is possible to derive upper bounds on the tail
probabilities P{|Xk| ≥ r} and P{|X| ≥ r}. However, in the case n = 1, even if the condi-
tion (1.2) is satisfied, it is not possible to get any information about the decay of p(x) (cf.
Remark 5.2 below). Thus, the convolution forces the density p(x) to decay at a certain rate.

As we will see, the inequality (1.3) holds true with the geometric mean

(1.4) M = (M1 · · ·Mn)
1/n.

However, this choice may not reflect a correct asymptotic behavior of p(x) with respect to
the growing parameter n. The next variant based on harmonic-type means is more accurate.
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THEOREM 1.2. In the setting of Theorem 1.1, suppose that

(1.5)
∑
j �=k

M
− 2

d

j ≥ M
− 2

d

k

for each k ≤ n. Then the bound (1.3) holds true with

(1.6) M = e
d
2
(
M

− 2
d

1 + · · · + M
− 2

d
n

)− d
2 .

Let Mk = M(Xk) = ‖pk‖∞ be optimal in (1.2) and similarly M = M(X). Applying the
inequality (1.3) at the origin x = 0, we obtain that

(1.7) M− 2
d ≥ 1

e

n∑
k=1

M
− 2

d

k .

In the spirit of Shannon’s entropy power inequality, this relation was derived in [5] (the con-
straint (1.5) is irrelevant); see, for example, [6, 11, 14] for further interesting information-
theoretic developments in this direction involving the Rényi entropy functional. Using the
central limit theorem, one can check that an asymptotic equality in (1.7) is attained when
Xk’s are uniformly distributed on the Euclidean ball in R

d with n and d growing to infinity.
Hence, the factor 1

e
is optimal, although it may be improved to 1

2 in dimension d = 1.
To illustrate the advantage of (1.6) over (1.4), consider the weighted sums

Zn = a1X1 + · · · + anXn

of independent and identically distributed random vectors X1, . . . ,Xn in R
d with coefficients

ak ∈ R such that a2
1 + · · · + a2

n = 1. Applying (1.7) to the random vectors akXk and using
the homogeneity M(aξ) = a−dM(ξ) of the maximum-of-density functional, we get an upper
bound

M(Zn) ≤ ed/2M1

for the maximum of the density qn(x) of Zn. A remarkable feature of this bound is that it
does not not involve n and the weights ak .

A similar phenomenon holds true when dealing with nonuniform bounds on qn(x). For
example, in the sub-Gaussian case with the Laplace transform satisfying

Ee〈t,X1〉 ≤ exp
{

1

2
σ 2|t |2

}
, t ∈R

d,

Theorem 1.2 yields a sub-Gaussian pointwise bound

(1.8) qn(x) ≤ ed/2M1 exp
{
− 1

4σ 2 |x|2
}

under the condition maxk≤n a2
k ≤ 1

2 , to meet the requirement (1.5).
Theorems 1.1–1.2 are proved in Sections 2–3. In Sections 4–5, they are clarified for the

class of subexponential and sub-Gaussian distributions. In particular, it will be shown that,
with respect to the space variable x, the right-hand side of (1.8) may slightly be improved for
a growing number of summands. This will be illustrated in the application to the central limit
theorem by means of the Rényi divergence (Section 6). We will conclude with short remarks
on Bernoulli convolutions (Section 7).
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2. Preliminaries. With independent summands Xk in (1.1), we associate the log-
Laplace transforms

Vk(t) = logEe〈t,Xk〉 (
t ∈ R

d, k = 1, . . . , n
)
.

Given a collection of real numbers rk ≥ 2 such that

(2.1)
1

r1
+ · · · + 1

rn
= 1,

define the convex function

(2.2) W(t) =
n∑

k=1

1

r ′
k

Vk

(
r ′
kt

)
, r ′

k = rk

rk − 1
,

together with its Legendre transform W ∗(x) = supt∈Rd [〈t, x〉 − W(t)]. Put

(2.3) Ar = (
r ′)1/r ′

r−1/r , r > 1.

As a preliminary step toward Theorems 1.1–1.2, we first derive the following.

LEMMA 2.1. Under the conditions (1.1)–(1.2) with n ≥ 2, the density p of the random
vector X is continuous and satisfies

(2.4) p(x) ≤ M exp
{−W ∗(x)

}
, x ∈ R

d,

where

(2.5) M =
n∏

k=1

Ad/2
rk

M
1/rk
k .

PROOF. Introduce the characteristic functions

fk(t) = Eei〈t,Xk〉 =
∫
Rn

ei〈t,x〉pk(x) dx, t ∈ R
d

so that the sum X has the characteristic function

f (t) = f1(t) · · ·fn(t) =
∫
Rd

ei〈t,x〉p(x)dx.

Using the assumption (1.2) and applying the Hausdorff–Young inequality, we have that,
for any r ≥ 2 with conjugate r ′ = r

r−1 ,

1

(2π)d
‖fk‖r

r = 1

(2π)d

∫
Rd

∣∣fk(t)
∣∣r dx ≤

(∫
Rd

pk(x)r
′
dx

)r/r ′

≤
(∫

Rd
Mr ′−1

k pk(x) dx

)r/r ′
= Mk < ∞.

Hence, by Hölder’s inequality∫
Rn

∣∣f (t)
∣∣dx ≤ ‖f1‖r1 · · · ‖fd‖rd < ∞

for any collection rk ≥ 2 satisfying (2.1). Thus, the function f is integrable so that the random
vector X has a bounded continuous density described by the Fourier inversion formula

(2.6) p(x) = 1

(2π)d

∫
Rd

e−i〈t,x〉f (t) dt, x = (x1, . . . , xd) ∈ R
d .
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To proceed, first suppose that both p(x) and f (t) have a Gaussian decay at infinity. In this
case the functions Vk are all finite. In particular, the characteristic functions

fk(z) =
∫
Rd

ei〈t,x〉−〈y,x〉pk(x) dx, z = t + iy
(
t, y ∈ R

d, k = 1, . . . , n
)

represent entire functions in the complex space C
d as well as the characteristic function

f (z) =
∫
Rd

ei〈z,x〉p(x)dx, z ∈ C
d .

One can write down another formula, instead of (2.6), by using a contour integration. Fix
T > 0 and y = (y1, . . . , yd). Assuming for definiteness that y1 ≥ 0 and applying Cauchy’s
formula along the first coordinate, we have∫ T

−T
e−it1x1f (t) dt1 +

∫ y1

0
e−i(T +ih1)x1f (T + ih1, t2, . . . , td) dh1

=
∫ T

−T
e−i(t1+iy1)x1f (t1 + iy1, t2, . . . , td) dt1

+
∫ y1

0
e−i(−T +ih1)x1f (−T + ih1, t2, . . . , td) dh1,

(2.7)

where t = (t1, . . . , td). For every h ∈ R
d , the function ph(x) = e−〈h,x〉p(x) is integrable and

has the Fourier transform p̂h(t) = f (t +ih). Hence, by the Riemann–Lebesgue lemma, f (t +
ih) → 0 as |t | → ∞. This convergence is actually uniform over any ball |h| ≤ r , since the
family {ph}|h|≤r is compact in L1(Rd) in view of the continuity of the map h → ph. Thus,
for any y1 > 0,

sup
|h1|≤y1

∣∣f (±T + ih1, t2, . . . , tn)
∣∣ → 0 as T → ∞.

We may conclude that the two integrals in (2.7) over the interval [0, y1] are vanishing as
T → ∞ so that, in the limit, this identity leads to∫ ∞

−∞
e−it1x1f (t) dt1 =

∫ ∞
−∞

e−i(t1+iy1)x1f (t1 + iy1, t2, . . . , td) dt1

for every t2, . . . , td ∈ R. By the decay assumption on f (t), both sides of this equality have a
sub-Gaussian behavior with respect to t2, . . . , tn. Hence, after multiplication of the equality by
e−it2x2 , one can perform a similar contour integration with respect to the second coordinate.
Continuing the process and recalling (2.6), we arrive at the following variant of the inversion
formula:

p(x) = e〈y,x〉

(2π)d

∫
Rd

e−i〈t,x〉f (t + iy) dt,

which readily implies that

(2.8) p(x) ≤ e〈y,x〉

(2π)d

∫
Rd

∣∣f (t + iy)
∣∣dt, x, y ∈ R

d .

On this step, one can remove the assumptions about the decay of p and f . Given ε > 0
and δ > 0, consider the density pε,δ = pε ∗ qδ , where qδ is a normal density on R

d with
mean zero and covariance matrix δ2Id and pε(x) = cεp(x)e−ε|x|2/2. Here the normalizing
constants cε → 1 as ε → 0. Since p(x) is bounded, pε(x) has a Gaussian decay at infinity,
and the same is true for pε,δ(x). Indeed, if p(x) ≤ M , we get

pε,δ(x) ≤ cεM

∫
Rd

e−ε|x−y|2/2qδ(y) dy = Be−b|x|2
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for some constants B,b > 0, which do not depend on x. In addition, the Fourier transform
fε,δ of pε,δ admits the bound |fε,δ(t)| ≤ e−δ2|t |2/2. Hence, we are in position to apply the
previous step to obtain the pointwise bounds

pε,δ(x) ≤ e〈y,x〉

(2π)d

∫
Rn

∣∣fε,δ(t + iy)
∣∣dt

= e〈y,x〉

(2π)d

∫
Rd

∣∣fε(t + iy)
∣∣e−δ2(|t |2−|y|2)/2 dt,

where fε is the Fourier transform of pε . Since pε,δ(x) → pε(x) for all x, in the limit as δ → 0
we then get a similar bound for the couple (pε, fε). It will remain to send ε → 0 and apply
Fatou’s lemma to fε(t + iy), which leads to (2.8) without the decay constraints.

In order to bound the integral in (2.8), one may apply Hölder’s inequality, which yields

(2.9)
∫
Rd

∣∣f (t + iy)
∣∣dx ≤

n∏
k=1

(∫
Rd

∣∣fk(t + iy)
∣∣rk dx

)1/rk

for any collection of real numbers rk > 1, as in (2.1). Recall that the functions t → fk(t + iy)

represent the Fourier transforms of the functions

pk,y(x) = e−〈y,x〉pk(x), x ∈R
d .

We now involve the Hausdorff–Young inequality with optimal constants, due to Babenko
[1] (for the values r = 2,4,6, . . .) and Beckner [3] (in the general case). It asserts that if a
function q belongs to Lr ′

(Rd), r ≥ 2, then its Fourier transform

q̂(t) =
∫
Rd

ei〈t,x〉q(x) dx, t ∈ R
d,

belongs to Lr(Rd) and has the norm satisfying

(2.10) ‖q̂‖r ≤ (2π)d/rAd/2
r ‖q‖r ′

with constants defined in (2.3). Here an equality is attained for the normal densities q = qδ

as above (see also [2, 8]). Using (2.10) with q = pk,y , we conclude that the Lrk -norm of
fk(t + iy) in (2.9) with rk ≥ 2 is bounded by

(2π)d/rkAd/2
rk

(∫
Rd

e−r ′
k〈y,x〉pk(x)r

′
k dx

)1/r ′
k

≤ (2π)d/rkAd/2
rk

(∫
Rd

e−r ′
k〈y,x〉Mr ′

k−1
k pk(x) dx

)1/r ′
k

= (2π)d/rkAd/2
rk

M
1/rk
k exp

{
1

r ′
k

Vk

(−r ′
ky

)}
.

Therefore, according to the definition (2.2),
∫
Rd

∣∣f (t + iy)
∣∣dx ≤ (2π)d

n∏
k=1

Ad/2
rk

M
1/rk
k exp

{
W(−y)

}
,

and, by (2.8)

p(x) ≤ M exp
{〈y, x〉 + W(−y)

}
with constant M defined in (2.5). It remains to optimize this inequality over all y ∈ R

d . �
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3. Proofs of Theorems 1.1–1.2: Refinement. Since EX = 0, we may assume, without
loss of generality, that EXk = 0 for all k ≤ n. In this case all Vk(t) are nonnegative (by
Jensen’s inequality), with Vk(0) = 0. In view of the convexity of these functions, the functions
α → 1

α
Vk(αh) are nondecreasing on the half-axis α > 0. Since 1 < r ′

k ≤ 2, we get

1

r ′
k

Vk

(
r ′
ky

) ≤ 1

2
Vk(2y),

and, therefore, the function W from Lemma 2.1 admits a simple upper bound

W(y) ≤ 1

2
V (2y), y ∈ R

d,

where V = V1 +· · ·+Vn. Equivalently, W ∗(x) ≥ 1
2V ∗(x) for all x ∈ R

d . Thus, subject to the
condition (2.1) on the collection rk ≥ 2, from (2.4), we obtain the desired upper bound

(3.1) p(x) ≤ M exp
{
−1

2
V ∗(x)

}

with constant M , as in (2.5). Theorem 1.1 is thus proved.
The choice of equal powers rk = n leads to (3.1) with M = (M1 · · ·Mn)

1/n.
Turning to Theorem 1.2, we need to analyze the expression (2.5). Put u = (u1, . . . , un),

uk = 1
rk

, vk = 1 − uk , and rewrite (2.3) with r = rk as

Ark =
(

1

rk

) 1
rk

(
1

r ′
k

)− 1
r′
k = u

uk

k v
−vk

k .

Thus, (2.5) becomes

M
2
d =

n∏
k=1

u
uk

k v
−vk

k

(
M

2
d

k

)uk .

To simplify this expression, one may take

(3.2) uk = M
− 2

d

k

(
M

− 2
d

1 + · · · + M
− 2

d
n

)−1
,

and then

M = (
M

− 2
d

1 + · · · + M
− 2

d
n

)− d
2 ψn(u)−

d
2 , ψn(u) =

n∏
k=1

v
vk

k .

As easy to check, the minimum to the function ψn(u) on the simplex of all points u with
u1 + · · · + un = 1, uk ≥ 0 is attained for the point with equal coordinates uk = 1

n
, at which

ψn(u) = (1 − 1
n
)n−1 > 1

e
.

It remains to note that the condition rk ≥ 2, that is, uk ≤ 1
2 is equivalent to the condition

(1.5) of Theorem 1.2.
With a similar argument, the inequality (1.3), with constant as in (1.6), may be slightly

sharpened. Let us return to the scheme of the weighted sums

Zn = a1X1 + · · · + anXn, a2
1 + · · · + a2

n = 1

of independent random vectors X1, . . . ,Xn in R
d with coefficients satisfying

(3.3) max
k≤n

a2
k ≤ 1

2
.

Assume that, for every k ≤ n, Xk has density pk such that

(3.4) pk(x) ≤ M, x ∈ R
d,
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and let

(3.5) Ee〈t,Xk〉 ≤ eV (t), t ∈ R
d

for a convex function V :Rd → (−∞,∞]. Define

(3.6) W(t) =
n∑

k=1

(
1 − a2

k

)
V

(
akt

1 − a2
k

)

together with its Legendre transform W ∗.

THEOREM 3.1. Under the conditions (3.3)–(3.5), the density qn of Zn satisfies

(3.7) qn(x) ≤ ed/2Me−W ∗(x), x ∈ R
d .

The function W in (3.6) corresponds to the definition (2.2) in Lemma 2.1 when it is applied
to the random vectors akXk in place of Xk . In that case, in (3.2) one may use a−d

k M with
parameter M from (3.4) in place of Mk . This leads to uk = a2

k , so that rk = 1
a2
k

≥ 2 under (3.3)

and r ′
k = rk

rk−1 = 1
1−a2

k

.

In the case of equal coefficients ak = 1/
√

n, the condition (3.3) is satisfied for n ≥ 2, and
(3.6) is simplified to

W(t) = (n − 1)V

( √
nt

n − 1

)
with W ∗(x) = (n − 1)V ∗

(
x√
n

)
.

Hence, (3.7) leads to the following particular case.

COROLLARY 3.2. Suppose that the independent random vectors X1, . . . ,Xn have den-
sities satisfying (3.4)–(3.5). Then the normalized sums Zn = 1√

n
(X1 + · · · + Xn), n ≥ 2 have

continuous densities qn such that

(3.8) qn(x) ≤ ed/2M exp
{
−(n − 1)V ∗

(
x√
n

)}
, x ∈ R

d .

4. Subexponential distributions. Although Theorems 1.1–1.2 are formally applicable
without any constraint on the log-Laplace transform V , they make sense when the compo-
nents of Xk have a finite exponential moment. Let us illustrate the sharpness of the nonuni-
form bound (1.3) with n = 2 on the example of the symmetric exponential distribution with
density

(4.1) p(x) = 2−de−‖x‖1, x = (x1, . . . , xd) ∈ R
d,

where we use the notation for the 	1-norm ‖x‖1 = |x1| + · · · + |xd |. The random vector
with this distribution may be represented as the difference X = X1 − X2 of two independent
random vectors X1 and X2 with density p1(x) = p2(x) = e−‖x‖1 supported on the positive
octant xj > 0, 1 ≤ j ≤ d . In this case, M1 = M2 = 1, and for any t = (t1, . . . , td) ∈R

d ,

V (t) = logEe〈t,X〉 = −
d∑

j=1

log
(
1 − t2

j

)
, if ‖t‖∞ = max

j
|tj | < 1,

and V (t) = ∞, if ‖t‖∞ ≥ 1. Hence, for the corresponding Legendre transform we have

V ∗(x) = sup
‖t‖∞<1

d∑
j=1

(
tj xj + log

(
1 − t2

j

)) ≥ 1

5

d∑
j=1

min
(|xj |, x2

j

)
.
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Thus, the bound (1.3) with the geometric mean M = √
M1M2 = 1 leads to

p(x) ≤ exp

{
− 1

10

d∑
j=1

min
(|xj |, x2

j

)}
.

This is consistent with (4.1) in view of the factor 2−d .
Now, consider a general situation of the weighted sums

Zn = a1X1 + · · · + anXn, a2
1 + · · · + a2

n = 1

of independent random vectors X1, . . . ,Xn in R
d with mean zero satisfying

(4.2) Eec|〈θ,Xk〉| ≤ 2, 1 ≤ k ≤ n,

for all θ ∈ R
d , |θ | = 1, with some common constant c > 0. That is, we assume that all linear

functionals 〈θ,Xk〉 have the ψ1-Orlicz norm ≤1/c for the Young function ψ1(r) = e|r| − 1,
r ∈ R. One may specialize Theorem 3.1 to the following assertion.

COROLLARY 4.1. Under the conditions (3.3)–(3.4) and (4.2), the density qn of Zn (n ≥
2) satisfies

(4.3) qn(x) ≤ ed/2M exp
{
−min

( |x|
12c

,
|x|2

8

)}
, x ∈ R

d .

PROOF. Given a mean zero random variable ξ such that Ee|ξ | ≤ 2, the convex function
R(t) = logEetξ is smooth in |t | < 1, with R(0) = R′(0) = 0. Using x2et0x ≤ ex (x ≥ 0) with
t0 = 1 − 2

e
, we have that, for all |t | ≤ t0,

R′′(t) ≤ Eξ2etξ ≤ Eξ2et0|ξ | ≤ Ee|ξ | ≤ 2.

Hence, by Taylor’s formula R(t) ≤ t2. Applying this with ξ = c〈θ,Xk〉, it follows from (4.2)
that

logEe〈t,Xk〉 ≤ V (t), V (t) = |t |2 for t ∈ R
d, |t | ≤ t0/c.

By the assumption (3.3), ak

1−a2
k

≤ √
2. Hence, in the ball |t | ≤ t0

c
√

2
, we have ak

1−a2
k

|t | ≤ t0
c

, and

according to (3.6),

W(t) =
n∑

k=1

a2
k

1 − a2
k

|t |2 ≤ 2|t |2, W ∗(x) ≥ min
(

t0

2c
√

2
|x|, 1

8
|x|2

)

for all x ∈ R
d . It remains to apply (3.7). �

In the case of equal coefficients, the bound (4.3) with its exponential decay at infinity may
naturally complement local limit theorems for densities under the moment assumption such
as (4.2); compare, for example, [13].

5. Sub-Gaussian distributions. A random vector X in R
d (or its distribution) is called

sub-Gaussian, if

(5.1) P
{|X| ≥ r

} ≤ c1e
−c2r

2
, r ≥ 0

for some constants c1, c2 > 0, which do not depend on r (one may take c1 = 2 at the expense
of a smaller value of c2 if necessary). If X has mean zero, an equivalent definition is that

(5.2) Ee〈t,X〉 ≤ eσ 2|t |2/2, t ∈R
d
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for some σ 2 (sometimes called the sub-Gaussian constant of X). This form is additive with
respect to convolutions: If X = X1 + · · · + Xn for independent random vectors satisfying

(5.3) Ee〈t,Xk〉 ≤ eσ 2
k |t |2/2, t ∈ R

d,

then (5.2) holds true with σ 2 = σ 2
1 + · · · + σ 2

n . In this special situation, Theorems 1.1–1.2
allows us to strengthen (5.1)–(5.2) as follows.

COROLLARY 5.1. Under the condition (5.3), if Xk have bounded densities satisfying
(1.2) with constants Mk , the density p of X admits the sub-Gaussian upper bound

(5.4) p(x) ≤ M exp
{
−|x|2

4σ 2

}
, x ∈ R.

Here the constant M may be defined according to the formula (1.6) from Theorem 1.2
subject to condition (1.5).

Subject to the conditions of Corollary 3.2 with V (t) = 1
2σ 2|t |2 in (3.5) and with a com-

mon bound M on the densities of Xk , as in (3.4), the bound (5.4) may be sharpened for the
densities qn of the normalized sums

(5.5) Zn = X1 + · · · + Xn√
n

.

Namely, the inequality (3.8) yields

(5.6) qn(x) ≤ ed/2M exp
{
−n − 1

2nσ 2 |x|2
}
, n ≥ 2,

which improves upon the sub-Gaussian bound (5.4) for growing values of n.

REMARK 5.2. If n = 1, no moment-type condition, such as (3.5), guarantees the decay of
a bounded density p(x) at infinity. Given an unbounded Borel set A ⊂ R of a positive finite
Lebesgue measure c = |A|, one may consider a multiple of the indicator function p(x) =
c−11A(x) in which case there is no decay,

lim sup
|x|→∞

p(x) = 1

c
.

At the same time, the random variable X with such a density may be sub-Gaussian, for
example: For A = ⋃

k∈Z(k − hk, k + hk) with hk = exp{−k2}, we have E exp{εX2} < ∞
whenever ε < 1.

6. Central limit theorem. The refinement (5.6) for the normalized sums in (5.5) is es-
sential to decide, for example, whether the central limit theorem holds true in terms of the
Rényi divergence

Dα(Zn‖Z) = 1

α − 1
log

∫
Rd

(
qn(x)

ϕ(x)

)α

ϕ(x) dx, α > 0.

Here Z is a standard normal random vector in R
d with density ϕ. Let us recall that the

quantity Dα is increasing α. For the range 0 < α < 1, it is (metrically) equivalent to the total
variation distance between the distributions of Zn and Z, and in the case α = 1, it becomes
the relative entropy (Kullback–Leibler divergence)

D(Zn‖Z) = D1(Zn‖Z) =
∫
Rd

log
(

qn(x)

ϕ(x)

)
qn(x) dx.
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The case α > 1 is much stronger. For example, D(Zn‖Z) is finite under a second moment
condition; while for the finiteness of Dα(Zn‖Z) with α > 1, it is necessary that Eec|Zn|2 < ∞
for all c < 1

2α∗ , where α∗ = α
α−1 is the conjugate index (in particular, the random vector Zn

and, therefore, all summands Xk should be sub-Gaussian). We refer an interested reader to
[7, 17] for basic properties of these information-theoretic distances.

Assuming that the summands Xk are independent and identically distributed in R
d , with

mean zero and a unit covariance matrix, it was shown in [7] that, for a given α > 1,

(6.1) Dα(Zn‖Z) → 0 as n → ∞,

if and only if for some n = n0 (and then for any n ≥ n0), Zn has a density qn with finite
Dα(Zn‖Z), and

(6.2) Ee〈t,X1〉 < e(α∗)2|t |2/2, t ∈ R
d, t �= 0.

Necessarily, Zn should have bounded densities, say qn for some and then for all large n.
As for the requirement that Dα(Zn‖Z) is finite, it can be explored by using the upper bound
(5.6). Applying it, we obtain the following sufficient condition.

COROLLARY 6.1. Suppose that the i.i.d. random vectors Xk in R
d with mean zero and

a unit covariance matrix satisfy

(6.3) Ee〈t,X1〉 ≤ eσ 2|t |2/2, t ∈ R
d

with some σ ≥ 1. If Zn has a bounded density for some n, then the convergence (6.1) holds

true for any α < σ 2

σ 2−1
(i.e., if α∗ > σ 2).

Since X1 is assumed to have a unit covariance matrix, it is necessary that σ ≥ 1 in (6.3).
The case σ = 1 is possible; it describes a rich family of probability distributions, including,
for example, arbitrary convolutions of uniform distributions on bounded intervals (in dimen-
sion one, subject to the variance assumption). In that case we obtain the convergence (6.1) in
the relative α-entropy for all α > 1.

Let us also note that the assumption that Zn has a bounded density for some n can be
expressed in terms of the characteristic function f (t) = Eei〈t,X1〉. Namely (cf., e.g., [4]), this
is equivalent to ∫

Rd

∣∣f (t)
∣∣ν dt < ∞ for some ν ≥ 1.

PROOF. We may assume that X1 has a density bounded by a constant M . By (6.3) the
condition (6.2) is fulfilled as long as α∗ > σ 2. Moreover, Zn has a bounded density qn satis-
fying (5.5) for any n ≥ 2. This bound implies that, for all n ≥ 2,∫

Rd

(
qn(x)

ϕ(x)

)α

ϕ(x) dx ≤ c

∫
Rd

exp
{
−1

2

(
α

n − 1

nσ 2 − (α − 1)

)
|x|2

}
dx,

where the constant c does not depend on x. Hence, Dα(Zn‖Z) is finite for large n under the
same assumption α∗ > σ 2. �

7. Bernoulli convolutions. One possible application of sub-Gaussian density bounds
may concern the distributions Fλ of random power series

Zλ =
√

1 − λ2
∞∑

k=0

εkλ
k, 0 < λ < 1,
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where (εk)k≥0 are independent Bernoulli random variables taking the values ±1 with prob-
ability 1/2. Here the normalization

√
1 − λ2 is chosen so that EZ2

λ = 1. A long-standing
problem about these Bernoulli sums is to describe the values λ for which Fλ is absolutely
continuous (Erdös’ problem). In that case one also asks about general properties of the den-
sity of Zλ.

In the range 0 < λ < 1
2 , Fλ is known to be continuous singular; while for λ = 1

2 , we obtain
the uniform distribution on the interval (−1

2

√
3, 1

2

√
3). Erdös [9] constructed an infinite se-

quence of λ in (1
2 ,1) such that Fλ is singular. Although these values are bounded away from

1, he conjectured that the collection E of all exceptional values, that is, when Fλ is singular, is
clustering at 1− (which would imply that this collection is dense in this subinterval). On the
other hand, for each integer m ≥ 0, there is a number λm ∈ (1

2 ,1) such that Fλ has a density
of class Cm for almost all λ ∈ [λm,1); compare [10]. Important results in this direction were
later obtained by Solomyak [16] and Shmerkin [15] who, respectively, showed that the set E
has Lebesgue measure zero and actually has Hausdorff dimension zero (cf. also the review
[12]).

In [16] it was actually shown that the characteristic function of Zλ,

fλ(t) = EeitZλ =
∞∏

k=0

cos
(√

1 − λ2λkt
)
, t ∈ R,

is square integrable for almost all λ ∈ (1
2 ,1), that is,

I (λ) = ‖fλ‖2
2 =

∫ ∞
−∞

fλ(t)
2 dt < ∞.

By Plancherel’s theorem this ensures that Zλ has a square integrable density pλ. However,
not much is known about the shape or decay of such densities. Nevertheless, using the self-
similarity of Fλ and Corollary 5.1, one may speak about the Gaussian decay of pλ for almost
all λ that are sufficiently close to 1. More precisely, Solomyak’s theorem may be comple-
mented with the following observation.

COROLLARY 7.1. For all λ ∈ (2−1/4,1) such that I (λ4) is finite, the density pλ of Zλ is
continuous and admits the sub-Gaussian upper bound

(7.1) pλ(x) <
1

4
I
(
λ4)

e−x2/4, x ∈R.

This bound is consistent with the property that Fλ(x) = P{Zλ ≤ x} approaches the stan-
dard normal distribution function �(x) in the weak sense as λ → 1. This normal approxima-
tion may be quantified by applying the Berry–Esseen inequality, which readily yields

sup
x

∣∣Fλ(x) − �(x)
∣∣ ≤ c

√
1 − λ2

for all λ ∈ (0,1) up to some absolute constant c. It seems that a nonuniform bound similar
to (7.1) also holds for the difference of densities pλ(x) − ϕ(x). One should, however, stress
that (7.1) may only be useful once we are able to control the factor I (λ4) (which is finite for
almost all λ ∈ (2−1/4,1) by Solomyak’s theorem).

PROOF. First note that, since Eetεk = cosh(t) ≤ et2/2, t ∈ R, a similar sub-Gaussian
bound on the Laplace transform holds for any convergent Bernoulli sum X = ∑∞

k=0 εkak

(ak ∈ R), that is,

EetX ≤ eσ 2t2/2, σ 2 = EX2 =
∞∑

k=0

a2
k .
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The series Sλ = ∑∞
k=0 εkλ

k = X1 + X2 may be represented as the sum of two independent
random variables with

X1 = Sλ4 + λS′
λ4, X2 = λ2S′′

λ4 + λ3λS′′′
λ4,

where S′
λ4 , S′′

λ4 , S′′′
λ4 are independent copies of Sλ4 . Being particular cases of Bernoulli sums,

these random variables are sub-Gaussian, and moreover, for all t ∈ R,

EetXj ≤ e
σ 2

j t2/2
, σ 2

j = EX2
j (j = 1,2).

Denote by gλ(t) = fλ(
1√

1−λ2
t) the characteristic function of Sλ, and assume that I (λ4)

is finite. The characteristic function h1 of X1 is given by h1(t) = gλ4(t)gλ4(λt) so that, by
Cauchy’s inequality,∫ ∞

−∞
∣∣h1(t)

∣∣dt ≤ ∥∥gλ4(t)
∥∥

2

∥∥gλ4(λt)
∥∥

2

=
√

1 − λ2
√

λ

∥∥fλ4(t)
∥∥2

2 =
√

1 − λ2
√

λ
I
(
λ4)

.

Hence, X1 has a continuous bounded density q1. Moreover, by the Fourier inversion formula,

q1(x) ≤ M1 =
√

1 − λ2

2π
√

λ
I
(
λ4)

.

By a similar argument, the random variable X2 has a continuous bounded density q2 satisfy-
ing

q2(x) ≤ M2 =
√

1 − λ2

2π
√

λ5
I
(
λ4)

.

We are in position to apply Corollary 5.1 to the couple (X1,X2) and conclude that Sλ has
a density q satisfying the bound (5.4). That is, for all x ∈ R, we have

(7.2) q(x) ≤ Me−x2/4σ 2
, σ 2 = σ 2

1 + σ 2
2 = ES2

λ = 1

1 − λ2 .

Here, according to (1.4), one may take

(7.3) M = √
M1M2 =

√
1 − λ2

2πλ3/2 I
(
λ4)

.

Rescaling the variable, we thus obtain from (7.2)–(7.3) that

pλ(x) = 1√
1 − λ2

q

(
x√

1 − λ2

)
≤ 1

2πλ3/2 I
(
λ4)

e−x2/4.

It remains to simplify the constant by using 1
2πλ3/2 ≤ 23/8

2π
< 1

4 . �
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