
Chapter 5
Edgeworth Corrections in Randomized
Central Limit Theorems

Sergey G. Bobkov

Abstract We consider rates of approximation of distributions of weighted sums of
independent, identically distributed random variables by the Edgeworth correction
of the 4-th order.

5.1 Introduction

Given independent, identically distributed random variables X1, . . . , Xn (for short
- i.i.d.), we consider weighted sums

Sθ = θ1X1 + · · · + θnXn, θ = (θ1, . . . , θn),

with θ2
1 + · · · + θ2

n = 1, thus indexed by the points from the unit sphere Sn−1 in
R

n (n ≥ 2). Throughout it is assumed that EX1 = 0, EX2
1 = 1, so that ESθ = 0,

ES2
θ = 1. According to the central limit theorem, if all the coefficients θk’s are

small, the distribution function

Fθ(x) = P{Sθ ≤ x}, x ∈ R,
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is close to the normal distribution function �(x) = ∫ x

−∞ ϕ(y) dy with density

ϕ(y) = 1√
2π

e−y2/2. This property can be quantified in terms of the Kolmogorov
distance

ρ(Fθ ,�) = sup
x

|Fθ(x) − �(x)|,

by involving absolute moments βs = E |X1|s . In particular, if the 3-rd absolute
moment β3 is finite, then

ρ(Fθ ,�) ≤ cβ3

n∑

k=1

|θk|3 (5.1.1)

up to some absolute constant c (cf. [11]). As best, here the right-hand side is of
order 1/

√
n which is optimal in general, including the case of equal coefficients;

moreover, this rate may not be improved under higher order moment assumptions.
Nevertheless, the situation is different when one is concerned about the typical

behavior of these distances for most of θ in the sense of the normalized Lebesgue
measure sn−1 on Sn−1. In particular, Klartag and Sodin [7] have showed that, under
the 4-th moment condition, the value ρ(Fθ ,�) is actually at most of order 1/n on
average. More precisely, with some absolute constants c, r0 > 0, for any r ≥ r0, we
have

ρ(Fθ ,�) ≤ cr

n
β4 (5.1.2)

for all θ ∈ Sn−1 except for a set of sn−1-measure ≤ 2 exp{−r1/2}. This cannot be
obtained on the basis of (5.1.1), since the average of

∑n
k=1 |θk|3 is proportional to

1/
√

n.
As it turns out, under rather general conditions, the relation (5.1.2) admits a

further refinement, by replacing � with the corrected normal “distribution" function

G(x) = �(x) − α

n
(x3 − 3x) ϕ(x), α = β4 − 3

8
. (5.1.3)

We will use Eθ to denote integrals with respect to the measure sn−1. Put α3 = EX3
1.

Theorem 5.1.1 If α3 = 0, β5 < ∞, then with some positive absolute constant c

Eθ ρ(Fθ ,G) ≤ c

n3/2 β5. (5.1.4)

Moreover, there exists an absolute constant r0 > 0 such that for all r ≥ r0,

sn−1

{
ρ(Fθ ,G) ≥ cr

n3/2
β5

}
≤ 2 exp

{ − r1/2}. (5.1.5)
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Theorem 5.1.1 involves all symmetric probability distributions with finite 5-th
absolute moment in which case G = �. Moreover, this bound is optimal in the
sense that it can be reversed in a typical situation, where the 4-th moment of X1 is
different than the 4-th moment of the standard normal law. The same is also true
about (5.1.2) on average, when the 3-rd moment of X1 is not zero. Denote by G
the collection of all functions G of bounded variation on the real line such that
G(−∞) = 0 and G(∞) = 1.

Theorem 5.1.2 If α3 �= 0, β4 < ∞, then the inequality

inf
G∈G

Eθ ρ(Fθ ,G) ≥ c

n
(5.1.6)

holds for all n with a constant c > 0 depending on α3 and β4 only. Moreover, if
α3 = 0, β4 �= 3, β5 < ∞, then

inf
G∈G

Eθ ρ(Fθ ,G) ≥ c

n3/2 , (5.1.7)

where the constant c > 0 depends on β4 and β5.

The paper is organized as follows. First, we recall a general scheme of Edgeworth
corrections. Being specialized to the weighted sums, the corresponding asymptotic
expansions contain as parameters special functions on the sphere, which we discuss
in Sect. 5.3. The behavior of characteristic functions of the weighted sums on large
intervals is analyzed separately in Sect. 5.4. These preparations are sufficient for
the proof of Theorem 5.1.1, cf. Sect. 5.5 (where we also give a slight refinement
of Klartag–Sodin’s theorem in the i.i.d. situation). Sections 5.6 and 5.7 deal with
lower bounds on the Kolmogorov distance, which are used to prove Theorem 5.1.2
(Sect. 5.8).

In the sequel, we use c, C to denote positive absolute constants, in general
different in different places; similarly, cq , Cq denote constants depending on a
parameter q.

5.2 Construction of Asymptotic Expansions

Let ξ1, . . . , ξn be independent, not necessarily identically distributed random vari-
ables such that Eξk = 0 and

∑n
k=1 Eξ2

k = 1. Consider the sum Sn = ξ1 + · · · + ξn,
which thus has mean zero and variance one. An asymptotic behaviour of the
distribution of Sn in a weak sense is usually analyzed in terms of its characteristic
function fn(t) = E eitSn . In turn, the behaviour of fn(t) on large t-intervals is
controlled by the Lyapunov coefficients

Ls =
n∑

k=1

E |ξk|s , s ≥ 2.
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Note that Ls ≥ n− s−2
2 . In fact, these quantities are often of the order n− s−2

2 . For
example,

Ls = n− s−2
2 E |X1|s in case ξk = 1√

n
Xk

with identically distributed Xk . Since the function s → L
1

s−2
s is non-decreasing on

the half-axis s > 2 (due to L2 = 1), we have L3 ≤ L
1/2
4 ≤ L

1/3
5 .

If Ls is finite for a fixed integer s ≥ 2, the cumulants

γp(ξk) = dp

ip dtp
logE eitξk

∣
∣
t=0

are well-defined and finite for all p = 1, . . . , s. Every cumulant γp(ξk) is
determined by the first p moments αr,k = E ξ r

k , r = 1, . . . , p. The first cumulants
are

γ1(ξk) = α1,k = 0, γ2(ξk) = α2
2,k, γ3(ξk) = α3,k, γ4(ξk) = α4,k − 3α2

2,k.

A result of Bikjalis asserts that |γp(ξk)| ≤ (p − 1)!E |ξk|p (cf. [1, 3]). The
cumulants of Sn exist for the same values of p and have an additive structure:

γp(Sn) = dp

ip dtp
logE eitSn

∣
∣
∣
t=0

=
n∑

k=1

γp(ξk).

Hence, they admit a similar upper estimate

|γp(Sn)| ≤ (p − 1)! Lp. (5.2.1)

The Lyapunov coefficients may also be used to bound absolute moments of Sn.
The well-known Rosenthal inequality indicates that E |Sn|p ≤ Cp (1 + Lp) for
p ≥ 2.

We refer an interested reader to [2, 3, 11] for more references and here only
mention a few definitions and basic results.

Definition 5.2.1 Let Ls be finite for an integer s ≥ 3. An Edgeworth approximation
of order s − 1 for the characteristic function fn(t) = E eitSn is given by

gs−1(t) = e−t2/2+e−t2/2
∑ 1

k1! . . . ks−3!
(γ3

3!
)k1

. . .
( γs−1

(s − 1)!
)ks−3

(it)k, t ∈ R.

Here γp = γp(Sn), k = 3k1 + · · · + (s − 1)ks−3, and the summation is performed
over all tuples (k1, . . . , ks−3) of non-negative integers, not all zero, such that k1 +
2k2 + · · · + (s − 3)ks−3 ≤ s − 3.
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The function gs−1 is also called the corrected normal characteristic function
(although it is not a characteristic function in the usual sense). The index s − 1
indicates that the cumulants up to γs−1 participate in the constructions. Note
that the above sum represents a polynomial of degree at most 3(s − 3) in
variable t .

When s = 3, we have g2(t) = e−t2/2 which is the standard normal characteristic
function. The next Edgeworth correction is given by

g3(t) = e−t2/2
(

1 + γ3
(it)3

3!
)
, γ3 =

n∑

k=1

Eξ3
k . (5.2.2)

For s = 5, if γ3 = 0, we have

g4(t) =
(

1 + γ4
(it)4

4!
)

e−t2/2, γ4 =
n∑

k=1

(
Eξ4

k − 3 (Eξ2
k )2

)
. (5.2.3)

We will need the following general statement about the Edgeworth approxima-
tions.

Proposition 5.2.2 Let Ls < ∞ for an integer s ≥ 3. Then in the interval |t | ≤ 1
L3

,

∣
∣fn(t) − gs−1(t)

∣
∣ ≤ CsLs min

{
1, |t |s} e−t2/8. (5.2.4)

When s = 3, (5.2.4) leads to the popular inequality

∣
∣fn(t) − e−t2/2

∣
∣ ≤ CL3 min{1, |t |3} e−t2/8.

By (5.2.1), the cumulants of Sn satisfy |γp| ≤ (p − 1)! Lp ≤ (p − 1)! L
p−2
s−2
s

implying that

∣
∣
∣
(γ3

3!
)k1

. . .
( γs−1

(s − 1)!
)ks−3

∣
∣
∣ ≤ L

k/(s−2)
s

3k1 . . . (s − 1)ks−3
(5.2.5)

with some 1 ≤ k ≤ s −3. Applying this bound in Definition 5.2.1, it readily follows
that

∣
∣gs−1(t) − e−t2/2

∣
∣ ≤ Cs max{|t |3, |t |3(s−3)} e−t2/2 max

{
L

1
s−2
s , L

s−3
s−2
s

}
.

In particular,

∫ ∞

−∞
∣
∣gs−1(t) − e−t2/2

∣
∣ dt ≤ Cs max{1, Ls}.
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Being integrable, the function gs−1 appears as the Fourier–Stieltjes transform of
a certain signed Borel measure μs−1 on the real line with density

ϕs−1(x) = ϕ(x)+ϕ(x)
∑ 1

k1! . . . ks−3!
(γ3

3!
)k1

. . .
( γs−1

(s − 1)!
)ks−3

Hk(x), x ∈ R.

Here, the summation is as before, and Hk are the Chebyshev-Hermite polynomials
of degrees k = 3k1+· · ·+(s−1)ks−3 with leading coefficient 1. By the construction,
gs−1(0) = 1, that is, μs−1 has total mass 1. Moreover, gs−1 and fn have equal
derivatives at zero up to order s − 1, which is equivalent to

E S
p
n =

∫ ∞

−∞
xp dμs−1(x) =

∫ ∞

−∞
xp ϕs−1(x) dx, p = 1, . . . , s − 1.

Using (5.2.5), we can also see that

sup
x

|ϕs−1(x)| ≤ Cs max{1, Ls},
∫ ∞

−∞
|ϕs−1(x)| dx ≤ Cs max{1, Ls}.

(5.2.6)

The associated “distribution” function

�s−1(x) = μs−1
(
(−∞, x]) =

∫ x

−∞
ϕs−1(y) dy, x ∈ R,

has a similar description

�s−1(x) = �(x) − ϕ(x)
∑ 1

k1! . . . ks−3!
(γ3

3!
)k1

. . .
( γs−1

(s − 1)!
)ks−3

Hk−1(x).

This function has bounded total variation and satisfies �s−1(−∞) = 0 and
�s−1(∞) = 1.

The measure μ2 is just the standard Gaussian measure with distribution function
�2 = �. The Edgeworth correction g3 corresponds to the signed measure with
“distribution” function

�3(x) = �(x) − γ3

3! (x2 − 1)ϕ(x). (5.2.7)

If γ3 = 0, the next Edgeworth correction g4 corresponds to the “distribution”
function

�4(x) = �(x) − γ4

4! (x3 − 3x) ϕ(x). (5.2.8)

Since Proposition 5.2.2 quantifies closeness of fn(t) to gs−1(t) on large t-
intervals (when Ls is small), one may hope that, under some additional assumptions,
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the distribution function Fn will be properly approximated by �s−1 in Kolmogorov
distance. This may be achieved by applying Berry–Esseen-type theorems such as
the following:

Proposition 5.2.3 If Ls is finite for an integer s ≥ 3, then

cs ρ(Fn,�s−1) ≤ Ls + 1{Ls≤L3≤1}
∫ 1/Ls

1/L3

|fn(t)|
t

dt. (5.2.9)

Proof A classical theorem due to Esseen asserts the following: Let F be a non-
decreasing bounded function, and G be a differentiable function of bounded
variation such that F(−∞) = G(−∞) = 0. If |G′(x)| ≤ M for all x, then for
any T > 0,

c ρ(F,G) ≤
∫ T

0

∣
∣
∣
f (t) − g(t)

t

∣
∣
∣ dt + M

T
. (5.2.10)

Here,

f (t) =
∫ ∞

−∞
eitx dF (x), g(t) =

∫ ∞

−∞
eitx dG(x)

denote the Fourier–Stieltjes transforms of F and G, respectively.

First, assume that Ls ≤ 1. Necessarily L3 ≤ L
1

s−2
s ≤ 1. Assuming moreover

that Ls ≤ L3, we choose T = 1/Ls and apply the bound (5.2.9) with F = Fn and
G = �s−1, in which case we have |G′(x)| = |ϕs−1(x)| ≤ Cs , by (5.2.6). Then,
applying (5.2.4) in (5.2.10), we get

cs ρ(Fn,�s−1) ≤ Ls +
∫ 1/Ls

1/L3

|fn(t)|
t

dt +
∫ 1/Ls

1/L3

|gs−1(t)|
t

dt. (5.2.11)

To estimate the last integral, one may use the bound (cf. [3], Proposition 17.1)

|gs−1(t)| ≤ CsLs e−t2/8, if |t | max
{
L

1
s−2
s , L

1
3(s−2)
s

}
≥ 1

8
.

Since L3 ≤ L
1

s−2
s , it holds for t ≥ 1/(8L3), and (5.2.11) thus yields (5.2.9).

Now, suppose that L3 ≤ Ls ≤ 1. Then we choose T = 1/L3 in (5.2.10) and
apply (5.2.4) again, which leads to cs ρ(Fn,�s−1) ≤ L3. Finally, if Ls > 1, one
may use the second bound (5.2.6) which immediately implies that

ρ(Fn,�s−1) ≤ ρ(Fn,�) + ρ(�,�s−1) ≤ CsLs.


�
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5.3 Moments and Deviations of Lyapunov Coefficients

Let us return to the scheme of the weighted sums. In the rest of the paper, we assume
that

Sθ = θ1X1 + · · · + θnXn, θ = (θ1, . . . , θn) ∈ Sn−1,

where Xk’s are i.i.d. random variables such that EX1 = 0, EX2
1 = 1, and βs =

E |X1|s < ∞ for an integer s ≥ 3. First, we will be focusing on the application
of Proposition 5.2.3 to the approximation of the distribution functions Fθ of Sθ for
most of θ ’s by the corresponding Edgeworth corrections �s−1 = �s−1,θ , especially
with s = 4 and s = 5.

According to (5.2.9), in order to control the Kolmogorov distance from Fθ to
�s−1,θ , one should estimate the Lyapunov coefficients Ls = Ls(θ); we also need
information about the magnitude of the characteristic functions fθ (t) = E eitSθ on
large t-intervals such as |t | ≤ 1/Ls(θ). Note that the Lyapunov coefficients take the
form

Lp(θ) = βp lp(θ) where lp(θ) =
n∑

k=1

|θk|p (2 ≤ p ≤ s).

On the other hand, according to Definition 5.2.1, the construction of the functions
�s−1,θ is based on the cumulants γp(θ) = γp(Sθ ) for p ≤ s − 1, which are given
in terms of the cumulants γp = γp(X1) of the underlying distribution by

γp(θ) = γp αp(θ), αp(θ) =
n∑

k=1

θ
p
k .

In particular, γ1(θ) = 0, γ2(θ) = 1, and

γ3(θ) = γ3 α3(θ) = α3

n∑

k=1

θ3
k (α3 = EX3

1),

γ4(θ) = γ4 l4(θ) = (
β4 − 3

) n∑

k=1

θ4
k (β4 = EX4

1).

Thus, in order to study the typical behaviour of distances ρ(Fθ ,�s−1,θ ), we have
to explore the distribution of the functionals lp and αp under the measure sn−1 (note
that αp = lp for even p). The behaviour of distributions of lp for large n is mainly
described by their means and variances. Since the distribution of the first coordinate
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θ1 under sn−1 has density

cn(1 − x2)
n−3

2 (|x| ≤ 1), cn = �(n
2 )√

π �(n−1
2 )

,

we get

Eθ |θ1|p = 2cn

∫ 1

0
xp (1 − x2)

n−3
2 dx = �(

p+1
2 ) �(n

2 )√
π �(

p+n
2 )

.

In particular, since Eθ lp(θ) = nEθ |θ1|p, we have

Eθ l2k(θ) = Eθ α2k(θ) = (2k − 1) !!
(n + 2) . . . (n + 2k − 2)

(5.3.1)

for even powers p = 2k, k = 2, 3, . . . Hence,

Eθ l2k < 2kk! n−(k−1) < pp/2 n− p−2
2 .

Here, the resulting bound also holds for p = 2k − 1. Indeed, using the property

that the function p → l
1

p−2
p is non-decreasing in p > 2, we have l2k−1 ≤ l

2k−3
2k−2
2k and

Eθ l2k−1 ≤ (Eθ l2k)
2k−3
2k−2 . Therefore

Eθ |θ1|2k−1 ≤ (
Eθ θ2k

1

) 2k−3
2k−2

< (2kk! n−(k−1))
2k−3
2k−2 = (2kk!) 2k−3

2k−2 n− p−2
2

< (2k − 1)
k(2k−3)

2k−2 n− p−2
2 < (2k − 1)

2k−1
2 n− p−2

2 ,

where we used a simple inequality 2kk! < (2k − 1)k . That is, we have:

Lemma 5.3.1 For all integers p ≥ 3, we have Eθ lp < pp/2 n− p−2
2 .

For the first Lyapunov coefficients, the p-dependent constant can slightly be
improved. For example,

Eθ l3 ≤ Eθ l
1/2
4 ≤ (

Eθ l4
)1/2 =

( 3

n + 2

)1/2
<

2

n1/2 .

Similarly, since l
1/3
5 ≤ l

1/4
6 ,

Eθ l5 ≤ Eθ l
3/4
6 ≤ (

Eθ l6
)3/4 =

( 15

(n + 2)(n + 4)

)3/4
<

8

n3/2 .
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Using (5.3.1) together with a similar formula

E |Z|2k = 2k
�( 2k+n

2 )

�(n
2 )

= n(n + 2) . . . (n + 2k − 2), k = 1, 2, . . . ,

where Z is a standard normal random vector in R
n (needed with k = 4), we also

find that

Varθ (α3) = 15

(n + 2)(n + 4)
<

15

n2
,

Varθ (l4) = 24 (n − 1)

(n + 2)2(n + 4)(n + 6)
<

24

n3
.

This means that the deviations of α3 are of order 1/n, while the deviations of l4
from its mean are of order n−3/2.

With worse numerical constants these bounds can also be obtained by applying
the spherical Poincaré inequality. However, by virtue of the (stronger) logarithmic
Sobolev inequality on the unit sphere with an optimal constant [8, 10], namely

∫
u2 log u2 dsn−1 −

∫
u2 dsn−1 log

∫
u2 dsn−1 ≤ 2

n − 1

∫
|∇u|2 dsn−1,

one can get more information, such as the bound on the growth of moments

‖u − Eθ u‖p ≤
√

p − 1√
n − 1

‖∇u‖p, p ≥ 2. (5.3.2)

Both inequalities hold true for any smooth function u on R
n with gradient ∇u, and

with Lp-norms being understood with respect to the measure sn−1 (cf. e.g. [4],
Theorem 4.1).

Generalizing α3(θ) and l4(θ), now consider the functions

Q3(θ) =
n∑

k=1

akθ
3
k , Q4(θ) =

n∑

k=1

akθ
4
k .

Lemma 5.3.2 Assume that 1
n

∑n
k=1 a2

k = 1 and put ā = 1
n

∑n
k=1 ak . For all r > 0,

sn−1{n |Q3| ≥ r} ≤ 2 exp
{

− 1

23
r2/3

}
,

sn−1

{
n3/2

∣
∣
∣Q4 − 3 ā

n + 2

∣
∣
∣ ≥ r

}
≤ 2 exp

{
− 1

38
r1/2

}
.
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Proof We apply (5.3.2) to the function u = nQ3. Using p−1
n−1 ≤ 2p

n
, by Jensen’s

inequality, for any p ≥ 2,

‖u‖p
p ≤ np

(2p

n

)p/2 ‖∇Q3‖p
p

= np/2 (2p)p/2 3p

∫ ( n∑

k=1

a2
k θ4

k

)p/2
dsn−1(θ)

≤ np (2p)p/2 3p · 1

n

n∑

k=1

a2
k

∫
|θk|2p dsn−1(θ) = np (18 p)p/2

Eθ |θ1|2p.

If p = m is integer, applying the relation (5.3.1), we get

‖u‖m
m ≤ nm (18 m)m/2

Eθ |θ1|2m

≤ (18 m)m/2 (2m − 1)!! ≤ 18m/2 2m m3m/2,

where we used the bound (2m − 1)!! < (2m)m. Thus, ‖u‖m ≤ 6
√

2 m3/2. At
the expense of a larger absolute factor, this inequality can be extended to all real
p ≥ 2 in place of m. Indeed, pick up an integer m such that m ≤ p < m + 1.
Then

‖u‖p ≤ ‖u‖m+1 ≤ 6
√

2 (m + 1)3/2 ≤ 6
√

2 (p + 1)3/2 ≤ 9
√

3 p3/2,

i.e. ‖u‖p
p ≤ (bp)3p/2 with b = (9

√
3)2/3. By Markov’s inequality, choosing p =

1
21/3 b

r2/3 (r > 0), we get

sn−1{|u| ≥ r} ≤ (bp)3p/2

rp
= exp

{
− p

2
log 2

}
,

provided that p ≥ 2. But, in the case 0 < p < 2, the above right-hand side is greater
than 1/2, so that we have

sn−1{|u| ≥ r} ≤ 2 exp
{

− p

2
log 2

}

for all p > 0. It remains to note that p
2 log 2 = log 2

24/3 35/3 r2/3 > 1
23 r2/3 thus proving

the first inequality of the lemma.
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To derive the second one, let us apply (5.3.2) to the function u = n3/2 (Q4− 3 ā
n+2 ).

Similarly, for any p ≥ 2,

‖u‖p
p ≤ n3p/2

(2p

n

)p/2 ‖∇Q4‖p
p

= n3p/2
(2p

n

)p/2
4p

∫ ( n∑

k=1

a2
k θ6

k

)p/2
dsn−1(θ)

≤ n2p
(2p

n

)p/2
4p · 1

n

n∑

k=1

a2
k

∫
|θk|3pdsn−1(θ) = n3p/2 (32 p)p/2

Eθ |θ1|3p.

Let us replace p with 2m assuming that m ≥ 1 is integer. By (5.3.1), we get

‖u‖2m
2m ≤ n3m (64 m)m Eθ |θ1|6m

≤ (64 m)m (6m − 1)!! ≤ (48
√

6 m2)2m.

Hence ‖u‖2m ≤ 48
√

6 m2. To extend this inequality to real p ≥ 2, pick up an
integer m such that 2m ≤ p < 2(m + 1). Then

‖u‖p ≤ ‖u‖2(m+1) ≤ 48
√

6 (m + 1)2 ≤ 48
√

6 p2 = (bp)2p, b = (48
√

6)1/2.

By Markov’s inequality, given r > 0 and choosing p = 1
21/4 b

√
r , we get

sn−1{|u| ≥ r} ≤ (bp)2p

rp
= exp

{
− p

2
log 2

}

provided that p ≥ 2. In the case 0 < p < 2, the right-hand side is greater than 1/2,
so that

sn−1{|u| ≥ r} ≤ 2 exp
{

− p

2
log 2

}

for all p > 0. It remains to note that p
2 log 2 > 1

38 r1/2. 
�
Let us now consider deviations of lp above their means.

Lemma 5.3.3 For all real r ≥ 1 and integer p > 2,

sn−1

{
n

p−2
2 lp ≥ cp r

}
≤ exp

{ − (rn)2/p
}
, (5.3.3)

where one may take c3 = 33, c4 = 121, and cp = (
√

p + 2)p in general.
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Proof If u is a function on Sn−1 with Lipschitz semi-norm ‖u‖Lip ≤ 1 with respect
to the Euclidean distance, then (cf. e.g. [9])

sn−1
{
u ≥ Eθ u + t

} ≤ e−nt2/4, t ≥ 0.

As a partial case, one may consider the �n
p-norms u(θ) = lp(θ)1/p on R

n with
p ≥ 2, for which we thus have that

sn−1
{
l
1/p
p ≥ (Eθ lp)1/p + t

} ≤ e−nt2/4.

Using the bound Eθ lp ≤ Ap n− p−2
2 with Ap = pp/2 as in Lemma 5.3.1, the choice

t = 2r1/p n
− p−2

2p leads to

sn−1

{
n

p−2
2p l

1/p
p ≥ A

1/p
p + 2r

}
≤ exp

{ − (rn)2/p
}
.

Hence, we obtain (3.3.4) with cp = (A
1/p
p + 2)p ≤ (

√
p + 2)p. Using A3 = √

3

and A4 = 3, one may take c3 = (A
1/3
3 + 2)3 < 33 and (A

1/4
4 + 2)4 < 121. 
�

5.4 Upper Bounds on Characteristic Functions

The property that the values of the characteristic functions fθ (t) = E eitSθ are small
in absolute value for most of θ ∈ Sn−1 with large t may be seen from the following:

Lemma 5.4.1 For all t ∈ R,

Eθ |fθ (t)|2 ≤ 5 e−t2/2 + 5 e−n/(12 β4). (5.4.1)

Proof Using an independent copy Y = (Y1 . . . , Yn) of the random vector X =
(X1, . . . , Xn) in R

n, write

|fθ (t)|2 = E eit〈X−Y,θ〉, θ ∈ Sn−1,

and integrate over the sphere, which gives

Eθ |fθ (t)|2 = E Jn(t |X − Y |),

where by Jn(t) = Eθ eitθ1 we denote the characteristic function of the first
coordinate on the sphere under sn−1. One may split the last expectation to the event
|X − Y | ≤ √

n and to the opposite one, which implies

Eθ |fθ (t)|2 ≤ sup
u≥t

√
n

|Jn(u)| + P{|X − Y |2 ≤ n}.
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To proceed, we employ the bound |Jn(u)| ≤ 5 e−u2/2n + 4 e−n/12 derived in [5],
cf. Proposition 3.3. Consequently, since β4 ≥ 1, the inequality (5.4.1) would follow
from

P{|X − Y |2 ≤ n} ≤ e−n/(16 β4) (5.4.2)

But, this bound is a particular case of the following well-known observation:
Given i.i.d. random variables ξk ≥ 0 such that Eξ1 = 1, the sum Un = ξ1 +· · ·+ ξn

satisfies

P{Un ≤ λn} ≤ exp

{

− (1 − λ)2

2Eξ2
1

n

}

, 0 < λ < 1. (5.4.3)

To recall a standard argument, note that

E e−rUn ≥ e−λrn
P{Un ≤ λn}, r ≥ 0. (5.4.4)

The function ψ(r) = E e−rξ1 is positive and admits Taylor’s expansion near zero up
to the quadratic form, which implies that

ψ(r) ≤ 1 − r Eξ1 + r2

2
Eξ2

1 ≤ exp
{

− r Eξ1 + r2

2
Eξ2

1

}
.

Hence

E e−rUn = ψ(r)n ≤ exp
{

− rn + nr2

2
Eξ2

1

}
.

In view of (5.4.4), this bound yields

P{Un ≤ λn} ≤ exp
{

− (1 − λ)nr + nr2

2
Eξ2

1

}
,

and after optimization over r we arrive at (5.4.3).
In the case ξk = 1

2 (Xk − Yk)
2 with i.i.d. Xk such that EX1 = 0, EX2

1 = 1,
EX4

1 = β4, we have

Eξ2
1 = 1

2
Eξ4

1 + 3

2
(Eξ2

1 )2 ≤ 2β4,

and (5.4.3) yields

P{|X − Y |2 ≤ 2λn} ≤ exp

{

− (1 − λ)2

4β4
n

}

.
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To obtain (5.4.2), it remains to put here λ = 1/2. 
�
Let us now turn to the integrals

Is(θ) = 1�s

∫ 1/Ls

1/L3

|fθ (t)|
t

dt, �s = {θ ∈ Sn−1 : Ls ≤ L3 ≤ 1}, (5.4.5)

appearing in the Berry–Esseen-type bound (5.2.9) for the scheme of the weighted

sums with Ls = Ls(θ). Since in general Ls ≥ βs n− s−2
2 , necessarily Is(θ) = 0, if

βs > n
s−2

2 .

Lemma 5.4.2 Given an integer s ≥ 4, we have

cs sn−1
{
Is(θ) ≥ βs n− s−2

2
} ≤ exp

{ − n2/3} + exp
{

− cn

β4

}
. (5.4.6)

In particular,

Eθ Is(θ) ≤ Csβs n− s−2
2 . (5.4.7)

Proof Introduce the sets on the unit sphere �0 = {L3 < 2cbn}, �1 = {L3 ≥ 2cbn},
where bn = β3/

√
n and c = 33. By Lemma 5.3.3 with p = 3,

sn−1(�1) ≤ exp
{ − (2n)2/3}.

Since Ls ≥ n− s−2
2 , while |fθ (t)| ≤ 1, we get, for all θ ∈ Sn−1,

Is(θ) = 1�s

∫ 1/Ls

1/L3

|fθ (t)|
t

dt ≤
∫ n

s−2
2

1

1

t
dt = s − 2

2
log n,

and conclude that

Eθ

[
Is(θ) 1�1

] ≤ s − 2

2
log n sn−1(�1) ≤ s − 2

2
log n exp

{ − (2n)2/3}

≤ Cs exp
{ − n2/3}. (5.4.8)

Given θ ∈ �0 ∩ �s , let us extend the integration in (5.4.5) to the interval [T0, T ]
with endpoints T0 = max{1, (2cbn)

−1} and T = 1
βs

n
s−2

2 , and with the requirement
that T0 ≤ T . Since, by Lemma 5.4.1,

Eθ |fθ (t)| ≤ 3 e−t2/4 + 3 e−n/(32 β4),
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we obtain that

Eθ Is(θ) 1�0 ≤ 3Eθ

∫ T

T0

(
e−t2/4 + e−n/(32 β4)

) dt

t

≤ 6 e−T 2
0 /4 + 3 log

T

T0
e−n/(32 β4)

≤ 6 exp
{

− 1

(4cbn)2

}
+ 3 log

n
s−2

2

βs

e−n/(32 β4). (5.4.9)

Due to the assumption EX2
1 = 1, the function p → β

1/(p−2)
p is non-decreasing in

p, so, β4 ≤ β
2/(s−2)
s and

log
n

s−2
2

βs

e−n/(64 β4) ≤ log
n

s−2
2

βs

exp
{

− 1

64
β

− 2
s−2

s n
}

≤ Cs.

This simplifies (5.4.9) to

cs Eθ Is(θ) 1�0 ≤ exp
{

− n

(4cβ3)2

}
+ e−n/(64 β4) ≤ 2e−c′n/β4 ,

where we used β2
3 ≤ β4. Together with (5.4.8), we thus arrive at

cs Eθ Is(θ) ≤ exp
{ − n2/3} + exp

{
− cn

β4

}
,

which yields (5.4.6)–(5.4.7), by applying Markov’s inequality and using β4 ≤
β

2/(s−2)
s . 
�

5.5 Proof of Theorem 5.1.1

We continue to keep our standard notations in the scheme of the weighted sums

Sθ = θ1X1 + · · · + θnXn, θ = (θ1, . . . , θn) ∈ Sn−1,

with i.i.d. random variables X1, . . . , Xn such that EX1 = 0, EX2
1 = 1, βs =

E |X1|s < ∞ for an integer s ≥ 3. Let us write down the bound of Proposition 5.2.3
for this scheme:

cs ρ(Fθ ,�s−1,θ ) ≤ Ls(θ) + Is(θ).
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Here Ls = Ls(θ) = βsls(θ) = βs

∑n
k=1 |θk|s and

Is(θ) = 1�s

∫ 1/Ls

1/L3

|fθ (t)|
t

dt, �s = {θ ∈ Sn−1 : Ls ≤ L3 ≤ 1}.

As we know from Lemma 5.3.1, EθLs(θ) ≤ csβs n− s−2
2 , which is sharpened in

Lemma 5.3.3 to

sn−1
{
Ls(θ) ≥ csβsr n− s−2

2
} ≤ exp

{ − (rn)2/s
}
, r ≥ 1,

with cs = (
√

s + 2)s . Since Lemma 5.4.2 provides similar bounds for Is(θ), we
obtain:

Theorem 5.5.1 Assuming that βs < ∞, let �s−1,θ be the Edgeworth correction for
Fθ of an integer order s ≥ 4. Then

Eθ ρ(Fθ ,�s−1,θ ) ≤ csβs n− s−2
2 . (5.5.1)

Moreover, for all r ≥ 1,

sn−1

{
ρ(Fθ ,�s−1,θ ) ≥ csr βs n− s−2

2

}
≤ Csεs(n, r), (5.5.2)

where

εs(n, r) = exp
{ − min

(
(rn)2/s, n2/3, cn/β4

)}
.

The upper bound on the right-hand side of (5.5.2) has almost an exponential
decay with respect to n. For example, when s = 4 and with r = 1 in (5.5.2), we get

sn−1

{
ρ(Fθ ,�3,θ ) ≥ Cβ4

n

}
≤ C e−c

√
n, n ≥ β2

4 . (5.5.3)

However, Fθ is still approximated by a function depending on θ . According to
(5.2.7),

�3,θ (x) = �(x) − γ3(θ)

3! (x2 − 1)ϕ(x)

= �(x) − α3

6
(x2 − 1)ϕ(x) α3(θ), α3 = EX3

1, α3(θ) =
n∑

k=1

θ3
k .
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To eliminate the correction term in the case α3 �= 0, note that |x2 − 1| ϕ(x) ≤ 1,
leading to

ρ(�3,θ ,�) ≤ β3 |α3(θ)|.

But, α3(θ) is of order 1/n, as indicated in Lemma 5.3.2. Using (5.5.1)–(5.5.2), this
gives

Eθ ρ(Fθ ,�) ≤ C

n
β4

and

sn−1

{
ρ(Fθ ,�) ≥ Cr

n
β4

}
≤ C exp

{ − c min
(
(rn)1/2, n2/3, n/β4, r

2/3)}

with arbitrary r ≥ 1, which may be assumed to satisfy r ≤ n/(Cβ4). But, in this
case, within a universal factor the quantities (rn)1/2, n2/3 and n/β4 dominate r2/3.
We thus arrive at the Klartag-Sodin theorem for the i.i.d. situation with a slight
improvement of the power of r (which was actually mentioned in [7]). In addition,
one may emphasize a concentration threshold phenomenon as in (5.5.3) for the case
where α3 = 0.

Corollary 5.5.2 If β4 is finite, then for all r ≥ 1,

sn−1

{
ρ(Fθ ,�) ≥ Cr

n
β4

}
≤ C exp

{ − cr2/3}.

Moreover, if α3 = 0 and n ≥ β2
4 , then

sn−1

{
ρ(Fθ ,�) ≥ Cβ4

n

}
≤ C exp

{ − c
√

n}.

On the other hand, if α3 = 0 and β5 is finite, one may turn to the next Edgeworth
correction which is given according to (5.2.8) by

�4,θ (x) = �(x) − γ4(θ)

4! H3(x) ϕ(x)

= �(x) − β4 − 3

24
H3(x) ϕ(x) l4(θ), l4(θ) =

n∑

k=1

θ4
k , (5.5.4)

with H3(x) = x3 − 3x. This approximation also depends on θ , but the correction
term does not have mean zero.
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Proof of Theorem 5.1.1. Using Eθ l4(θ) = 3
n+2 , let us rewrite the above as

�4,θ (x) = G(x) + β4 − 3

4n(n + 2)
H3(x) ϕ(x) − β4 − 3

24
H3(x) ϕ(x)

(
l4(θ) − 3

n + 2

)
,

where

G(x) = �(x) − β4 − 3

8n
H3(x) ϕ(x)

does not contain θ anymore. Since |β4 − 3| ≤ 2β4 and |H3(x)| ϕ(x) ≤ 1, it follows
that

ρ(�4,θ ,G) ≤ β4

2n2
+ β4

12

∣
∣
∣l4(θ) − 3

n + 2

∣
∣
∣, (5.5.5)

which in turn, recalling the bound Varθ (l4) < 24 n−3, yields

Eθ ρ(�4,θ ,G) ≤ 2β4 n−3/2.

But, according to Theorem 5.5.1 with s = 5,

Eθ ρ(Fθ ,�4,θ ) ≤ Cβ5 n−3/2.

These two bounds yield the inequality (5.1.4) of Theorem 5.1.1, by applying the
triangle inequality for the distance ρ.

Moreover, applying Lemma 5.3.2, from (5.5.5) it also follows that

sn−1
{
ρ(�4,θ ,G) ≥ Crβ4 n−3/2} ≤ C exp

{ − cr1/2}, r ≥ 1. (5.5.6)

Combining this with the inequality (5.5.2) and recalling that β4 ≤ β
2/3
5 ≤ β5, we

get

sn−1
{
ρ(Fθ ,G) ≥ Crβ5 n−3/2} ≤ C exp

{ − c min
(
(rn)2/5, n2/3, nβ

−2/3
5 , r1/2)}

with an arbitrary value r ≥ 1. Note that |G(x)| ≤ Cβ4 ≤ Cβ5, so that we may
restrict ourselves to the region

1 ≤ r ≤ n3/2/(Cβ5)

(since otherwise the left probability is zero). But in this case, necessarily β5 ≤
n3/2/C, and both (rn)1/2 and nβ

−2/3
5 dominate r1/2. Hence, the above bound is

simplified to

sn−1
{
ρ(Fθ ,G) ≥ Crβ5 n−3/2} ≤ C exp

{ − c min
(
n2/3, r1/2)}.
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Here, r1/2 is dominated by n2/3 in the region r ≤ n4/3, in which case we arrive at
the desired inequality

sn−1
{
ρ(Fθ ,G) ≥ Crβ5 n−3/2} ≤ C exp

{ − cr1/2}. (5.5.7)

As for larger values of r , the usual Berry–Esseen inequality (5.1.1) with a purely
Gaussian approximation is more accurate. Indeed, together with Lemma 5.3.3 for
p = 3, the bound (5.1.1), which is known to hold with c = 1, gives, for all r ≥ n,

sn−1
{
ρ(Fθ ,�) ≥ Crβ3 n−3/2} ≤ sn−1

{
l3(θ) ≥ Crn−3/2}

≤ exp
{ − r2/3}, (5.5.8)

which sharpens (5.5.7). At the expense of a worse rate, one may replace here �

with �4,θ . From (5.5.4), ρ(�4,θ ,�) ≤ β4 l4(θ). Hence, applying Lemma 5.3.3 with
p = 4 and with r/

√
n in place of r (which is justified as long as Cr ≥ 121

√
n), we

get

sn−1
{
ρ(�4,θ ,�) ≥ Crβ4 n−3/2} ≤ sn−1

{
n l4(θ) ≥ Crn−1/2}

≤ exp
{ − r1/2 n1/4} ≤ exp

{ − r1/2}.

Combining this with (5.5.8), we get

sn−1
{
ρ(Fθ ,�4,θ ) ≥ Crβ4 n−3/2} ≤ 2 exp

{ − r1/2}, r ≥ n.

Finally, by (5.5.6),

sn−1

{
ρ(Fθ ,G) ≥ Crβ4 n−3/2} ≤ (C + 2) exp

{ − cr1/2}.

This means that we have obtained the required bound (5.5.7) for all values r ≥
1. It remains to rescale the parameter r to arrive at the inequality (5.1.5) of
Theorem 5.1.1. 
�

5.6 General Lower Bounds

Let U be a function of bounded variation on the real line with U(−∞) = U(∞) =
0. By analogue with Berry–Esseen-type theorems, a standard approach to the
problem of lower bounds for the L∞-norm ‖U‖ = supx |U(x)| may be based on
the study of the associated Fourier–Stieltjes transform

u(t) =
∫ ∞

−∞
eitx dU(x), t ∈ R.
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For example, we have the following estimate derived in [2], cf. Theorem 19.2.

Lemma 5.6.1 For any T > 0,

‖U‖ ≥ 1

3T

∣
∣
∣
∣

∫ T

0
u(t)

(
1 − t

T

)
dt

∣
∣
∣
∣. (5.6.1)

In the scheme of the weighted sums, introduce the characteristic function f (t) =
Eθfθ (t) of the average distribution function F(x) = Eθ Fθ (x) = Eθ P{Sθ ≤ x}.
Lemma 5.6.1 may be used to derive:

Lemma 5.6.2 Given a function G of bounded variation such that G(−∞) = 0 and
G(∞) = 1, for any T > 0,

Eθ ρ(Fθ ,G) ≥ 1

6
√

2 T
Eθ

∣
∣
∣
∣

∫ T

0
(fθ (t) − f (t))

(
1 − t

T

)
dt

∣
∣
∣
∣. (5.6.2)

Proof Given a complex-valued random variable ξ with finite first absolute moment,
for any complex number b,

E |ξ − b| ≥ 1

2
√

2
E |ξ − Eξ |. (5.6.3)

For the proof of this claim, first note that, by the triangle inequality,

E

√
η2

0 + η2
1 = E |η| ≥ |Eη| =

√
(Eη0)2 + (Eη1)2

for any complex-valued random variable η with η0 = Re(η), η1 = Im(η). Replacing
η0 with |η0| and η1 with |η1|, the above can be formally sharpened to

E

√
η2

0 + η2
1 ≥

√
(E |η0|)2 + (E |η1|)2. (5.6.4)

Now, write ξ = ξ0 + iξ1. Since the inequality (5.6.3) is shift invariant, we may
assume that both ξ0 and ξ1 have median at zero. In that case, for any b = b0 + ib1,
b0, b1 ∈ R,

E |ξ | ≤ E |ξ0| + E |ξ1| ≤ E |ξ − b0| + E |ξ − b1|.

so,

E |ξ − Eξ | ≤ 2E |ξ | ≤ 2E |ξ − b0| + 2E |ξ − b1|.
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Using (5.6.4) with η0 = ξ − b0 and η1 = ξ − b1, this gives

E |ξ − b| ≥
√

(E |ξ − b0|)2 + (E |ξ − b1|)2

≥ 1√
2
E |ξ − b0| + 1√

2
E |ξ − b1| ≥ 1

2
√

2
E |ξ − Eξ |,

and we arrive at (5.6.3).
Finally, denote by g the Fourier–Stieltjes transform of G. We apply (5.6.3) on

the probability space (Sn−1, sn−1) with

ξ =
∫ T

0
fθ (t)

(
1 − t

T

)
dt, b =

∫ T

0
g(t)

(
1 − t

T

)
dt.

In view of (5.6.1) applied to U = Fθ − G, we then get

Eθ ρ(Fθ ,G) = Eθ ‖Fθ − G‖ ≥ 1

3T
Eθ

∣
∣
∣
∣

∫ T

0
(fθ (t) − g(t))

(
1 − t

T

)
dt

∣
∣
∣
∣

≥ 1

6
√

2 T
Eθ

∣
∣
∣
∣

∫ T

0
(fθ (t) − f (t))

(
1 − t

T

)
dt

∣
∣
∣
∣.


�

5.7 Approximation by Mean Characteristic Functions

To apply the lower bound (5.6.2), we need to look once more at the asymptotic
behaviour of characteristic functions fθ (t), at least near zero. To this aim, Proposi-
tion 5.2.2 may still be used. In the scheme of the weighted sums, it gives the next
two assertions for Edgeworth approximations of orders 4 and 5. Put α3 = EX3

1 and
f (t) = Eθfθ (t).

Lemma 5.7.1 If β4 is finite, then for all θ ∈ Sn−1 except for a set on the sphere of
measure at most Cβ3 e−√

n, in the interval |t | ≤ Tn = √
n/(33 β3), we have

fθ (t) − f (t) = α3 α3(θ)
(it)3

3! e−t2/2 + ε (5.7.1)

with

|ε| ≤ Cβ4 n−1 t4 e−t2/8 + Cβ3 exp
{ − √

n
}
.
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Lemma 5.7.2 If β5 is finite and α3 = 0, then for all θ ∈ Sn−1 except for a set of
measure at most Cβ4 exp{−n2/5}, in the interval |t | ≤ Tn, we have

fθ (t) − f (t) = (β4 − 3)
(
l4(θ) − 3

n + 2

) t4

4! e−t2/2 + ε, (5.7.2)

where

|ε| ≤ Cβ5 n−3/2 |t |5 e−t2/8 + Cβ4 exp
{ − n2/5}.

Proof According to Definition 5.2.1 with s = 4 and s = 5, fθ (t) is approximated
by the functions of the form (5.2.2)–(5.2.3), that is, by

g3,θ (t) = e−t2/2
(

1 + γ3(θ)
(it)3

3!
)
, γ3(θ) = α3 α3(θ),

g4,θ (t) = e−t2/2
(

1 + γ4(θ)
t4

4!
)
, γ4(θ) = (β4 − 3) l4(θ),

where we assume that α3 = 0 in the second case. More precisely, if β4 < ∞, then
for any θ ∈ Sn−1, in the interval |t | ≤ 1/L3(θ), we have that

|fθ (t) − g3,θ (t)| ≤ Cβ4 l4(θ) t4 e−t2/8. (5.7.3)

Moreover, if β5 < ∞ and α3 = 0, then in the same interval,

|fθ (t) − g4,θ (t)| ≤ Cβ5 l5(θ) |t |5 e−t2/8. (5.7.4)

Using the results from Sect. 5.3, one can simplify these relations for a majority
of the coefficients. As was already stressed (as a consequence of Lemma 5.3.3 with
p = 3),

L3(θ) ≤ 33
β3√
n

= 1

Tn

for all θ from a set � on the sphere of measure at least 1 − exp{−n2/3}. Therefore,
the bounds (5.7.3)–(5.7.4) are fulfilled for all |t | ≤ Tn and for all θ ∈ �.

Moreover, by Lemma 5.3.3,

sn−1
{
l4(θ) ≥ Cn−1} ≤ exp

{ − √
n
}
.

Therefore, (5.7.3) leads to a simpler version

∣
∣fθ (t) − gθ,3(t)

∣
∣ ≤ Cβ4 n−1 t4 e−t2/8, |t | ≤ Tn, (5.7.5)
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which holds for all θ except for a set F on the sphere of measure at most
2 exp{−√

n}.
Clearly, one may replace fθ and g3,θ in (5.7.5) by their mean values f (t) =

Eθ fθ (t) and g(t) = Eθ g3,θ (t) = e−t2/2 at the expense of an error not exceeding

sn−1(F) sup
t

|fθ (t) − g3,θ (t)| ≤ Cβ3 exp
{ − √

n
}
.

Averaging over θ in (5.7.5), it thus yields in the same interval

∣
∣f (t) − g(t)

∣
∣ ≤ Cβ4 n−1 t4 e−t2/8 + Cβ3 exp

{ − √
n
}
. (5.7.6)

Finally, combining the latter with (5.7.5), one may bound the expression

(fθ (t) − g3,θ (t)) − (f (t) − g(t)) = (fθ (t) − f (t)) − α3 α3(θ)
(it)3

3! e−t2/2

by the same quantity as on the right-hand side of (5.7.6). This proves Lemma 5.7.1.
Now, turning to (5.7.4), we apply Lemma 5.3.3 with p = 5, when it gives

sn−1
{
l5(θ) ≥ Cn−3/2} ≤ exp

{ − n2/5}.

Hence, we get a simpler version

∣
∣fθ (t) − g4,θ (t)

∣
∣ ≤ Cβ5 n−3/2 |t |5 e−t2/8, |t | ≤ Tn, (5.7.7)

which holds for all θ except for a set F on the sphere of measure at most
2 exp{−n2/5}. Again, at the expense of an error not exceeding

sn−1(F) sup
t

|fθ (t) − g4,θ (t)| ≤ Cβ4 exp
{ − n2/5},

one may replace fθ and g4,θ in (5.7.7) by their mean values f (t) and g(t), where
now

g(t) = Eθ gθ (t) = e−t2/2
(

1 + α

n + 2
t4

)
, α = β4 − 3

8
.

Averaging over θ in (5.7.7), it thus yields

∣
∣f (t) − g(t)

∣
∣ ≤ Cβ5 n−3/2 |t |5 e−t2/8 + Cβ4 exp

{ − n2/5}. (5.7.8)

Finally, combining the latter with (5.7.5), one may bound the expression

(fθ (t)−g4,θ (t))−(f (t)−g(t)) = (fθ (t)−f (t))−(β4−3)
(
l4(θ)− 3

n + 2

) t4

4! e−t2/2
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by the same quantity as on the right-hand side of (5.7.8). This proves Lemma 5.7.2.

�

5.8 Proof of Theorem 5.1.2

First, let us apply Lemma 5.6.2 by virtue of the representation (5.7.1) from
Lemma 5.7.1, which holds for all θ in F ⊂ Sn−1 of measure at least 1 −
Cβ3 exp{−n1/2} in the interval |t | ≤ √

n/(33 β3). Given 0 < T ≤ 1, we have

∫ T

0
t3 e−t2/2

(
1 − t

T

)
dt ≥ 1

4

∫ T/2

0
t3 dt = 1

256
T 4.

On the other hand,

∫ T

0
t4 e−t2/8

(
1 − t

T

)
dt ≤ 1

5
T 5.

Therefore, for all θ ∈ F and n ≥ (33 β3)
2,

∣
∣
∣
∣

∫ T

0
(fθ (t) − f (t))

(
1 − t

T

)
dt

∣
∣
∣
∣ ≥ c |α3| |α3(θ)| T 4

− C

n
β4T

5 − Cβ3 exp
{ − n1/2} T .

Integrating this inequality over the set F and using

Eθ |α3(θ)| 1F ≥ c

n
,

we arrive at

1

T
Eθ

∣
∣
∣
∣

∫ T

0
(fθ (t) − f (t))

(
1 − t

T

)
dt

∣
∣
∣
∣ ≥ T 3

n

(
c |α3|−Cβ4T

)−Cβ4 exp
{−n1/2}.

Choosing an appropriate value of T ∼ |α3|/β4 and applying Lemma 5.6.2, we get

Eθ ρ(Fθ ,G) ≥ c
|α3|4
β3

4 n
− Cβ4 exp

{ − n1/2}

with an arbitrary function G of bounded variation such that G(−∞) = 0, G(∞) =
1. The latter immediately yields the required relation (5.1.6) for the range n ≥ n0
with constant c = c0 |α3|4/β3

4 and for a sufficiently large n0 depending α3 and β4.
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To involve the remaining values 2 ≤ n < n0, let us to note that the infimum in
(5.1.6) is positive. Indeed, assuming the opposite for a fixed n, there would exist
G ∈ G such that Eθ ρ(Fθ ,G) = 0 and hence Fθ(x) = G(x) for all θ ∈ Sn−1

and all points x. In particular, all the weighted sums Sθ would be equidistributed.
But this is only possible when all the random variables Xk have a standard normal
distribution, according to the Pólya characterization theorem [12], cf. also [6]. And
this contradicts to the assumption α3 �= 0.

The second assertion, where α3 = 0, but β4 �= 0, is similar. We now apply
Lemma 5.6.2 by virtue of the representation (5.7.2) of Lemma 5.7.2, which holds
for all θ in a set F ⊂ Sn−1 of measure at least 1 − Cβ4 exp{−n2/5} in the same
interval |t | ≤ √

n/(33 β3). Given 0 < T ≤ 1, we have

∫ T

0
t4 e−t2/2

(
1 − t

T

)
dt ≥ 1

4

∫ T/2

0
t4 dt = 1

640
T 5.

On the other hand,

∫ T

0
t5 e−t2/8

(
1 − t

T

)
dt ≤ 1

6
T 6.

Therefore, for all θ ∈ F and n ≥ (33 β3)
2,

∣
∣
∣
∣

∫ T

0
(fθ (t) − f (t))

(
1 − t

T

)
dt

∣
∣
∣
∣ ≥ c

∣
∣β4 − 3

∣
∣
∣
∣
∣l4(θ) − 3

n + 2

∣
∣
∣ T 5

− C

n3/2 β5 T 6 − Cβ4 exp
{ − n2/5}.

Integrating this inequality over the set F and using

Eθ

∣
∣
∣
∣l4(θ) − 3

n + 2

∣
∣
∣
∣ 1F ≥ c

n3/2
,

we arrive at

1

T
Eθ

∣
∣
∣
∣

∫ T

0
(fθ (t) − f (t))

(
1 − t

T

)
dt

∣
∣
∣
∣ ≥ T 4

n3/2

(
c
∣
∣β4 − 3

∣
∣ − Cβ5 T

)

− Cβ5 exp
{ − n2/5}.

Choosing an appropriate value of T ∼ |β4 − 3|/β5 and applying Lemma 5.6.2, we
get

Eθ ρ(Fθ ,G) ≥ c
|β4 − 3|5

β4
5 n

− Cβ5 exp
{ − n2/5}.
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The latter yields the required relation (5.1.7) for the range n ≥ n0 with constant

c = c0 |β4 − 3|5/β4
5

and with a sufficiently large n0 depending β4 and β5. A similar argument as before
allows us to involve the remaining values 2 ≤ n < n0 as well. 
�
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