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Necessary and sufficient conditions for the validity of the central limit theorem for den-

sities are considered with respect to the norms in Orlicz spaces. The obtained charac-

terization unites several results due to Gnedenko and Kolmogorov (uniform local limit

theorem), Prokhorov (convergence in total variation) and Barron (entropic central limit

theorem). Bibliography: 10 titles.
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1 Introduction

Let (Xn)n�1 be independent copies of a random vector X in R
d with mean zero and an identity

covariance matrix. By the central limit theorem, the normalized sums

Zn =
1√
n
(X1 + · · ·+Xn) (1.1)

are weakly convergent to the standard Gaussian measure γ on R
d with density

ϕ(x) =
1

(2π)d/2
e−|x|2/2, x ∈ R

d.

Suppose that Zn has an absolutely continuous distribution for some n = n0, so that all (Zn)n�n0

have densities pn. The weak convergence then means that

∫

Rd

(pn(x)− ϕ(x))u(x) dx → 0, n → ∞,

for any bounded continuous function u on R
d. Local limit theorems deal with convergence of pn

to ϕ in a stronger sense. In particular, employing an approach by Prokhorov, it was proved by
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Ranga Rao and Varadarajan that

pn(x) → ϕ(x), n → ∞, (1.2)

for almost all points x ∈ R
d (in the sense of the Lebesgue measure, cf. [1]). What is also natural,

one can consider the convergence of densities in Orlicz spaces.

Given a Young function Ψ : R → [0,∞), i.e., an even, convex function such that Ψ(0) = 0,

Ψ(t) > 0 for t > 0, the Orlicz norm of a measurable function u on R
d is defined by

‖u‖ = ‖u‖Ψ = inf

{
λ > 0 :

∫

Rd

Ψ(u(x)/λ) dx � 1

}
.

The associated Orlicz space LΨ = LΨ(R,dx) contains all u with ‖u‖Ψ < ∞. For example,

the choice Ψ(t) = |t|α (α � 1) leads to the usual Lα-norm ‖u‖α. Let us include in this family

the L∞-norm ‖u‖∞ = ess supx |u(x)| as a (limit) Orlicz norm. Being specialized to probability

densities, the convergence in any Orlicz norm occupies an intermediate position between the

convergence in L∞-norm (which is the strongest one) and the convergence in L1-norm (the

weakest one). Here, we prove the following characterization.

Theorem 1.1. Suppose that Zn have densities pn for large enough n. For a given Orlicz

norm we have ‖pn − ϕ‖ → 0 as n → ∞ if and only if ‖pn‖ < ∞ for some n = n0.

For a large class of Orlicz norms this statement can be given in a slightly different form.

Recall that the Young function Ψ is said to satisfy the Δ2-condition, if Ψ(2t) � cΨ(t) with some

constant c > 0 independent of t � 0.

Corollary 1.1. Suppose that Zn have densities pn for large enough n, and let the Young

function Ψ satisfy the Δ2-condition. Then∫
Ψ
(
pn(x)− ϕ(x)

)
dx → 0, n → ∞,

if and only if ∫
Ψ(pn(x)) dx < ∞ for some n = n0.

In the case of the L∞-norm, Theorem 1.1 is essentially due to Gnedenko and Kolmogorov.

Originally, sufficient conditions for the uniform local limit theorem

sup
x

|pn(x)− ϕ(x)| → 0, n → ∞, (1.3)

were stated in [2] for the dimension d = 1 in the following way. It was assumed that, for some

n, pn belongs to Lα, 1 < α � 2, and satisfies an integrable Lipschitz condition (which was later

removed in [3]). Here, the first assumption can formally be weakened to ‖pn‖∞ < ∞ (for some

n), which is not only sufficient, but is also necessary for (1.3) to hold, cf. Petrov [4]. But, once

pn is bounded, we have ‖pn‖α < ∞ for all α > 1. Hence the Gnedenko–Kolmogorov condition is

necessary as well and can be formulated with arbitrary α > 1. Bhattacharya and Ranga Rao [5]

gave another description in terms of the characteristic function f(t) = E ei〈t,X〉. Namely, (1.3)

is equivalent to the so-called smoothing condition∫

Rd

|f(t)|ν dt < ∞ for some ν � 1. (1.4)
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Let us also add that the property (1.4) implies not only boundedness, but also continuity of the

densities pn for sufficiently large n.

In the case of the Lα-norm (α > 1) in Theorem 1.1, the requirement that ‖pn‖α < ∞ for

some n returns us to the setting of the Gnedenko–Kolmogorov theorem and is therefore reduced

to the smoothing condition, i.e., the assertion ‖pn−ϕ‖α → 0 does not depend on α in the range

1 < α � ∞ and is equivalent to (1.3)–(1.4).

In the case of the L1-norm, Theorem 1.1 is due to Prokhorov [6]. It can be stated in terms

of the total variation distance between the distribution μn of Zn and the Gaussian measure γ

as the assertion

‖μn − γ‖TV = ‖pn − ϕ‖1 → 0, n → ∞.

Thus, it holds without any condition as long as the densities pn exist. This variant of the local

limit theorem can also be viewed as a direct consequence from (1.2). By the well-known Scheffé

lemma, the pointwise convergence of probability densities (holding almost everywhere) implies

the convergence in L1-norm.

These particular cases show that the property ‖pn − ϕ‖ → 0 can involve a larger class of

underlying probability distributions in comparison with the class described in (1.4), only when

the norm ‖ · ‖ is weaker than all Lα-norms (α > 1). In order to turn to an interesting example,

let us remind the notion of the Kullback–Leibler distance

D(μ||ν) = D(p||q) =
∫

Ω

p log(p/q) dλ,

also called the relative entropy or an information divergence. (Note that it is not a metric in

the usual sense.) This quantity is well-defined in the setting of an abstract measurable space

Ω for arbitrary probability measures ν and μ with densities p and q over a dominating σ-finite

measure λ, assuming that μ is absolutely continuous with respect to ν (the definition does not

depend on the choice of λ). In general, 0 � D(μ||ν) � ∞, and D(μ||ν) = 0 if and only if μ = ν.

This separation property can be quantified by means of the Pinsker type inequality

D(μ||ν) � 1

2
‖μ− ν‖2TV =

1

2

( ∫

Ω

|p− q| dλ
)2

(cf., for example, [7] and the references therein). Returning to the normalized sums Zn as in

(1.1) with densities pn on Ω = R
d with respect to the Lebesgue measure λ, the Kullback–Leibler

distance

D(μn||γ) = D(pn||ϕ) =
∫

Rd

pn log(pn/ϕ) dx

thus dominates the L1-distance, and we have the Pinsker inequality D(pn||ϕ) � 1
2 ‖pn − ϕ‖21.

A corresponding description of the entropic central limit theorem was obtained by Barron [8]

(originally, in dimension one), and we give it below (cf. also [9, 10]).

Theorem 1.2. Suppose that Zn have densities pn for large enough n. Then D(pn||ϕ) → 0

as n → ∞ if and only if D(pn||ϕ) < ∞ for some n.

Here, the last property can be stated as the finiteness of the differential entropy

h(pn) = −
∫

Rd

pn(x) log pn(x) dx
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(which does not exceed h(ϕ) due to the second moment assumption, but in general can take the

value −∞). This is also equivalent to

∫

Rd

pn(x) log(1 + pn(x)) dx < ∞. (1.5)

As the next step, we show that the Barron theorem can be included in Theorem 1.1 as a

particular case, by applying the next characterization of the convergence in D to the standard

normal law. Introduce the Young function

ψ(t) = |t| log(1 + |t|), t ∈ R.

It is clear that it satisfies the Δ2-condition.

Theorem 1.3. For a given sequence (pn)n�1 of probability densities on R
d the convergence

D(pn||ϕ) → 0 as n → ∞ is equivalent to the following two conditions:

(a)

∫

Rd

|x|2 pn(x) dx → d,

(b) ‖pn − ϕ‖ψ → 0 as n → ∞.

Here, the last condition can be replaced with

∫

Rd

|pn − ϕ| log(1 + |pn − ϕ|) dx → 0. (1.6)

In the setting of Theorem 1.1, the integral in a) is just E |Zn|2 = d due to the basic assumption

on the covariance matrix of the random vector X. Hence condition (a) is fulfilled. Thus, the

convergence in D implies the convergence in the Orlicz norm ‖·‖ψ, which can also be formulated

as (1.6). In turn, (b) yields ‖pn‖ψ � λ for all sufficiently large n with some constant λ, implying

that (1.5) is fulfilled. Hence D(pn||ϕ) < ∞ as well, and we see that Theorem 1.2 is a consequence

of Theorem 1.1.

The paper is organized as follows. For simplicity (mostly of notations), in the proof of

Theorem 1.1 we will assume that the random vector X has an absolutely continuous distribution,

so that n0 = 1 (minor modifications should be done in order to involve the general case n0 � 1

(cf., for example, [10])). As a preliminary step, first we recall a general scheme of decomposition

of convolutions into the major and small parts (Section 2), and then a uniform local limit

theorem is proved for the major part (Section 3). The material of these two sections is not

new, and we include it here to make the proof to be self-contained. Final steps in the proof of

Theorem 1.1 are made in Section 4. Before turning to the proof of Theorem 1.3, in Sections

5-6 we consider preliminary general bounds on the distance D(p||ϕ), which relate them to the

Orlicz norm, as well as to the mean and the covariance matrix associated to a given density p.

In the last Section 7, we discuss topological properties of the convergence in relative entropy

and prove Theorem 1.3.
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2 Decomposition of Densities

Assume that a random vector X has an absolutely continuous distribution with density w.

Here, we describe a general ‘scheme of decomposition of the convolution powers wn = w∗n into

the two parts, one of which is a bounded density approximating wn in a sufficiently sharp way,

while the other one is small and can be controlled in terms of the Orlicz norm of w. This approach

to local limit theorems goes back to the work by Prokhorov [6]. Let us write M(q) = ‖q‖∞.

For 0 < δ1 � 1
4 one can decompose Rd into two measurable sets of the form Ω0 ⊂ {w(x) � M}

and Ω1 ⊂ {w(x) � M} such that

∫

Ω0

w(x) dx = δ0 ≡ 1− δ1,

∫

Ω1

w(x) dx = δ1.

As a result, we obtain the decomposition

w(x) = δ0w0(x) + δ1w1(x),

in which w0 and w1 are defined as the normalized restrictions of w to the sets Ω0 and Ω1

respectively. By construction, M(w0) � M/δ0 � 2M . Hence, putting ql = w∗l
0 ∗ w

∗(n−l)
1 ,

l = 0, 1, . . . , n, we get the representation

w∗n =
n∑

l=0

C l
n δ

l
0 δ

n−l
1 ql,

where C l
n = n!

l!(n−l)! are usual binomial coefficients. Assuming that n � 2 and removing from

this representation the first two terms, define

w̃n =
1

1− κn

n∑
l=2

C l
n δ

l
0 δ

n−l
1 ql, κn = δn1 + nδ0δ

n−1
1 , (2.1)

where the normalizing constant is chosen to meet the requirement
∫

w̃n(x) dx = 1.

Definition 2.1. Let us call w̃n a canonical approximation for wn with weight δ0.

Lemma 2.1. For n � 2 the probability density w̃n is bounded, continuous, and satisfies
∫

Rd

|w̃n(x)− w∗n(x)| dx <
1

2n−1
. (2.2)

Moreover, the Fourier transform hn of w̃n is an integrable function satisfying
∫

|t|�r

|hn(t)| d t < Acn (2.3)

for any r > 0 with some constants A > 0 and 0 < c < 1 which do not dependent on n (here, the

constant c can depend on r).
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Proof. By Definition 2.1,

κn = δn−1
1 (1 + nδ0δ1) � 4−(n−1)

(
1 +

n

4

)
< 2−n.

Therefore, ∫

Rd

|w̃n(x)− w∗n(x)| dx � 2κn < 2−(n−1),

proving the inequality (2.2).

Now, let

ŵj(t) =

∫

Rd

ei,xwj(x) dx, t ∈ R
d (j = 0, 1)

denote the Fourier transforms of the densities w0 and w1. By the Riemann-Lebesgue lemma,

ŵ0(t) → 0 as |t| → ∞. In addition, |ŵ0(t)| < 1 for all t 
= 0 (since otherwise, the distribution

with density w0 must be discrete; cf. [5]). Hence for any fixed r > 0

β = sup
|t|�r

|ŵ0(t)| < 1.

Applying the Plancherel theorem, for any integer l � 2 we get

∫

|t|�r

|ŵ0(t)|l d t � βl−2

∫

Rd

|ŵ0(t)|2 d t = (2π)dβl−2

∫

Rd

w0(x)
2 dx

� (2π)dβl−2M(w0) � 2 (2π)dβl−2M.

Hence the Fourier transform q̂l of the density ql = w∗l
0 ∗ w∗(n−l)

1 admits a similar bound

∫

|t|�r

|q̂l(t)| d t �
∫

|t|�r

|ŵ0(t)|l d t � Acl, l = 2, . . . , n,

with some constants A > 0 and 0 < c < 1 which do not depend on l. Since, by Definition 2.1,

hn(t) =
1

1− κn

n∑
l=2

C l
n δ

l
0 δ

n−l
1 q̂l(t),

we conclude that

∫

|t|�r

|ĥn(t)| d t � A

1− κn

n∑
l=2

C l
n (cδ0)

l δn−l
1 <

A

1− κn
(1− (1− c) δ0)

n.

It remains to recall that κ < 1/4, and then we arrive at (2.3). The latter inequality also

guarantees that ŵn are bounded and continuous, according to the inverse Fourier formula.
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3 Central Limit Theorem for Approximating Densities

Let X1, X2, ... be independent copies of a random vector X in R
d with mean zero, an identity

covariance matrix, and with density w. Denote by pn the densities of the normalized sums

Zn =
Sn√
n
, Sn = X1 + · · ·+Xn,

which are thus described by

pn(x) = nd/2w∗n(n1/2x), x ∈ R
d. (3.1)

As we know from Definition 2.1 and Lemma 2.1, w∗n are well approximated by the functions

w̃n which can be constructed and used with an arbitrary parameter δ1 ∈ (0, 1/4]. Hence as a

canonical approximation for pn, one can use

p̃n(x) = nd/2 w̃n(n
1/2x). (3.2)

Let us reformulate Lemma 2.1 in terms of the rescaled densities.

Lemma 3.1. For n � 2 the probability density p̃n is bounded, continuous, and satisfies

∫

Rd

|p̃n(x)− pn(x)| dx <
1

2n−1
. (3.3)

Moreover, the Fourier transform f̃n of p̃n is an integrable function satisfying

∫

|t|�r
√
n

|f̃n(t)| d t < Acn (3.4)

for any r > 0 with some constants A > 0 and 0 < c < 1 which do not dependent on n (the

constant c can depend on r).

We can now prove the uniform local limit theorem for the approximating densities p̃n.

Lemma 3.2. As n → ∞, we have

sup
x

|p̃n(x)− ϕ(x)| → 0. (3.5)

Proof. Using the inversion formula, for all x ∈ R
d we have the representation

p̃n(x)− ϕ(x) = (2π)−d

∫

Rd

e−i〈t,x〉 (f̃n(t)− g(t)) d t,

where g(t) = e−|t|2/2 is the Fourier transform of the standard normal density ϕ. Applying (3.4)

with a certain number r > 0 which will be specified later on, we therefore obtain

‖p̃n − ϕ‖∞ � Acn + (2π)−d

∫

|t|�r
√
n

|f̃n(t)− g(t)| d t (3.6)
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with some constants A > 0 and 0 < c < 1 which do not dependent on n.

Now, the distribution μn of Zn has characteristic function

fn(t) = E eit〈t,Zn〉 = f
( t√

n

)n
, t ∈ R

d,

where f is the characteristic function of X. Applying the property (3.3), we get

sup
t

|f̃n(t)− fn(t)| < 1

2n−1
.

This means that one can replace f̃n with fn in (3.6) by increasing the constants, so that

‖p̃n − ϕ‖∞ � Acn + (2π)−d

∫

|t|�r
√
n

|fn(t)− g(t)| d t (3.7)

with some A > 0 and c ∈ (0, 1) independent of n.

Here, the region of integration can further be decreased using the property that fn(t) is

small for large |t|. Indeed, since the random vector X has mean zero and an identity covariance

matrix, the characteristic function f admits a Taylor expansion up to the quadratic term in the

form of Peano as

f(t) = 1− 1

2
|t|2 + o(|t|2), t → 0.

Hence there exists 0 < r0 < 1 such that

|f(t)| � 1− 1

4
|t|2

in the ball |t| � r0. This gives

|fn(t)| �
(
1− 1

4n
|t|2

)n
� e−|t|2/4, |t| � r0

√
n.

It follows that for any T > 0

∫

T�|t|�r0
√
n

|fn(t)| d t �
∫

T�|t|�r0
√
n

e−|t|2/4 d t � dωd

∞∫

T

zd−1 e−z2/4 d z � B e−T 2/8

with some constant B which does not depend on n and T (where ωd denotes the volume of the

unit ball in R
d). Using a similar bound∫

|t|�T

|g(t)| d t � B e−T 2/8

and putting r = r0, from (3.7) we get

‖p̃n − ϕ‖∞ � Acn + 2B e−T 2/8 + (2π)−d

∫

|t|�T

|fn(t)− g(t)| d t. (3.8)

Finally, by the weak central limit theorem, fn(t) → g(t) for any t ∈ R
d, and moreover, this

convergence is uniform on every ball |t| � T . One can therefore choose a sequence Tn ↑ ∞ such

that ∫

|t|�Tn

|fn(t)− g(t)| d t → 0, n → ∞.

It remains to apply (3.8) with T = Tn, which leads to (3.5).
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4 Proof of Theorem 1.1

The proof of Theorem 1.1 is only needed in one direction. As was mentioned, we assume

that the random vector X has an absolutely continuous distribution with density, say w. If the

Orlicz norm ‖ · ‖ is generated by the Young function Ψ, without loss of generality we can also

assume that Ψ(1) = 1. With this convention, let us start with general remarks.

Lemma 4.1. For any measurable function u on R
d

‖u‖ � max
{‖u‖1, ‖u‖∞}

. (4.1)

Proof. If ‖u‖ = ‖u‖∞, (4.1) is immediate. Otherwise, let the norm be generated by the

Young function Ψ such that Ψ(1) = 1. In view of the homogeneity of the inequality (4.1), we

can assume that its right-hand side does not exceed 1, so that ‖u‖1 � 1 and ‖u‖∞ � 1. In this

case, by the convexity of Ψ, we have Ψ(t) � |t| whenever −1 � t � 1. Hence
∫

Rd

Ψ(u(x)) dx �
∫

Rd

|u(x)| dx � 1,

which means that ‖u‖Ψ � 1.

The next elementary relation immediately follows from the definition of the Orlicz norm.

Lemma 4.2. For any measurable function u on R
d and λ � 1

‖u(λx)‖ � ‖u(x)‖.

Lemma 4.3. For all nonnegative measurable functions u1, . . . , uN on R
d (N � 2)

‖u1 ∗ u2 ∗ · · · ∗ uN‖ � ‖u1‖ ‖u2‖1 . . . ‖uN‖1. (4.2)

Proof. One can argue by induction on N , and then it is sufficient to consider the case

N = 2. If ‖ · ‖ = ‖ · ‖∞, the inequality (4.2) is obvious. If ‖ · ‖ = ‖ · ‖Ψ, one can assume, by the

homogeneity, that ‖u1‖Ψ = 1 and ‖u2‖1 = 1. By the Jensen inequality,

Ψ((u1 ∗ u2)(x)) = Ψ

( ∫
u1(x− y)u2(y) d y

)
�

∫
Ψ(u1(x− y))u2(y) d y,

so ∫
Ψ((u1 ∗ u2)(x)) dx �

∫∫
Ψ(u1(x− y))u2(y) d y dx = 1.

The lemma is proved.

Proof of Theorem 1.1. Let n � 2. We use the approximating functions p̃n for the densi-

ties pn of Zn, described in (3.1), (3.2). By Lemma 3.2, ‖p̃n−ϕ‖∞ → 0 as n → ∞, which implies

‖p̃n − ϕ‖1 → 0, by the Scheffé lemma (since all p̃n are probability densities). Applying Lemma

4.1, we can conclude that ‖p̃n − ϕ‖ → 0 as well.

In view of the triangle inequality in the Orlicz space, it remains to show that ‖p̃n− pn‖ → 0.

From (3.1) and (3.2) it follows that

‖p̃n − pn‖ � nd/2
∥∥w̃n(n

1/2x)− w∗n(n1/2x)
∥∥.
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To simplify, one can apply Lemma 4.2, which gives

‖p̃n − pn‖ � nd/2 ‖w̃n − w∗n‖. (4.3)

Now, we need to return to Definition 2.1, which by the triangle inequality, yields

(1− κn) ‖w̃n‖ �
n∑

l=2

C l
n δ

l
0 δ

n−l
1 ‖ql‖. (4.4)

Let us recall that ql = w∗l
0 ∗ w∗(n−l)

1 , so that, by Lemma 4.3, ‖ql‖ � ‖w0‖. Hence from (4.4) it

follows that

(1− κn) ‖w̃n‖ � ‖w0‖
and thus

‖w̃n − (1− κn) w̃n‖ = κn ‖w̃n‖ � κn

1− κ
‖w0‖ <

1

2n−1
‖w0‖,

where we used κn < 2−n on the last step. Applying the latter estimate in (4.3), we get

‖p̃n − pn‖ � nd/2 ‖(1− κn) w̃n − w∗n‖+ nd/2

2n−1
‖w0‖. (4.5)

But, according to Definition 2.1,

w∗n − (1− κn) w̃n = δn1 q0 + n δ0δ
n−1
1 q1 = δn1w

∗n
1 + n δ0δ

n−1
1 w0 ∗ w∗ (n−1)

1 .

Again by Lemma 4.3, the norm of this expression does not exceed

δn1 ‖w1‖+ n δ0δ
n−1
1 ‖w1‖ < 2−n ‖w1‖.

Inserting this in (4.5), we arrive at

‖p̃n − pn‖ � nd/2 2−n
(‖w1‖+ 2 ‖w0‖

)
.

The last expression tends to zero exponentially fast as n → 0, once we see that w0 and w1 have

finite norms. But this follows from the decomposition w = δ0w0+δ1w1 and the main hypothesis

that ‖w‖ < ∞.

Remark 4.1. Let us comment on the case where the Orlicz norm ‖ · ‖ = ‖ · ‖Ψ corresponds

to the Young function satisfying the Δ2-condition Ψ(2t) � cΨ(t). This property can also be

written as

Ψ(λt) � cλΨ(t), t ∈ R, (4.6)

where λ > 1 is an arbitrary fixed number and the constant cλ depends on λ only. It ensures

that for any measurable function u on R
d we have ‖u‖Ψ < ∞ if and only if

∫
Ψ(u(x)) dx < ∞.

Indeed, by convexity, Ψ(αt) � αΨ(t) for all α ∈ [0, 1]. Hence, in one direction, if

λ =

∫
Ψ(u(x)) dx
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is finite, λ > 1, then ∫
Ψ(u(x)/λ) dx � 1

λ

∫
Ψ(u(x)) dx = 1,

which means ‖u‖Ψ � λ. In the case λ � 1, necessarily ‖u‖Ψ � 1 by the definition of the Orlicz

norm. Thus, ‖u‖Ψ � max(λ, 1) < ∞. In the other direction, if λ = ‖u‖Ψ < ∞, then

∫
Ψ(u(x)) dx =

∫
Ψ(λu(x)/λ) dx � cλ

∫
Ψ(u(x)/λ) dx = cλ < ∞

in view of (4.6).

By similar arguments, given a sequence of measurable functions (un)n�1 on R
d, we have

‖un‖Ψ → 0 if and only if ∫
Ψ(un(x)) dx → 0, n → 0.

This explains why Corollary 1.1 follows from Theorem 1.1.

Remark 4.2. The Δ2-condition implies in particular that Ψ(t) = O(tα) as t → ∞ with

some α � 1. A necessary and sufficient condition for the property (4.6) to hold is that

sup
t�t0

tΨ′(t+)

Ψ(t)
� C

for some t0 > 0 and C < ∞, where Ψ′(t+) denotes the right derivative of the function Ψ at the

point t.

5 Two-Sided Estimates on Relative Entropy

Before turning to the proof of Theorem 1.3, let us first derive one general two-sided bound

on the relative entropy

D(p||q) =
∫

Ω

p log(p/q) dλ, (5.1)

which might be of independent interest. Here, p and q are probability densities on the abstract

measure space (Ω, λ). We will assume that the probability measure dμ = p dλ is absolutely

continuous with respect to d ν = q dλ, i.e., q(x) = 0 ⇒ p(x) = 0 for λ-almost all x ∈ Ω.

Theorem 5.1. With some absolute constants c1 > c0 > 0, we have

∫

Ω

|p− q| log
(
1 + c0

|p− q|
q

)
dλ � D(p||q) �

∫

Ω

|p− q| log
(
1 + c1

|p− q|
q

)
dλ. (5.2)

The optimal values are c0 = 1/e and c1 = e− 1.

The point of (5.2) is that, in contrast with the integrand in (5.1), the integrands in (5.2) are

nonnegative. The integration in (5.2) may be restricted to the set {x ∈ Ω : q(x) > 0}.

Proof of Theorem 5.1. Consider the function

H(u) = (1 + u) log(1 + u)− u, u � −1,
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so that

D(p||q) =
∫

Ω

p

q
log

p

q
d ν =

∫

Ω

H
(p− q

q

)
d ν.

Hence (5.2) would follow from the two-sided bound

|u| log(1 + c0|u|) � H(u) � |u| log(1 + c1|u|), (5.3)

where we need to show that the same values c0 = 1/e and c1 = e− 1 are optimal.

Case 1. First, consider the region u � 0. For a parameter c > 0 the function

G(u) = H(u)− u log(1 + cu)

satisfies G(u) = G′(0) = 0, and

G′(u) = log(1 + u)− log(1 + cu)− 1 +
1

1 + cu
, G′(∞) = log

1

c
− 1.

As easy to see, G(∞) = ∞ if c � 1/e, and G(∞) = −∞ if c > 1/e. Moreover,

G′′(u) =
1

1 + u
− c

1 + cu
− c

(1 + cu)2
=

1− 2c− c2u

(1 + u)(1 + cu)2
.

Hence if c � 1/2, then G is convex in u � (1 − 2c)/c2 and concave in u � (1 − 2c)/c2. In this

case, G(u) � 0 for all u � 0, if and only if G(∞) � 0, i.e., c � 1/e. Thus, the left inequality in

(5.3) is fulfilled on the positive half-axis with the optimal value c0 = 1/e.

The expression for the second derivative also shows that, in order that G(u) be nonpositive

for all u � 0, it is necessary that c � 1/2. And if c = 1/2, we get G′′(u) � 0. Thus, G is concave

and thus nonpositive. Hence the right inequality in (5.3) is fulfilled on the positive half-axis

with the optimal value c1 = 1/2.

Case 2. Turning to the interval [−1, 0], let us make the substitution and consider the function

G(u) = H(−u)− u log(1 + cu) = (1− u) log(1− u) + u− u log(1 + cu), 0 � u � 1,

with a parameter c > 0. We have

G(0) = G′(0) = 0, g(1) = 1− log(1 + c), G′(u) = − log(1− u)− log(1 + cu)− 1 +
1

1 + cu
.

Therefore, for G to be nonnegative on [0, 1], it is necessary that c � e − 1, and for g to be

nonpositive on that interval, it is necessary that c � e− 1. We also find

G′′(u) =
1

1− u
− c

1 + cu
− c

(1 + cu)2
=

1− 2c+ c(4− c)u+ 2c2u

(1− u)(1 + cu)2
.

If moreover c = 1/e as in Case 1 (when we considered the property G � 0), we have G′′(u) � 0,

so that, G is convex and thus nonnegative. Thus, the left inequality in (5.3) is fulfilled on [−1, 0]

with the same value c0 = 1/e.

To get a reverse inequality, assume now that c � e − 1 (which is necessary) and define

Q(u) = 1 − 2c + c(4 − c)u + 2c2u. We have Q(0) = 1 − 2c < 0 and Q(1) = 1 + 2c + c2 > 0.

Hence there is a unique point u0 ∈ (0, 1) such that Q � 0 on [0, u0] and Q � 0 on [u0, 1]. Thus,

G is concave on the first interval and is convex on the second one. Since G(0) = G′(0) = 0, the

property G � 0 on [0, 1] is therefore equivalent to G(1) � 0, which is the case. Hence the right

inequality in (5.3) is fulfilled on [0, 1] with the optimal value c1 = e− 1.
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Let us now specialize Theorem 5.1 to the case Ω = R
d with the Lebesgue measure λ and the

normal density q = ϕ, in which case for any probability density p on R
d

∫

Rd

|p− ϕ| log
(
1 + c0

|p− ϕ|
ϕ

)
dx � D(p||ϕ) �

∫

Rd

|p− ϕ| log
(
1 + c1

|p− ϕ|
ϕ

)
dx. (5.4)

Since
c0
ϕ

� 1

e

√
2π > 0.9

and using the elementary inequality log(1+ct) � min{c, 1} log(1+t), we see that the left integral

in (5.4) is greater than or equal to

0.9

∫

Rd

|p(x)− ϕ(x)| log (1 + |p(x)− ϕ(x)|) dx = 0.9

∫

Rd

ψ
(
p(x)− ϕ(x)

)
dx.

For an opposite inequality one can use log(1 + ab) � log a + log(1 + b) (a � 1, b � 0), which

allows us to bound the right-hand side of (5.4) from above by

log(c1 (2π)
d/2)

∫

Rd

|p(x)− ϕ(x)| dx+
1

2

∫

Rd

|x|2 |p(x)− ϕ(x)| dx+

∫

Rd

ψ(p(x)− ϕ(x)) dx.

Here, the first factor can further be bounded by d+ 1. One can conclude.

Corollary 5.1. For any probability density p on R
d

0.9

∫

Rd

ψ
(
p(x)− ϕ(x)

)
dx � D(p||ϕ) �

∫

Rd

ψ
(
p(x)− ϕ(x)

)
dx+

∫

Rd

Wd(|x|) |p(x)− ϕ(x)| dx,

(5.5)

where ψ(t) = |t| log(1 + |t|) and Wd(t) = d+ 1 + 1
2 t

2.

The last integral in (5.5) represents the weighted total variation distance, with weight

Wd(|x|), between the standard Gaussian measure γ and the probability measure μ on R
d with

density p.

6 Bounds on Moments in Terms of Relative Entropy

Let ξ be a random vector in R
d with an absolutely continuous distribution with density

p. The finiteness of the relative entropy D(p||ϕ) forces ξ to have a finite second moment, i.e.,

E |ξ|2 < ∞. In that case, one can define the mean

a = Eξ =

∫

Rd

xp(x) dx

(which is a vector in R
d) and the covariance matrix R, which is an invertible, symmetric d× d

matrix such that

E〈ξ − a, v〉2 =
∫

Rd

〈x− a, v〉2p(x) dx = 〈Rv, v〉
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for all v ∈ R
d. Moreover, the smallness of D(p||ϕ) insures that a is close to zero (which is the

mean of a standard normal random vector Z in R
d), while R should be close to the identity

matrix Id (which is the covariance matrix of Z).

Lemma 6.1. Putting D = D(p||ϕ), we have

D � 1

2
|a|2 + 1

16

d∑
i=1

min
{|σ2

i − 1|, (σ2
i − 1)2

}
, (6.1)

where σ2
i are eigenvalues of the covariance matrix R. In particular,

(a) |a|2 � 2D,

(b) |σ2
i − 1| � 4

√
D + 16D for all i � d,

(c)
∣∣E |ξ|2 − d

∣∣ � 4d
√
D + 16dD.

For the sake of completeness, let us include a short argument. Denote by q the density of

the Gaussian measure on R
d with mean a and covariance matrix R, i.e.,

q(x) =
1

(2π)d/2
√

det(R)
exp

{
− 1

2
〈R−1(x− a), x− a〉

}
, x ∈ R

d.

Proof of Lemma 6.1. By definition,

D =

∫

Rd

p(x) log
p(x)

ϕ(x)
dx =

∫

Rd

p(x) log
p(x)

q(x)
dx+

∫

Rd

p(x) log
q(x)

ϕ(x)
dx

= D(p||q)− 1

2
log det(R)− 1

2
E〈R−1(ξ − a), ξ − a〉+ 1

2
E |ξ|2.

Simplifying, we obtain an explicit formula

D = D(p||q) + 1

2
|a|2 + 1

2

(
log

1

det(R)
+ Tr(R)− d

)

= D(p||q) + 1

2
|a|2 + 1

2

d∑
i=1

U(σ2
i ), U(t) = log

1

t
+ t− 1. (6.2)

All the terms on the right-hand side are nonnegative, and we thus obtain (6.1) which in turn

implies a).

For the next claim note that the function U(t) is convex in t > 0 and satisfies U(1) = U ′(1) =
0, U ′′(t) = 1/t2. If |t − 1| � 1, then by the Taylor formula about the point t0 = 1 with some

point t1 between t and 1,

U(t) = U(1) + U ′(1)(t− 1) + U ′′(t1)
(t− 1)2

2
� (t− 1)2

8
.

For the values t � 2 we have a linear bound U(t) � 1
8 (t− 1), so that the two bounds yield

U(t) � 1

8
min{|t− 1|, |t− 1|2}, t > 0,

which implies (b). Finally, since E |ξ|2 = σ2
1 + · · ·+ σ2

d, claim (c) readily follows from (b).
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Note that the closeness of all eigenvalues to 1 can also be stated as closeness of R to the

identity matrix. For example, in terms of the Hilbert–Schmidt norm, we have by (b)

‖R− Id‖2HS =

d∑
i=1

(σ2
i − 1)2 � Cd max

{
D(p||ϕ), D(p||ϕ)2}

with some absolute constant C.

7 Proof of Theorem 1.3

In one direction, we apply Corollary 5.1 and Lemma 6.1. Assuming that Dn(p||ϕ) → 0 as

n → ∞, the first inequality in (5.5) shows that
∫

ψ(pn(x)− ϕ(x)) dx → 0, (7.1)

which is the required convergence (1.6). Since the Young function ψ satisfies the Δ2-condition,

the latter is equivalent to ‖pn − ϕ‖ψ → 0 (as explained in Remark 4.1). Moreover, by the

inequality (c) in Lemma 6.1 applied to the random vectors ξn in R
d with densities pn, we also

have ∣∣E |ξn|2 − d
∣∣ � 4d

√
D(pn||ϕ) + 16dD(pn||ϕ) → 0.

This proves the property a) in Theorem 1.3.

Now, suppose that (7.1) holds, together with E |ξn|2 → d. Using the second inequality in

(5.5), it remains to show that

In =

∫

Rd

Wd(|x|) |pn(x)− ϕ(x)| dx → 0,

where Wd(t) = d + 1 + 1
2 t

2. Using the notation z+ = max(z, 0) and the identity |z| = 2z+ − z

(z ∈ R), the above integral can be rewritten (like in the Scheffé lemma) as

In = 2

∫

Rd

Wd(|x|) (ϕ(x)− pn(x))
+ dx+

∫

Rd

Wd(|x|) (pn(x)− ϕ(x)) dx

= 2

∫

Rd

Wd(|x|) (ϕ(x)− pn(x))
+ dx+

1

2

(
E |ξn|2 − d

)
.

Here, the last integral tends to zero as n → ∞. Splitting the integration over the ball |x| � Tn

and its complement, the last integral can be bounded from above by

Wd(Tn) ‖pn − ϕ‖1 +
∫

|x|�Tn

Wd(|x|)ϕ(x) dx. (7.2)

By the assumption (7.1), we have ‖pn − ϕ‖1 → 0 (since the ‖ · ‖ψ-norm is stronger than the

L1-norm). Hence one can choose a sequence Tn which grows to infinity sufficiently slow, so that

the first term in (7.2) tends to zero as well. In that case, the whole expression in (7.2) tends to

zero, and as a result, In → 0. This finishes the proof of Theorem 1.3. �
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Remark 7.1. 1. Let us return to the normalized sums Zn in (1.1) for independent identically

distributed random variables (Xn)n�1 with common density w. To illustrate the range of appli-

cability of the uniform local limit theorem (cf. (1.3)), Gnedenko and Kolmogorov considered in

[2, 3] the example of the symmetric, compactly supported density

p(x) =

⎧⎪⎨
⎪⎩
0, |x| > 1/e,

α

2 |x| logα+1(1/|x|) , |x| < 1/e,

with α = 1. Define w(x) = 1
λ p(x/λ), where the constant λ > 0 is chosen so that EX2

1 = 1. As

was shown, near the origin x = 0 the n-th convolution power p∗n(x) admits a lower bound

p∗n(x) � cn

|x| logαn+1(1/|x|)
with some constant cn > 0. Hence all densities pn of Zn are unbounded in any neighborhood of

zero and therefore do not satisfy (1.3).

2. To illustrate the entropic central limit theorem, Barron [8] returned to this example, as-

suming that α is an arbitrary positive parameter. Although the densities pn are still unbounded,

it was noticed that the entropies h(pn) are finite as long as n > 1/α. Hence Zn do satisfy the

entropic central limit theorem (by Theorem 1.2).
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