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Moments of the Scores
Sergey G. Bobkov

Abstract— Upper bounds on absolute moments of the scores
are derived for sums of independent random variables in terms
of the moments of the scores, as well as in terms of the total
variation norm of densities of summands.

Index Terms— Score, score function, Fisher information, total
variation, convolution, Stam’s inequality.

I. INTRODUCTION

IF X is a random variable with an absolutely continu-
ous density f , its score function is defined by ρ(x) =

f �(x)/ f (x) = (log f )�(x), where the derivatives may be
understood in the Radon-Nikodym sense. The score of X is
the random variable

ρ(X) = f �(X)
f (X)

.

It is well defined with probability one, and its distribution
plays an important role in various problems of Statistics and
Information Theory, cf. e.g. [6], [8], [11].

Let us look at the meaning of the absolute moments

Ik(X) = E |ρ(X)|k
for positive integer values of k. The first absolute moment

I1(X) = � f �TV =
∫ ∞

−∞
| f �(x)| dx

describes the total variation of the density f . In this case, the
definition naturally extends to the larger class of probability
distributions on the line, whose densities have bounded total
variation in the sense of Theory of Functions (including, for
example, the uniform distribution on finite intervals). Note
that, if I1(X) is finite, the first moment Eρ(X) is necessarily
vanishing. The second moment

I (X) = I2(X) =
∫ ∞

−∞
f �(x)2

f (x)
dx

represents the Fisher information contained in the distribution
of X . Both quantities, I1 and I2, are classical objects in
different areas.

Higher order moments Ik were introduced by Lions and
Toscani [9] in their study of convergence of densities (and of
their powers) in the central limit theorem in Sobolev spaces.
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As was mentioned in [9], the functional I4 was also considered
by Gabetta [7] in the context of the kinetic theory of gases to
study the convergence to equilibrium in Kac’s model. See also
[1], where these moments appear implicitly with the aim to
control translates of product probability measures (and where
the finiteness of exponential or Gaussian moments of ρ(X)
are required).

However, in contrast with I1(X), which can easily be treated
by Fourier methods, it is often not clear how to bound or even
to verify that Ik(X) is finite for k > 1. Let us restrict ourselves
to the case where the distribution of X has a convolution
structure, that is, when

X = Sn = X1 + · · · + Xn (I.1)

for some independent random variables Xi . The values
(Ik(Sn))

1/k are non-decreasing in k, but are non-increasing
in n (cf. Corollary III.2 below). If k = 2, a stronger property
is contained in Stam’s inequality, which may be written in the
linearized form as

I (Sn) ≤ a2
1 I (X1)+ · · · + a2

n I (Xn)

with arbitrary real numbers ai > 0 such that a1+· · ·+an = 1.
Lions and Toscani proposed an extension of this relation to
the moments of the scores of even orders k = 2m; in case of
the two summands, it similarly states that, for all a, b > 0,
a + b = 1,

Ik(X1 + X2) ≤ ak Ik(X1)+ bk Ik(X2)+
k−2∑
j=2

(k
j

)
ak− j b j (Ik−2(X1))

k− j
k−2 (Ik−2(X2))

j
k−2 . (I.2)

If Xi ’s in (I.1) are identically distributed (i.i.d.) with finite
Ik(X1), the inequality (I.2) ensures not only the finiteness
of Ik(Sn), but also implies a uniform boundedness of the
moments of the scores along rescaled convolutions. In [9],
this is shown to hold by induction on n via a bound implying
I2m(Sn/

√
n) ≤ cm I2m(X1) with implicit constants cm . Here,

we first extend the latter inequality to general weighted sums

Zn = α1 X1 + · · · + αn Xn,

where we assume that αi ≥ 0 with α2
1 + · · · + α2

n = 1.

Theorem I.1. If I2m(Xi ) ≤ I for all i ≤ n, then

I2m(Zn) ≤ cm I (I.3)

with cm ≤ (2m)! (e/m)m .

The right-hand side of (I.3) does not depend on αi . The
sharpness of the constants in this inequality (for large m)
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may be tested on the example where Xi ’s have a two-sided
exponential distribution. Then |ρ(Xi )| = 1 a.e., so that
I2m(Xi ) = 1 for all m. Choosing αi = 1/

√
n, we then have

Zn ⇒ Z ∼ N(0, 1), and moreover,

I2m(Zn) → I2m(Z) = E |Z |2m = (2m)!
2mm! (n → ∞).

Hence, the optimal constant in (I.3) admits a lower bound
cm ≥ (2m)!/(2mm!) meaning that the upper bound is optimal
modulo an exponentially growing factor.

Similar statements remain to be valid when dealing with
exponential and Gaussian moments.

Theorem I.2. If E exp{|ρ(Xi )|/σ } ≤ 2 for all i ≤ n (σ > 0),
then

E exp
{|ρ(Zn)|/4σ

} ≤ 2. (I.4)

Moreover, if E exp{ρ(Xi )
2/σ 2} ≤ 2, then

E exp
{
ρ(Zn)

2/Kσ 2} ≤ 2 (I.5)

with some absolute constant (e.g. K = 6).

The inequality (I.5) exhibits a subgaussian behavior of the
scores ρ(Zn) uniformly over all admissible coefficients αi

under a similar hypothesis that the scores of the summands
are subgaussian. This is a full analogue of the well-known
property of the weighted sums: If E exp{X2

i /σ
2} ≤ 2 and

EXi = 0, then

E exp
{

Z2
n/Kσ 2} ≤ 2.

A similar property takes place in terms of the exponential
moments as well.

While the conclusions such as the one in Theorem I.1 are
based on the finiteness of Ik(Xi ), one may wonder whether or
not, the values Ik(Sn) for the sums in (I.1) become finite for a
certain n = n0 assuming that just the first moments I1(Xk) are
finite. This is known to be indeed true in the Fisher information
case k = 2, cf. [3]. The next statement extends this observation
to the whole range k ≥ 1.

Theorem I.3. If bi = I1(Xi ) < ∞ in (I.1), then Ik(Sn) < ∞
whenever n ≥ k + 1. Moreover,

Ik(Sk+1) ≤ ck b1 . . . bk+1

( 1

b1
+ · · · + 1

bk+1

)
(I.6)

with ck = kk/(2kk!)

The main point of (I.6) is that its right-hand side is finite and
has an explicit form. Since the constants ck grow exponentially
fast, for an effective estimation of Ik(Sn), it is better to
combine (I.6) with (I.2) or (I.3) by splitting the sequence
X1, . . . , Xn into the groups with at least k+1 elements in each
group. One may apply (I.6) to the group summands and then
involve (I.3) or a corresponding variant of (I.2) for the sum
of two or more random variables. On this way, one can reach
estimates such as (I.7) below dealing with the i.i.d. situation.

But, first let us note that Theorem I.3 is no longer valid
for k ≥ 2 and n ≤ k, as may be seen on the example of the

uniform distribution. Indeed, if Xi are uniformly distributed in
(0, 1), then Sn has a density described as f (x) = 1

(n−1)! xn−1

for 0 < x < 1. Since the function( f �(x)
f (x)

)k
f (x) = (n − 1) xn−k−1

is not integrable on (0, 1) for n ≤ k, necessarily Ik(Sn) = ∞.
The inequality (I.6) has the following application to the

characterization of the finiteness of the moments in the scheme
of i.i.d. summands. We denote by v(t) = E eit X1 the common
characteristic function.

Theorem I.4. Let (Xi )i≥1 be i.i.d. random variables such that
E |X1| < ∞. The following properties are equivalent, for any
fixed k ≥ 1:

a) There exists n such that Ik(Sn) < ∞;
b) There exists n such that Sn has a density with bounded

total variation;
c) For some ε > 0, we have v(t) = o(t−ε) as t → ∞.

Moreover, if X1 has a density with bounded total variation, then
with some constants Ak depending on k only,

sup
n≥k+1

Ik(Sn/
√

n) ≤ Ak (I1(X1))
k . (I.7)

The property b) is just a) specialized to k = 1. Thus, the
property a) does not depend on k.

The paper is organized as follows. In Section II, we discuss
connections between the scores and the so-called L-functions
associated with given probability distributions. Together with
the Brunn-Minkowski inequality, this will allow us to derive
the inequality (I.6) in the case of uniform distributions on finite
intervals, cf. Section VI. Convexity properties of the moments
and Stam-type inequalities for the functional Ik are considered
in Sections III-IV. Theorems I.1-I.2 and I.3-I.4 are respectively
proved in Sections V and VII. In the last two sections, we
discuss applications to the decay of densities and give remarks
on the relationship between the moments of the scores and the
usual moments (via Cramér-Rao-type inequalities).

II. DISTRIBUTION OF THE SCORE AND

THE ASSOCIATED L-FUNCTION

Suppose that the distribution of a random variable X with
distribution function F(x) = P{X ≤ x}, x ∈ R, is supported
on some interval (a, b), finite or not, and has an a.e. positive
density f on that interval. The inverse function F−1 : (0, 1) →
(a, b) is then strictly increasing and continuous on (0, 1).

As a preliminary step, let us mention one useful general
representation for the moments Ik(X) = E |ρ(X)|k involving
the function

L(u) = f (F−1(u)), 0 < u < 1, (II.1)

which often appears in many isoperimetric-type inequalities,
serving as the so-called isoperimetric profile of the distribution
of X . Note that L uniquely determines F up to a shift
parameter. For example, it follows from (II.1) that∫ 1

0

1

L(u)
du = b − a. (II.2)

Authorized licensed use limited to: University of Minnesota. Downloaded on April 28,2020 at 00:00:14 UTC from IEEE Xplore.  Restrictions apply. 



5296 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 9, SEPTEMBER 2019

Indeed, if a random variable U is uniformly distributed on
(0, 1), then F−1(U) has the same distribution as X , so that∫ 1

0

1

L(u)
du = E

1

f (F−1(U))

= E
1

f (X)
=

∫ b

a
1 dx = b − a.

If additionally f is absolutely continuous and has a finite
total variation (hence f (a+) = f (b−) = 0), then L is
absolutely continuous as well, with L(0+) = L(1−) = 0.
In this case, denote by L � the Radon-Nikodym derivative of L.

Proposition II.1. Suppose that the distribution of X has an
absolutely continuous density f of bounded total variation,
supported and a.e. positive on some interval, finite or not. If a
random variable U is uniformly distributed on (0, 1), then ρ(X)
and L �(U) are equidistributed. In particular, for any k,

Ik(X) =
∫ 1

0
|L �(u)|k du. (II.3)

Proof. By the assumption, F−1 is absolutely continuous and
has the Radon-Nikodym derivative

(F−1)�(u) = 1

f (F−1(u))
= 1

L(u)
.

Thus, L is absolutely continuous. By the chain rule applied in
(II.1), it has the Radon-Nikodym derivative

L �(u) = f �(F−1(u)) (F−1)�(u) = f �(F−1(u))

f (F−1(u))
.

Inserting u = U and using the property that F−1(U) and X
are equidistributed, we obtain the equality L �(U) = ρ(X) in
the distributional sense.

We now express some possible convexity properties of the
density f in terms of the L-function (cf. also [2] for related
issues about the κ-concave probability measures).

Proposition II.2. Suppose that the distribution of X has a
continuous density f , which is supported and positive on some
finite interval (a, b). Given k ≥ 1, the function f 1/k is concave
on (a, b), if and only if L(k+1)/k is concave on (0, 1).

Proof. Assuming without loss of generality that f has a
continuous derivative, we have L �(F(x)) = f �(x)/ f (x), and
then

(L
k+1

k )�(F(x)) = (k + 1) ( f
1
k )�(x), a < x < b.

Therefore, the derivative ( f 1/k)� does not increase on (a, b),
if and only if (L(k+1)/k)� does not increase on (0, 1).

Let us also note that the distribution of ρ(X) does not
determine the distribution of X in a unique way. To see
this, one may define the functions L1 and L2 in the fol-
lowing way. Put L1(t) = min(t, 1 − t) which is the L-
function for the two-sided exponential distribution with density
f (x) = 1

2 e−|x |, and let L2 be piecewise linear on [0, 1] with

L2(0) = L2(1/2) = L2(1) = 0 and L2(1/4) = L2(3/4) =
1/4, which corresponds to a different symmetric probability
measure. In both cases, L �

i (U) and therefore ρ(Xi ) have a
symmetric Bernoulli distribution on {−1, 1}.

III. CONVEXITY OF MOMENTS

Let us now address some general convexity properties of the
moments of scores (needed in the proof of Theorem I.3). We
write Ik( f ) = Ik(X) when a random variable X has density
f , with the convention that Ik( f ) = ∞, if f is not absolutely
continuous (in case k ≥ 2). In case k = 1, let us recall that
the total variation norm is defined to be

� f �TV = I1( f ) = sup
N∑

k=1

| f (xk)− f (xk−1)|,

where the supremum is running over all collections of points
x0 < x1 < · · · < xN . For the finiteness of this norm,
the function f must have at most countably many points of
discontinuity, at which it makes sense to require that f be
right-continuous.

If f is a convex mixtures of several densities,

f = t1 f1 + · · · + tN fN (ti ≥ 0, t1 + · · · + tN = 1),

then, as was stressed in [9], we have Jensen’s inequality

Ik( f ) ≤ t1 Ik( f1)+ · · · + tN Ik( fN ). (III.1)

This readily follows from the fact that the homogeneous
function R(u, v) = uk/vk−1 is convex on the upper half-plane
u ∈ R, v > 0. We need to extend this inequality to arbitrary
“continuous" convex mixtures of densities.

The collection P of all (probability) densities on the real
line represents a closed subset of L1 for the weak σ(L1, L∞)
topology. For any Borel set A ⊂ R, the functional q →∫

A q(x) dx is bounded and continuous on P. So, given a Borel
probability measure π on P, one may define the probability
measure on the real line

μ(A) =
∫
P

[ ∫
A

q(x) dx

]
dπ(q).

It is absolutely continuous with respect to the Lebesgue
measure and has some density f (x) = dμ(x)

dx called the convex
mixture of densities with mixing measure π . For short,

f =
∫
P

q dπ(q).

A corresponding extension of (III.1) is given in the following:

Proposition III.1. The functional f → Ik( f ) is lower
semi-continuous (hence Borel measurable) on the space P.
Moreover, if f is a convex mixture of densities with a mixing
probability measure π , then

Ik( f ) ≤
∫
P

Ik(q) dπ(q). (III.2)

In particular, (III.2) implies the monotonicity property of
the moments with respect to convolutions.
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Corollary III.2. For all independent random variables X,Y ,

Ik(X + Y ) ≤ min{Ik(X), Ik(Y )}. (III.3)

Indeed, assuming that Ik(X) < ∞, the distribution of X has
an absolutely continuous density, say q . In this case, X +Y has
a density f representable as a convex mixture of the shifted
densities qh(x) = q(x−h), for which Ik(qh) = Ik(q) = Ik(X).
Hence, Ik(X + Y ) ≤ Ik(X).

In the case k = 2, the topological properties of the
functional Ik together with the inequality (III.2) are discussed
in detail in [3], cf. Propositions 3.2-3.3 therein. Their proofs
can easily be extended to the general case k ≥ 1, so we omit
the proof of Proposition III.1. What is important, in the case
k = 1, (III.2) may actually be reversed for a suitable measure
π supported on the (two-dimensional) set U ⊂ P of densities
of the form q(x) = 1

b−a 1(a,b)(x) with parameters a < b
(cf. [3], Lemma 4.3):

Proposition III.3. Any density f of bounded total variation
can be represented as a convex mixture f = ∫

U q dπ(q)with a
mixing probability measure π on U such that

I1( f ) =
∫

U
I1(q) dπ(q). (III.4)

Using the transference, the integration in (III.4) may be
carried out over the half-plane {(a, b) : a < b}. For example,
if f is supported and non-increasing on (0,∞), there is a
canonical representation

f (x) =
∫ ∞

0

1

x1
1{0<x<x1} dπ(x1) a.e.

with a unique mixing probability measure π on (0,∞). In this
case, I1( f ) = 2 f (0+), and (III.4) is obvious. One may write
a similar representation for densities of unimodal distributions.

IV. STAM-TYPE INEQUALITIES

Given independent random variables X1, . . . , Xn with finite
moments I2m(Xi ) of the scores ρ(Xi ), consider the weighted
sums

Zn = α1 X1 + · · · + αn Xn,

assuming as before that αi ≥ 0 with α2
1 + · · · + α2

n = 1. Here,
we also involve non-absolute moments

Mk(Xi ) = E ρ(Xi )
k, 1 ≤ k ≤ 2m.

Note that M1(Xi ) = 0, while |Mk | ≤ Ik .
We will need the following multinomial bounds with a

natural convention M0(Xi ) = I0(Xi ) = 1.

Proposition IV.1. For any integer m ≥ 1,

I2m(Zn) ≤
∑( 2m

k1 . . . kn

)
αk1

1 . . . αkn
n

× Mk1 (X1) . . .Mkn (Xn), (IV.1)

In particular,

I2m(Zn) ≤
∑( 2m

k1 . . . kn

)
αk1

1 . . . αkn
n

× Ik1 (X1) . . . Ikn (Xn). (IV.2)

In both cases, the summation is performed over all non-negative
integers ki = 1 such that k1 + · · · + kn = 2m.

Being specialized to m = 1, (IV.1) and (IV.2) coincide and
represent an equivalent form of Stam’s inequality, which is
stronger than the monotonicity property (III.3) of the Fisher
information. However, if m ≥ 2, the inequality (III.3) cannot
be deduced from (IV.1).

In Lions and Toscani [9], the inequalities (IV.1)-(IV.2) were
obtained along derivation of (I.2) in the binomial form for the
weighted sum of two random variables. Let us recall a simple
argument which is slightly different than the standard one used
in the proof of the Stam inequality (compare e.g. with [8]).
Assuming without loss of generality that the densities fi of
Xi are continuously differentiable and positive (i = 1, 2), the
density f of X1 + X2 has a derivative representable as

f �(x)
f (x)

=
∫ ∞

−∞

(
a1

f �
1(x − y)

f1(x − y)
+ a2

f �
2(y)

f2(y)

)
dμx(y)

with arbitrary ai > 0, a1 + a2 = 1, and where dμx(y)/dy =
f1(x − y) f2(y)/ f (x). Since μx is a probability measure, one
may apply Jensen’s inequality, which gives
( f �(x)

f (x)

)2m ≤
∫ ∞

−∞

(
a1

f �
1(x − y)

f1(x − y)
+ a2

f �
2(y)

f2(y)

)2m
dμx(y).

One may now expand the integrand according to the binomial
formula, multiply both sides by f (x) and integrate over the
variable x . We then arrive at

I2m(X1 + X2) ≤
∑(2m

k1k2

)
ak1

1 ak2
2 Mk1 (X1)Mk2 (Xn)

without the terms corresponding to k1 = 1 and k2 = 1. To
get (IV.1), it remains to write down this bound for the random
variables αi Xi with ai = α2

i . As for the general case n ≥ 2,
it is easily obtained by induction on the basis of n = 2.

Expanding the cosh-function in a power series and using
the property E ρ(X j ) = 0, (IV.1) immediately implies:

Corollary IV.2. For any t ∈ R,

E cosh(tρ(Zn)) ≤
n∏

j=1

E(e|t |α j |ρ(X j )|−|t|α j |ρ(X j )|). (IV.3)

V. PROOF OF THEOREMS I.1-I.2

Proof of Theorem I.1. Since

(Iki (Xi ))
1/ki ≤ (I2m(Xi ))

1/(2m),

while, by the assumption, I2m(Xi ) ≤ I , the inequality (IV.2)
implies I2m(Zn) ≤ Km I , where

Km =
∑ ( 2m

k1 . . . kn

)
α

k1
1 . . . αkn

n (V.1)

with summation as before. Put K0 = 1 and introduce the
generating function associated to the sequence (Km)m≥0,

ρ(z) =
∞∑

m=0

Km

(2m)! z2m, z ∈ C,
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so that Km = ρ(2m)(0). It follows from (V.1) that

ρ(z) =
n∏

j=1

∑
k j ≥0, k j =1

1

k j ! (α j z)k j =
n∏

j=1

(
eα j z − α j z

)
.

Since |ew −w| ≤ e|w| − |w| ≤ e|w|2 for any complex number
w, we get a simple bound

|ρ(z)| ≤
n∏

j=1

eα
2
j |z|2 = e|z|2 . (V.2)

We now use contour integration and Cauchy’s formula

Km = (2m)!
2π i

∫
|z|=R

ρ(z)

z2m+1 dz (R > 0),

which together with the upper bound (V.2) yields

Km ≤ (2m)!
R2m

eR2
.

It remains to choose an optimal value R = √
m, which leads

to

I2m(Zn) ≤ (2m)! em

mm
I, (V.3)

that is, (I.3).

Before turning to the next theorem, let us note that
the moment bound (V.3) is insufficient to derive (I.4)-(I.5).
Therefore, we choose a slightly different route based on
Corollary IV.2.

Proof of Theorem I.2. By homogeneity, we may assume that
σ = 1. Any function

ρ j (t) = E(e|t ||ρ(X j )| − |t||ρ(X j )|), j = 1, . . . , n,

is smooth, non-negative in the interval |t| < 1, with ρ �
j (0) =

0. Moreover, for |t| ≤ 1/2,

ρ ��
j (t) ≤ E ρ(X j )

2 exp
{1

2
|ρ(X j )|

}
.

Using an elementary bound x2 ex/2 ≤ c e|x | with c = 16/e2,
we get

ρ ��
j (t) ≤ c E exp{|ρ(X j )|} ≤ 2c,

which, by Taylor’s formula, implies ρ j (t) ≤ 1 + ct2 ≤ ect2
.

Hence, applying the bound (IV.3), we obtain that

E exp{t |ρ(Zn)|} ≤ 2 E cosh(tρ(Zn))

≤ 2
n∏

j=1

ρ j (α j t) ≤ 2 ect2
.

Choosing t = 1/2, this gives

E e|ρ(Zn)|/4 ≤ (
E e|ρ(Zn)|/2)1/2 ≤ (2 ec/4)1/2 < 2,

which was required.
For the proof of the second claim, we use the inequality

x2ex2/2 ≤ ex2
. Since Eeρ(X j)

2 ≤ 2, we get

ρ ��
j (t) = Eρ(X j )

2e|t ||ρ(X j )| ≤ Eρ(X j )
2e(t

2+ρ(X j )
2)/2 ≤ 2et2/2

implying ρ j (t) ≤ 1 + t2et2/2 ≤ et2
. Hence, by (IV.3),

E cosh(tρ(Zn)) ≤ et2
.

If η is a standard normal random variable, independent of
ρ(Zn), this subgaussian bound on the Laplace transform yields

E exp{ t2ρ(Zn)
2/2} = E cosh(tρ(Zn) η)

≤ E exp{ t2η2} = 1√
1 − 2t2

,

which holds true for all 0 < t < 1/
√

2. The choice t2 = 3/8
yields (I.5) with constant K = 16/3.

VI. THE CASE OF UNIFORM DISTRIBUTIONS

By virtue of Propositions III.1 and III.3, Theorem I.3 may be
reduced to the case of uniformly distributed random variables.
Hence, as a next step, here we derive the inequality (I.6) for
the class of uniform distributions on finite intervals. Suppose
that the independent variables Xi , 1 ≤ i ≤ k+1, are uniformly
distributed in the intervals of lengths li > 0, respectively.

Lemma VI.1. For the sum Sn = X1 + · · · + Xk+1, k ≥ 1,
we have

Ik(Sn) ≤ kk

k!
l1 + · · · + lk+1

l1 . . . lk+1
. (VI.1)

Proof. Let Xi be uniformly distributed in the intervals (0, li ).
Then, the density f of Sn is supported and positive on (0, l),
l = l1 + · · · + lk+1, where it has a piecewise continuous
Radon-Nikodym derivative f �. For sufficiently small x > 0,
the distribution function of Sn is given by

F(x) = P{Sn ≤ x} = 1

V (k + 1)! xk+1, (VI.2)

where V = l1 . . . lk+1 denotes the volume of the box Q in
R

k+1 with sides [0, li ]. Correspondingly, for small x > 0,

f (x) = 1

V k! xk . (VI.3)

Note also that f is symmetric about the point l/2, and
f (0+) = f (l−) = 0.

To explore shape properties of the density on the whole
supporting interval, we apply the Brunn-Minkowski inequality
in Convex Geometry. It asserts that

|u A + (1 − u)B|1/k ≥ u |A|1/k + (1 − u) |B|1/k (VI.4)

for all 0 < u < 1 and all non-empty Borel sets A, B lying in
parallel (k-dimensional) hyperplanes of R

k+1. Here

u A + (1 − u)B = { ua + (1 − u)b : a ∈ A, b ∈ B}
stands for the Minkowski sum, and |C| is used to denote the
k-dimensional Lebesgue measure of a set C in the hyperplane
where it lies (cf. e.g. [5], [10]).

Since the random vector (X1, . . . , Xk+1) is uniformly dis-
tributed in Q, the density of Sn may be written for 0 ≤ x ≤ l
as

f (x) = 1

V

∣∣{(x1, . . . , , xk+1) ∈ Q : x1 + · · · + xk+1 = x}∣∣.
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Hence, by (VI.4), the function f (x)1/k is concave on the
supporting interval (0, l).

As we know, the latter property may also be formulated in
terms of the associated function L(u) = f (F−1(u)). Namely,
by Proposition II.2, the function L(k+1)/k is concave, so that

k

k + 1
(L

k+1
k )� = L

1
k L �

does not increase on (0, 1). Hence, using also the symmetry
of L about the point 1/2, we get that, for all 0 < u < 1,

|L �(u)|k L(u) ≤ c, c = lim
u→0

L �(u)k L(u).

With this bound we can now apply Proposition II.1 and the
equality (II.2), which give

Ik(Sn) =
∫ 1

0
|L �(u)|k du ≤

∫ 1

0

c

L(u)
du = cl. (VI.5)

It remains to find c. From (VI.2)-(VI.3) it follows that, for
all u > 0 small enough,

L(u) = (k + 1) (k + 1)−
1

k+1 V − 1
k+1 u

k
k+1 ,

L �(u) = k (k + 1)−
1

k+1 V − 1
k+1 u− 1

k+1 ,

and thus

L �(u)k L(u) = 1

V

kk

k! = c.

Hence, we arrive in (VI.5) at Ik(Sn) ≤ lkk/(V k!) which is
(VI.1).

VII. PROOF OF THEOREMS I.3-I.4

Proof of Theorem I.3. Assuming that the random variables
Xi are independent and have densities fi with finite total
variation norms bi = I1(Xi ), one may apply Proposition III.3
and represent them as convex mixtures fi = ∫

q dπi (q) with
some mixing probability measures πi supported on the set
U of densities for uniform distributions (on all intervals) and
satisfying

bi =
∫

U
I1(qi ) dπi (qi), i = 1, . . . , k + 1. (VII.1)

Taking the convolution, we then have a similar representation
for the density f of the sum Sk+1 = X1 +· · ·+ Xk+1, namely

f = f1 ∗ · · · ∗ fk+1

=
∫

U
. . .

∫
U

q1 ∗ · · · ∗ qk+1 dπ1(q1) . . . dπk+1(qk+1).

One can now apply Jensen’s inequality (III.2) to get that

Ik( f ) ≤
∫

U
. . .

∫
U

Ik(q1 ∗ · · · ∗ qk+1) dπ1(q1) . . . dπk+1(qk+1).

(VII.2)

For the uniform distribution on the interval (a, b), a < b,
with density q = 1

b−a 1(a,b), we have I1(q) = 2/(b − a).
Equivalently, every q in U is supported on an interval of length

l = 2/I1(q). Hence, by Lemma VI.1, putting li = 2/I1(qi ),
we have

Ik(q1 ∗ · · · ∗ qk+1) ≤ kk

k!
l1 + · · · + lk+1

l1 . . . lk+1

= ck

k+1∑
i=1

I1(q1) . . . I1(qi−1)I1(qi+1) . . . I1(qk+1),

where ck = kk/(2kk!) Using this bound in (VII.2) and
applying (VII.1), we arrive at

Ik( f ) ≤ ck

k+1∑
i=1

b1 . . . bi−1 bi+1 . . . bk+1,

which is the desired inequality (I.6).

To turn to the next theorem, we employ the following bound
on the total variation norm in terms of characteristic functions,
cf. [3], Proposition 5.2.

Lemma VII.1. If the characteristic function u(t) = E eit X of a
random variable X has a continuous derivative for t > 0, with

∫ ∞

−∞
t2(|u(t)|2 + |u�(t)|2) dt < ∞, (VII.3)

then X has an absolutely continuous density q with finite total
variation norm satisfying

�q�4
TV ≤

∫ ∞

−∞
|tu(t)|2 dt

∫ ∞

−∞
|(tu(t))�|2 dt . (VII.4)

Proof of Theorem I.4. By Theorem I.3, if I1(Sn) is finite,
then so is Ik(Sn(k+1)). Hence, a) and b) are equivalent.

To see that b) and c) are equivalent as well, note that the
sum Sn has characteristic function vn(t) = v(t)n . Assum-
ing b), Sn has a density q of bounded total variation with
q(−∞) = q(∞) = 0. In this case, one may integrate by parts
to write

vn(t) =
∫ ∞

−∞
eit xq(x) dx = − 1

i t

∫ ∞

−∞
eit x dq(x), t = 0.

Since the latter integral is bounded in absolute value by
I1(q) = I1(Sn), it follows that |v(t)|n = O(1/t) as t → ∞,
and we get the property c). The implication c) ⇒ b) may be
based on Lemma VII.1, applied with u(t) = vn(t), X = Sn ,
in which case

|u�(t)| ≤ n E |X1| |v(t)|n−1.

If |v(t)| = o(t−ε) for some ε > 0, and if n is sufficiently large,
then all integrals in (VII.3)-(VII.4) are convergent, so that
�q�TV = I1(Sn) is finite.

It remains to derive the inequality (I.7), assuming that X1
has density with bounded total variation norm I1(X1). First,
let k = 2m be even, and consider the sums

Y j =
∑

( j−1)(k+1)<i≤ j (k+1)

Xi
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for j = 1, . . . , r , r = [n/(k + 1)]. Put N = r(k + 1), so that
1 ≤ N ≤ n. By Corollary III.2, Ik(Sn) ≤ Ik(SN ), while,
by Theorem I.1,

I2m(SN ) = I2m(Y1 + · · · + Yr )

≤ r−m em (2m)!
mm

I2m(Y1).

On the other hand, by Theorem I.3 with k = 2m,

I2m(Y1) ≤ (2m)2m+1

22m (2m)! I1(X1)
2m .

The two inequalities yield

I2m(Sn) ≤ 2r−m em mm+1 I1(X1)
2m .

Since n ≥ k + 1, necessarily r ≥ n
2(k+1) ≥ n

6m , so that

I2m(Sn) ≤ 2n−m (6e)m m2m+1 I1(X1)
2m . (VII.5)

Thus, (I.7) follows with constant Ak = (3e/2)k/2 kk+1.
If k = 2m − 1 is odd, and n ≥ k + 2, one may apply the

previous step (VII.5), to get

I2m−1(Sn) ≤ (I2m(Sn))
2m−1

2m

≤ (
2n−m (6e)m m2m+1) 2m−1

2m I1(X1)
2m−1.

Hence, (I.7) follows with constant Ak = (3e/2)k/2 (k + 1)k+1.
Finally, if k = 2m − 1, n = k + 1, the inequality (I.6) yields
(I.7) with a similar constant.

VIII. POLYNOMIAL DECAY OF DENSITIES

Let us now consider the moments of the scores Ik =
Ik(X) = E |ρ(X)|k for real values k > 1 (not necessarily
integer). Here we show that, by invoking the absolute moments

βs = βs(X) = E |X |s (s > 0 real),

it is possible to control the behavior of the density of X at
infinity. Define the conjugate power k∗ = k

k−1 .

Theorem VIII.1. If X has density f with finite Ik (k > 1) and
βsk∗ (s > 0), then, for any x ∈ R,

f (x) ≤ c

1 + |x |s (VIII.1)

with constant

c =
{

sβs−1 + (1 + β
1

k∗
sk∗) I

1
k

k , if s > 1,

s + (3 + β
1

k∗
sk∗) I

1
k

k , if s ≤ 1.

Moreover,

lim
x→∞ (1 + |x |s) f (x) = 0. (VIII.2)

Proof. Since k > 1, the density f is absolutely continuous and
has a Radon-Nikodym derivative f �. By Hölder’s inequality,∫ ∞

−∞
|x |s | f �(x)| dx =

∫
E

|x |s f (x)
k−1

k
| f �(x)|
f (x)

k−1
k

dx

≤
( ∫

E
|x |sk∗

f (x) dx

) k−1
k

( ∫
E

f �(x)k

f (x)k−1 dx

) 1
k

,

where E = {x ∈ R : f (x) > 0}. Hence∫ ∞

−∞
|x |s | f �(x)| dx ≤ β

1
k∗

sk∗ I
1
k

k , s > 0. (VIII.3)

Now, assuming first that s > 1, the function

u(x) = (1 + |x |s) f (x)

is (locally) absolutely continuous and has a Radon-Nikodym
derivative satisfying

|u�(x)| ≤ s |x |s−1 f (x)+ (1 + |x |s) | f �(x)|. (VIII.4)

Integrating this inequality, we see that u is a function of
bounded total variation. Since u is also integrable, we get

lim
x→−∞ u(x) = lim

x→∞ u(x) = 0, (VIII.5)

thus implying (VIII.2). In addition, by (VIII.4) and (VIII.3),

u(x) =
∫ x

−∞
u�(y) dy ≤

∫ ∞

−∞
|u�(y)| dy

≤ s
∫ ∞

−∞
|x |s−1 f (x) dx

+
∫ ∞

−∞
(1 + |x |s) | f �(x)| dx

≤ sβs−1 + I1 + β
1

k∗
sk∗ I

1
k

k . (VIII.6)

Since I1 ≤ I
1
k

k , we arrive at (VIII.1).
If 0 < s ≤ 1, one may still use (VIII.4). Since f (x) ≤ I1

for all x ∈ R, we have∫ ∞

−∞
s |x |s−1 f (x) dx ≤

∫
|x |>1

s |x |s−1 f (x) dx

+
∫ 1

−1
s |x |s−1 f (x) dx

≤ s
∫

|x |>1
f (x) dx + 2I1 < ∞.

Recalling (VIII.3), we conclude that u is an integrable function
of bounded variation, which implies (VIII.5) and thus (VIII.2)
again. With a similar argument, (VIII.6) should be modified
to

u(x) ≤ s + 3I1 + β
1

k∗
sk∗ I

1
k

k ,

which yields (VIII.1) in this case as well.

Remark. Under stronger moment assumptions, one can obtain
better bounds for the decay of the density. For example, if for
some λ > 0, the exponential moment

β = E eλk∗|X | =
∫ ∞

−∞
eλk∗|x | f (x) dx

is finite, then by similar arguments, f (x) ≤ c e−λ|x | for any
x ∈ R with some constant c depending on λ, β and Ik .
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IX. CRAMÉR-RAO-TYPE INEQUALITY

Finally, let us relate the moments of the scores to the
absolute moments of centered random variables.

Theorem IX.1. If Ik(X) is finite, then, for any a ∈ R,

(E |X − a|k∗
)

1
k∗ (Ik(X))

1
k ≥ 1. (IX.1)

In the case k = 2, (IX.1) is reduced to the classical relation

Var(X) I2(X) ≥ 1. (IX.2)

It is a particular case of the Cramér-Rao inequality for the
parametric family of densities f (x; θ) = f (x − θ) and the
unbiased estimator θ̂ (x) = x of the shift parameter θ ∈ R, cf.
e.g. [5], paragraph 26).

The proof of Theorem IX.1 is based on the following
generalization of (IX.2), where one should choose u(x) =
x − a to obtain (IX.1).

Lemma IX.2. For any smooth function u : R → C such that
E |u�(X)| < ∞ and u(x) f (x) → 0 as |x | → ∞, we have

|E u�(X)| ≤ (Ik(X))
1
k (E |u(X)|k∗

)
1

k∗ . (IX.3)

Proof. One may integrate by parts to write∫ b

a
u�(x) f (x) dx = u(b) f (b)− u(a) f (a)

−
∫ b

a
u(x) f �(x) dx, a < b.

Assuming that E |u�(X)| < ∞ and letting a → −∞, b → ∞,
we obtain the equality

E u�(X) = −
∫ ∞

−∞
u(x) f �(x) dx

= −
∫

E
u(x) f �(x) dx

= −
∫

E

f �(x)
f (x)

k−1
k

u(x) f (x)
k−1

k dx,

where E = {x ∈ R : f (x) > 0}. It remains to apply Holder’s
inequality (as in the proof of Theorem VIII.1).

In order to justify an application of (IX.3) in Theorem IX.1,
one may assume that Ik(X) < ∞ and E |X |k∗

< ∞. This
implies (1+|x |) f (x) → 0 as |x | → ∞, according to Theorem
VIII.1 with s = 1. Hence, the assumptions of Lemma IX.2 are
fulfilled.
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