
Chapter 11
Asymptotic Behavior of Rényi Entropy
in the Central Limit Theorem

Sergey G. Bobkov and Arnaud Marsiglietti

Abstract We explore an asymptotic behavior of Rényi entropy along convolu-
tions in the central limit theorem with respect to the increasing number of i.i.d.
summands. In particular, the problem of monotonicity is addressed under suitable
moment hypotheses.
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11.1 Introduction

Given a (continuous) random variable X with density p, the associated Rényi
entropy and Rényi entropy power of index r (1 < r < ∞) are defined by

hr(X) = − 1

r − 1
log

∫ ∞
−∞

p(x)r dx, Nr (X) = e2hr (X) =
( ∫ ∞

−∞
p(x)r dx

)− 2
r−1

.

Being translation invariant and homogeneous of order 2, the functional Nr is similar
to the variance and is often interpreted as measure of uncertainty hidden in the
distribution of X. Another representation

Nr(X)−
1
2 = (

Ep(X)r−1) 1
r−1
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shows that Nr is non-increasing in r , so that 0 ≤ N∞ ≤ Nr ≤ N1 ≤ ∞. Here, for
the extreme indexes, the Rényi entropy power is defined by the monotonicity,

N∞(X) = lim
r↑∞ Nr(X) = ‖p‖−2∞ , N1(X) = lim

r↓1
Nr(X) = e2h1(X),

where ‖p‖∞ is the essential supremum of p(x). In the case r = 1, we arrive at the
Shannon differential entropy h1(X) = h(X) = − ∫

p(x) log p(x) dx with entropy
power N1 = N = e2h (provided that Nr(X) > 0 for some r > 1).

Much of the analysis about the Shannon and Rényi entropies is focused on the
behavior of these functionals on convolutions, i.e., for sums Sn = X1 + · · · + Xn of
independent random variables (including a multidimensional setting). First, let us
recall a fundamental entropy power inequality, which may be written in terms of the
normalized sums Zn = Sn/

√
n as

N(Zn) ≥ 1

n

n∑
k=1

N(Xk). (11.1)

There are also some extensions of this relation to the Rényi case (cf. [4, 5, 9, 10]).
When Xk’s are independent and identically distributed (i.i.d.), with mean zero

and variance one, the central limit theorem (CLT) asserts that Zn ⇒ Z with weak
convergence in distribution to the Gaussian limit Z ∼ N(0, 1). In this case, the
right-hand side of (11.1) is constant, while the sequence on the left is monotone, as
was shown by Artstein, Ball, Barthe and Naor [1], cf. also [12] (the inequality (11.1)
itself ensures that N(Zn) are non-decreasing along the values n = 2l). Moreover,
by another important result due to Barron [2], we have the entropic CLT: N(Zn) are
convergent to the entropy power N(Z), as long as N(Zn0) > 0 for some n0.

These results give rise to a number of natural questions about an asymptotic
behavior of the Rényi entropy powers Nr(Zn). In particular, when do they converge
to Nr(Z), and if so, what is the rate of convergence? Is the monotonicity still true?
As we will see, such questions may be studied, at least partially, under suitable
moment assumptions.

Let us state a few observations in these directions, assuming throughout that
X,X1,X2, . . . are i.i.d. random variables with EX = 0 and Var(X) = 1. Put βs =
E |X|s for real s ≥ 2. In order to describe necessary and sufficient conditions for
the convergence of the Rényi entropies in the CLT, we also introduce the common
characteristic function

f (t) = E eitX (t ∈ R).

Theorem 11.1.1 Given 1 < r ≤ ∞, we have the convergence Nr(Zn) → Nr(Z)

or equivalently hr(Zn) → hr(Z) as n → ∞, if and only if

∫ ∞

−∞
|f (t)|ν dt < ∞ f or some ν ≥ 1. (11.2)
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Equivalently, this holds if and only if Zn have bounded densities for all (some) n

large enough.

This characterization coincides with the one for the uniform local limit theorem
due to Gnedenko, cf. [11]. Since (11.2) is equivalent to the property that Zn have
bounded and hence bounded Ck-smooth densities for any fixed k and all n large
enough, it is often referred to as the smoothing condition. In general, (11.2) is
stronger than what is needed in the entropic case r = 1. In this connection, let
us note that there is still no explicit description such as (11.2) for the validity of the
entropic CLT in terms of the characteristic function f (t).

Once (11.2) is fulfilled, one may ask about the rate of convergence in Theo-
rem 11.1.1, which may be guaranteed assuming that the absolute moment βs is finite
for some s > 2. Moreover, in this case one may obtain asymptotic expansions for
Nr(Zn) in powers of 1/n similarly to the entropic expansions derived in [8]. They
involve the moments of X up to order m = [s], or equivalently—the cumulants

γk = i−k (log f )(k)(0), k = 1, . . . ,m.

In the Gaussian case X ∼ N(0, 1), all cumulants are vanishing, starting with k = 2.
In the general case, they indicate how close a given distribution to the normal. As
for the asymptotic behavior of Rényi’s entropies, it turns out that a special role is
played by the quantity

b = b(r) = −1

r

[
2 − r

12
γ 2

3 + r − 1

8
γ4

]
.

Here, γ3 = EX3 and γ4 = EX4 − 3, while for the extreme indexes, one may just
put

b(1) = lim
r→1

b(r) = − 1

12
γ 2

3 , b(∞) = lim
r→∞ b(r) = 1

12
γ 2

3 − 1

8
γ4.

This can be seen from the following assertion.

Theorem 11.1.2 Suppose that the smoothing condition (11.2) is fulfilled. If βs is
finite for 2 ≤ s < 4, then for any 1 < r < ∞,

hr(Zn) = hr(Z) + o(n− s−2
2 ), Nr(Zn) = Nr(Z) + o(n− s−2

2 ). (11.3)

Moreover, in case 4 ≤ s < 6,

hr(Zn) = hr(Z) + b n−1 + o(n− s−2
2 ), (11.4)

Nr(Zn) = Nr(Z)
(
1 + 2b n−1) + o(n− s−2

2 ).
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This assertion remains valid in the entropic case r = 1 as well (with a slight
logarithmic improvement in the remainder o-term, cf. [8]). In case s = 6, the
remainder term may be improved to O(n−2), and in fact, one may add quadratic
terms to get an expansion

hr(Zn) = hr(Z) + b n−1 + b2n
−2 + o(n−2) (11.5)

with some functional b2 = b2(r) depending also on γ5 and γ6. Regardless of its
value, one may therefore conclude about an eventual monotonicity of Nr(Zn) based
on the sign of b. Moreover, the above expansions continue to hold for r = ∞, so
that this case may be included as well.

Theorem 11.1.3 Suppose that the smoothing condition (11.2) is fulfilled, and let β6
be finite. Given 1 < r ≤ ∞, there exists n0 ≥ 1 such that the sequence Nr(Zn) is
increasing for n ≥ n0, whenever b(r) < 0, that is, if

2 − r

3
γ 2

3 + r − 1

2
γ4 > 0 (1 < r < ∞), γ4 >

2

3
γ 2

3 (r = ∞).

This sequence is decreasing for n ≥ n0, if b(r) > 0.

In particular, under the last condition γ4 > 2
3 γ 2

3 , the sequence Nr(Zn) is

eventually increasing for any fixed r ≥ 1. For example, this holds for X = ξ−α√
α

,

where the random variable ξ has a Gamma distribution with α degrees of freedom
(in which case γ3 = 2/

√
α and γ4 = 6/α).

On the other hand, if X is uniformly distributed in the interval (−√
3,

√
3), then

γ3 = 0, γ4 = −6/5, so Nr(Zn) is eventually decreasing for any r > 1, although the
opposite property takes place for r = 1.

The paper is organized as follows. We start with the proof of Theorem 11.1.1
(Sect. 11.2), and then collect together basic results on Edgeworth expansions for
densities pn of Zn (Sect. 11.3). They are used in Sects. 11.4–11.5 to construct a
formal asymptotic expansion for Lr -norms of pn in powers of 1/n up to order
[m−2

2 ] with remainder term as in (11.3)–(11.4). One particular case, where the
first moments of X agree with those of Z ∼ N(0, 1), is discussed separately in
Sect. 11.6, while the range 4 ≤ s ≤ 8 in such expansion is treated in Sect. 11.7. The
transition to the Rényi entropy is performed in Sect. 11.8, where Theorem 11.1.2 is
proved. Some comparison with the entropic CLT is given in Sect. 11.9, with remarks
leading to Theorem 11.1.3 for finite r . Finally, the index r = ∞ is treated separately
in Sect. 11.10. We refer to [6] for an extended version of the article where more
computational details are provided.
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11.2 Proof of Theorem 11.1.1

From now on, let X,X1,X2, . . . be i.i.d. random variables with EX = 0 and
Var(X) = 1, for which we define the normalized sums

Zn = X1 + · · · + Xn√
n

, n = 1, 2, . . .

First, let us recall Gnedenko’s uniform local limit theorem. Assuming the
smoothing condition (11.2), it asserts that, for all n large enough, the random
variables Zn have bounded densities pn, and moreover, in that case as n → ∞,

sup
x

|pn(x) − ϕ(x)| → 0. (11.6)

Here, as usual,

ϕ(x) = 1√
2π

e−x2/2 (x ∈ R)

denotes the density of the standard normal random variable Z. Clearly, the property
(11.6) is also necessary for the uniform boundedness of pn’s.

Let us explain the equivalence of the two conditions—in terms of the character-
istic function as in (11.2), and in terms of densities (via the existence of a bounded
density). Since |f (t)| ≤ 1 for all t , the property (11.2) is getting weaker for growing
ν, so it is sufficient to consider integer values of ν. Since Zn has characteristic
function

fn(t) = E eitZn = f (t/
√

n)n,

(11.2) implies that Zn has a bounded, continuous density pn for n = ν, by the
Fourier inversion formula. Hence the same is true for all n ≥ ν, by the convolution
character of the distributions of Zn. Conversely, suppose that Zn has a bounded
density pn for n = n0. This implies that pn ∈ Lr(R) for any r ≥ 1, with norm

‖pn‖r =
(∫ ∞

−∞
pn(x)r dx

)1/r

,

and in particular pn ∈ L2(R). By Plancherel’s theorem, the characteristic function
fn is also in L2(R). But this means that (11.2) is fulfilled with ν = 2n0.

Also note that, under the condition (11.2), we have fν(t) → 0 as t → ∞
(the Riemann-Lebesgue lemma), and thus f (t) → 0. Hence, (11.2) represents
a sharpening of the Cramér condition lim supt→∞ |f (t)| < 1, which is used to
establish a number of asymptotic results related to the CLT. In particular, using
the Fourier inversion formula, one can easily obtain (11.6) and actually a sharper
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statement such as

sup
x

(1 + x2) |pn(x) − ϕ(x)| → 0 (n → ∞). (11.7)

Proof of Theorem 11.1.1 First, let r = ∞. As explained, the smoothing condition
(11.2) implies the uniform local limit theorem (11.6). In turn, the latter yields
‖pn‖∞ → ‖ϕ‖∞, that is, N∞(Zn) → N∞(Z) as n → ∞. Conversely, this
convergence ensures that N∞(Zn) > 0 for all n large enough, that is, ‖pn‖∞ < ∞.
As was also emphasized, this implies (11.2).

Now, let 1 < r < ∞. If Nr(Zn) → Nr(Z) as n → ∞, then Nr(Zn) > 0 for
all n large enough, say n ≥ n0. Equivalently, for such n, Zn have densities pn with
‖pn‖r < ∞. If r ≥ 2, then ‖pn‖2 ≤ 1 + ‖pn‖r < ∞, so that pn and therefore fn

are in L2(R). This means that (11.2) is fulfilled for ν = 2n0. In the case 1 < r < 2,
one may apply the Hausdorff-Young inequality

‖û‖r ′ ≤ ‖u‖r , where û(t) =
∫ ∞

−∞
e2πitx u(x) dx, r ′ = r

r − 1
.

It implies that ‖fn‖r ′ ≤ √
2π ‖pn‖r < ∞, which means that (11.2) is fulfilled for

ν = r ′n0.
Thus, the smoothing condition (11.2) is indeed necessary. To argue in the other

direction, we apply the uniform local limit theorem: For all n ≥ n0 large enough,
Zn have densities pn, bounded by a constant M and moreover, the relation (11.6)
holds true, i.e.,

sup
x

∣∣pn(x)r − ϕ(x)r
∣∣ ≤ εn → 0 (n → ∞). (11.8)

For a given ε > 0, applying the usual central limit theorem, one may pick up T > 0
such that

P{|Zn| > T } + P{|Z| > T } < ε, n ≥ n1 ≥ n0.

Hence
∫

|x|>T

pn(x)r dx ≤ Mr−1
∫

|x|>T

pn(x) dx = Mr−1
P{|Zn| > T } < Mr−1ε,

and similarly for ϕ(x). Hence

∣∣∣∣
∫

|x|>T

pn(x)r dx −
∫

|x|>T

ϕ(x)r dx

∣∣∣∣ < Mr−1ε. (11.9)
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On the other hand, by (11.8),

∣∣∣∣
∫

|x|≤T

pn(x)r dx−
∫

|x|≤T

ϕ(x)r dx

∣∣∣∣ ≤
∫

|x|≤T

|pn(x)r−ϕ(x)r | dx ≤ 2T εn ≤ ε,

where the last inequality holds for all n ≥ n2 with some n2 ≥ n1. Together with
(11.9), we get

∣∣ ‖pn‖r
r − ‖ϕ‖r

r

∣∣ < (Mr−1 + 1) ε, n ≥ n2.

That is, ‖pn‖r
r → ‖ϕ‖r

r as n → ∞, thus proving the theorem. ��

11.3 Limit Theorems About Edgeworth Expansions

As is well-known, in case of the finite 3-rd absolute moment β3 = E |X|3, and
assuming the smoothness condition (11.2), the local limit theorems (11.6)–(11.7)
can be sharpened to

sup
x

(1 + |x|3) |pn(x) − ϕ(x)| = o
( 1√

n

)
(n → ∞). (11.10)

Here, the rate cannot be improved in general. However, under higher order moment
assumptions, the limit normal density may slightly be modified, which leads to the
sharpening of the right-hand side of (11.10). Namely, if βm = E |X|m is finite for
an integer m ≥ 2, one may introduce the cumulants

γk = i−k (log f )(k)(0), k = 1, . . . ,m.

They represent certain polynomials in the moments αi = EXi up to order k, namely,

γk = k!
∑

(−1)j−1 (j − 1)! 1

r1! . . . rk !
(α1

1!
)r1

. . .
(αk

k!
)rk

,

where j = r1 + · · · + rk and where the summation is running over all tuples
(r1, . . . , rk) of non-negative integers such that r1 + 2r2 + · · · + krk = k.

For example, with our moment assumptions EX = 0, Var(X) = 1, we have
γ1 = 0, γ2 = 1, γ3 = α3, γ4 = α4 − 3.

Definition 11.3.1 An Edgeworth correction of the standard normal law of order m

for the distribution of Zn is a finite signed measure νm with density

ϕm(x) = ϕ(x) + ϕ(x)

m−2∑
k=1

Qk(x) n−k/2, (11.11)
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where

Qk(x) =
∑ 1

r1! . . . rk!
(γ3

3!
)r1

. . .
( γk+2

(k + 2)!
)rk

Hk+2j (x). (11.12)

Here, the summation is running over all collections of non-negative integers
r1, . . . , rk such that r1 + 2r2 + · · · + krk = k, with notation j = r1 + · · · + rk .

As usual, Hk denotes the Chebyshev-Hermite polynomial of degree k with
leading term xk. The polynomial Qk in (11.11) has degree at most 3(m − 2) in
the variable x. The index m for ϕm indicates that the cumulants up to γm participate
in the construction. The sum in (11.11) may also be viewed as a polynomial in 1/

√
n

of degree at most m − 2.
For example, ϕ2 = ϕ, and there are no terms in the sum (11.11). For m =

3, 4, 5, 6, in (11.12) we correspondingly have

Q1(x) = γ3

3! H3(x),

Q2(x) = γ 2
3

2! 3!2 H6(x) + γ4

4! H4(x),

Q3(x) = γ 3
3

3!4 H9(x) + γ3γ4

3! 4! H7(x) + γ5

5! H5(x),

Q4(x) = γ 4
3

4! 3!4 H12(x) + γ 2
3 γ4

2! 3!2 4! H10(x) + γ3γ5

3! 5! H8(x) + γ 2
4

2! 4!2 H8(x) + γ6

6! H6(x).

Moreover, if the first m − 1 moments of X coincide with those of Z ∼ N(0, 1),
then the first m − 1 cumulants of X are vanishing, and (11.11) is simplified to

ϕm(x) = ϕ(x)
(

1 + γm

m! Hm(x) n− m−2
2

)
, γm = EXm − EZm. (11.13)

The following observation, generalizing and refining the non-uniform local limit
theorems (11.7) and (11.10), is due to Petrov [14], cf. also [3, 15]. From now on, we
always assume that the smoothing condition (11.2) is fulfilled.

Lemma 11.3.2 If βm < ∞ for an integer m ≥ 2, then as n → ∞

sup
x

(1 + |x|m) |pn(x) − ϕm(x)| = o
(
n− m−2

2
)
. (11.14)

Without the polynomial weight 1 + |x|m, a similar result was earlier obtained by
Gnedenko. However, in some applications the appearance of this weight turns out
to be crucial.
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If m ≥ 3, one may also take ϕm−1 as an approximation of pn, and then (11.14)
together with Definition 11.3.1 imply that

sup
x

(1 + |x|m) |pn(x) − ϕm−1(x)| = O
(
n− m−2

2
)
. (11.15)

A further generalization was given in [7] to employ the case of fractional
moments.

Lemma 11.3.3 Let βs < ∞ for some real s ≥ 2, and m = [s]. Then uniformly
over all x, as n → ∞,

(1+|x|s) (pn(x)−ϕm(x)) = o
(
n− s−2

2
)+ (1+|x|s−m)

(
O

(
n− m−1

2
)+o

(
n−(s−2)

))
.

In particular, for some constant α > 0 depending on s,

sup
|x|≤nα

(1 + |x|s) |pn(x) − ϕm(x)| = o
(
n− s−2

2
)
. (11.16)

Thus, (11.16) extends (11.14) when taking the supremum over relatively large
interval.

There are also similar results about the distribution functions Fn(x) = P{Zn ≤
x}, which may be approximated by


m(x) = νm((−∞, x]) =
∫ x

−∞
ϕm(y) dy = 
(x) − ϕ(x)

m−2∑
k=1

Rk(x) n−k/2,

(11.17)

where

Rk(x) =
∑ 1

r1! . . . rk!
(γ3

3!
)r1

. . .
( γk+2

(k + 2)!
)rk

Hk+2j−1(x)

with summation as in Definition 11.3.1. The next result is due to Osipov and Petrov
[13].

Lemma 11.3.4 Suppose that βs < ∞ for some real s ≥ 2, and let m = [s]. Then,
as n → ∞,

sup
x

(1 + |x|s) |Fn(x) − 
m(x)| = o
(
n− s−2

2
)
.

In particular, when s = m ≥ 3 is integer, we have

sup
x

(1 + |x|s) |Fn(x) − 
m−1(x)| = O
(
n− s−2

2
)
.
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This statement holds under the weaker assumption in comparison with (11.2):
nothing should be required in case 2 ≤ s < 3, while for s ≥ 3 the Cramér condition
is sufficient.

Remark 11.3.5 Since the densities pn can properly be approximated by the func-
tions ϕm, it makes sense to isolate the leading term in the sum (11.11), by rewriting
the definition as

ϕm(x) = ϕ(x) + ϕ(x)
γk+2

(k + 2)! Hk+2(x) n−k/2 + ϕ(x)

m−2∑
j=k+1

Qj(x) n−j/2

(11.18)

for some unique 1 ≤ k ≤ m − 2. The value of k is the maximal one in the interval
[1,m − 2] such that γ3 = · · · = γk+1 = 0, which means that the first moments of
X up to order k + 1 coincide with those of Z ∼ N(0, 1). In this case, necessarily
γk+2 = EXk+2 − EZk+2.

Of course, if m = 2, there are no terms on the right-hand side of (11.18) except
for ϕ.

11.4 Approximation for Lr -Norm of Densities pn

Lemmas 11.3.2–11.3.4 can be applied to explore an asymptotic behavior of the
functionals

I (p) = ‖p‖r
r =

∫ ∞

−∞
p(x)r dx (r > 1)

with p = pn. Since the densities pn are approximated by ϕm, we may expect that
I (pn) ∼ I (ϕm) for large n. However, ϕm do not need to be positive on the whole
real line, and it is more natural to consider the integrals

IT (p) =
∫

|x|≤T

p(x)r dx, T > 0,

over relatively long intervals. Actually, one may take T = Tn = √
(s − 2) log n

(s > 2). We have with some constants depending on the first m absolute moments
of X that

m−2∑
k=1

|Qk(x)| n−k/2 ≤ C (1 + |x|)3(m−2) 1√
n

≤ C′ (log n)3(m−2)/2
√

n
≤ 1

2
, |x| ≤ Tn,
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for all n large enough in the last inequality. Hence, by Definition 11.3.1, for all n

large enough,

|ϕm(x) − ϕ(x)| ≤ 1

2
ϕ(x), |x| ≤ Tn, (11.19)

so ϕm is positive on [−Tn, Tn]. On these intervals and for large n, consider the
functions

εn(x) = pn(x) − ϕm(x)

ϕm(x)
.

By (11.16) and (11.19), for |x| ≤ Tn, we have

|εn(x)| ≤ 2δn
n− s−2

2

ϕ(x)
≤ 2

√
2πδn,

for some positive sequence δn → 0. Thus, for large n, pn(x) = ϕm(x)(1 + εn(x))

with |εn(x)| ≤ 1
2 . Hence, by Taylor’s formula, and using (11.19) together with the

non-uniform bound (11.16), we get

|pn(x)r − ϕm(x)r | ≤ c ϕ(x)r |εn(x)|

≤ 2c ϕ(x)r−1 |pn(x) − ϕm(x)| ≤ δn
ϕ(x)r−1

1 + |x|s n− s−2
2

with some constant c which does not depend on x and n ≥ n0 and some positive
sequence δn → 0. After integration over [−Tn, Tn], this gives

IT (pn) = IT (ϕm) + o(n− s−2
2 ). (11.20)

In case s = m ≥ 3 is integer, by a similar argument based on (11.15), we also have

IT (pn) = IT (ϕm−1) + O(n− s−2
2 ). (11.21)

The remaining part of the integral,

JT (p) =
∫

|x|>T

p(x)r dx,

can be shown to be sufficiently small for p = pn on the basis of Lemma 11.3.4.
Indeed, first

P{|Z| > Tn} ≤ 1

Tn

e−T 2
n /2 = o

(
n− s−2

2
)
, Z ∼ N(0, 1).
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On the other hand, by Definition 11.3.1, using polynomial bounds |Qk(x)| ≤ ck (1+
|x|N) with N = 3(m−2) and some constants ck which do not depend on x, we have

|ϕm(x)| ≤ ϕ(x) + c√
n

(1 + |x|N) ϕ(x)

with some c independent of x and n. In addition,

∫
|x|>Tn

|x|N ϕ(x) dx ≤ c′
N (1 + T N

n ) e−T 2
n /2 ≤ c′′

N log(n)
N
2 n− s−2

2

with constants c′
N and c′′

N independent of n. This gives

∣∣νm{|x| > Tn}
∣∣ ≤

∫
|x|>Tn

|ϕm(x)| dx

≤
∫

|x|>Tn

ϕ(x) dx + c√
n

∫
|x|>Tn

(1 + |x|N) ϕ(x) dx

≤ P{|Z| > Tn} + c′′
N√
n

log(n)
N
2 n− (s−2)

2 ,

and thus

∣∣νm{|x| > Tn}
∣∣ = o

(
n− s−2

2
)
.

Since we assume the smoothness condition (11.2), the densities pn are uniformly
bounded by some constant M for all n ≥ n0. Therefore, by Lemma 11.3.4, for all n

large enough,

JT (pn) ≤ Mr−1
∫

|x|>Tn

pn(x) dx = Mr−1
P{|Zn| > Tn}

≤ Mr−1
∣∣νm{x : |x| > Tn}

∣∣ + T −s
n o

(
n− s−2

2
) = o

(
n− s−2

2
)
.

Combining this relation with (11.20) and (11.21), we arrive at:

Lemma 11.4.1 Suppose that βs < ∞ for s ≥ 2. Then for all n large enough, Zn

have bounded densities pn. Moreover, for any r > 1, as n → ∞,

∫ ∞

−∞
pn(x)r dx =

∫ Tn

−Tn

ϕm(x)r dx + o
(
n− s−2

2
)
, m = [s], (11.22)

where Tn = √
(s − 2) log n. In particular, if s = m ≥ 3 is integer, we also have

∫ ∞

−∞
pn(x)r dx =

∫ Tn

−Tn

ϕm−1(x)r dx + O
(
n− s−2

2
)
. (11.23)
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11.5 Truncated Lr -Norm of Approximating Densities ϕm

Let us now find an explicit expression for the second integral in (11.22), by applying
the Edgeworth approximation

ϕm(x) = ϕ(x)
(

1 +
m−2∑
k=1

Qk(x) n−k/2
)
, m = [s]. (11.24)

In the case 2 < s < 3, when ϕm = ϕ2 = ϕ, one may extend the integration in
(11.22) to the whole real line at the expense of the error

∫
|x|>Tn

ϕ(x)r dx <

∫
|x|>Tn

ϕ(x) dx = P{|Z| > Tn} = o
(
n− s−2

2
)
,

where Tn = √
(s − 2) log n as before. Hence, (11.22) yields

∫ ∞

−∞
pn(x)r dx =

∫ ∞

−∞
ϕ(x)r dx + o

(
n− s−2

2
)
, 2 < s < 3. (11.25)

This assertion remains to hold for s = 2 as well (Theorem 11.1.1).
Next, assume that s ≥ 3. As we know, when n is large enough, ϕm(x) is positive

for |x| ≤ Tn, so the second integral in (11.22) makes sense, cf. (11.19). Moreover,
in order to raise ϕm(x) to the power r on the basis of (11.24), one may apply the
Taylor expansion

(1 + ε)r = 1 +
N∑

k=1

(r)k

k! εk + O(εN+1), N = 1, 2, . . . , (ε → 0),

where the constant in O depends on N only, as long as |ε| ≤ 1
2 . Here we used the

standard notation (r)k = r(r − 1) . . . (r − k + 1), with convention (r)0 = 1 to be
used later on. Choosing

ε =
m−2∑
k=1

Qk(x) n−k/2, |x| ≤ Tn,

for all n large enough the above Taylor expansion is thus valid. Hence, uniformly
over all x ∈ [−Tn, Tn], as n → ∞,

(1 + ε)r = 1 +
N∑

k=1

(r)k

k! εk + εn(x) (11.26)
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with

εn(x) = O
(
(1 + |x|)3(m−2)(N+1) n−(N+1)/2

)
.

Furthermore, by the polynomial formula,

εk =
∑ k!

k1! . . . km−2! Q
k1
1 (x) . . .Q

km−2
m−2 (x) n− 1

2 (k1+2k2+···+(m−2) km−2),

where the summation is running over all non-negative integers k1, . . . , km−2 such
that k1 + · · · + km−2 = k. Inserting this in (11.26) and recalling (11.24), we can
represent ϕm(x)r as

ϕ(x)r
∑ (r)k1+···+km−2

k1! . . . km−2! Q
k1
1 (x) . . . Q

km−2
m−2 (x) n− 1

2 (k1+2k2+···+(m−2) km−2) + ϕ(x)r εn(x)

with summation over all non-negative integers k1, . . . , km−2 such that k1 + · · · +
km−2 ≤ N . One may now note that

∫ Tn

−Tn

ϕ(x)r εn(x) dx = O
(
n− N+1

2
)
,

where the constant in O depends on N only, as long as n is large enough.
Let us then choose N = m− 2. Integrating the above expression for ϕm(x)r over

the interval [−Tn, Tn], we can represent
∫ Tn

−Tn
ϕm(x)r dx as

∑ (r)k1+···+km−2

k1! . . . km−2!
∫ Tn

−Tn

ϕ(x)r Q
k1
1 (x) . . .Q

km−2
m−2 (x) dx

1

n
1
2 (k1+2k2+···+(m−2) km−2)

at the expense of an error O(n− m−1
2 ). Moreover, using the property

∫
|x|≥Tn

xNϕ(x)r dx = o(n− s−2
2 ),

the above integration may be extended to the whole real line. Hence,
∫ Tn

−Tn
ϕm(x)r dx

is represented as

∑ (r)k1+···+km−2

k1! . . . km−2!
∫ ∞

−∞
ϕ(x)r Q

k1
1 (x) . . . Q

km−2
m−2 (x) dx

1

n
1
2 (k1+2k2+···+(m−2) km−2)

+ o
(
n− s−2

2
)
.

Here, it is sufficient to keep only the powers of 1/n not exceeding (m − 2)/2.
But in that case, for any fixed value of

j = k1 + 2k2 + · · · + (m − 2) km−2,
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the constraint j ≤ m−2 implies that kj+1 = · · · = km−2 = 0. That is, we only need
to consider the collections k1, . . . , kj of length j . Thus, the above representation is
simplified to

∫ Tn

−Tn

ϕm(x)r dx =
∫ ∞

−∞
ϕ(x)r dx

+
∑ (r)k1+···+kj

k1! . . . kj !
∫ ∞

−∞
ϕ(x)r Q

k1
1 (x) . . .Q

kj

j (x) dx n−j/2 + o
(
n− s−2

2
)

(11.27)

with summation over all j = 1, . . . ,m − 2 and over all non-negative integers
k1, . . . , kj such that k1 + 2k2 + · · · + j kj = j .

As the last simplifying step, we note that Q2k−1(x) represents a linear combina-
tion of the polynomials H2i−1(x) and has a leading term x3(2k−1) up to a constant.
In particular, it is an odd function. On the other hand, Q2k(x) represents a linear
combination of H2i(x)’s and has a leading term x6k, so it is an even function. It
follows that any function of the form

Q = Q
k1
1 (x) . . .Q

kj

j (x) (k1 + 2k2 + · · · + j kj = j) (11.28)

is either odd or even, depending on whether j is odd or even. Indeed, for
polynomials of the class 1, defined by

P(x) = c0 + c2x
2 + · · · + c2Nx2N,

let us put Ev(P ) = 2N (mod 2) = 0, and for the class 2, defined by

P(x) = c1x + · · · + c2N−1 x2N−1,

let us put Ev(P ) = 2N − 1 (mod 2) = 1. The products of such polynomials
belong to one of the classes, and we have the property Ev(P1P2) = (Ev(P1) +
Ev(P2)) (mod 2). Therefore, using Ev(Qi) = 3i (mod 2) = i (mod 2) and the
summation in the group Z2, we have

Ev(Q) = k1 Ev(Q1) + · · · + kj Ev(Qj )

= k1 · 1 (mod 2) + · · · + kj · j (mod 2) = (k1 + · · · + jkj ) (mod 2) = j (mod 2).

Thus, Q is an odd function in (11.28), as long as j is odd, and then the
corresponding integral in (11.27) is vanishing. As a result, (11.22) and (11.27) yield
the following asymptotic expansion, which also holds for 2 ≤ s < 3, in view of
(11.25).
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Proposition 11.5.1 Suppose that βs < ∞ for s ≥ 2. Then, with m = [s], for any
r > 1,

∫ ∞

−∞
pn(x)r dx =

∫ ∞

−∞
ϕ(x)r dx

(
1 +

[ m−2
2 ]∑

j=1

aj

nj

)
+ o

(
n− s−2

2
)

(11.29)

with coefficients defined by

aj

∫ ∞

−∞
ϕ(x)r dx =

∑ (r)k1+···+k2j

k1! . . . k2j !
∫ ∞

−∞
Q

k1
1 (x) . . .Q

k2j

2j (x) ϕ(x)r dx.

(11.30)

Here, the summation runs over all integers k1, . . . , k2j ≥ 0 such that k1 + 2k2 +
· · · + 2j k2j = 2j with notation (r)k = r(r − 1) . . . (r − k + 1).

It follows from Definition 11.3.1 that each polynomial Qk is determined by the
moments of X up to order k + 2. Hence, each aj in (11.30) is only determined by r

and by the moments, hence, by the cumulants of X up to order 2j + 2. Moreover,
aj = 0 if these cumulants are vanishing.

11.6 The Case Where the First Cumulants Are Vanishing

For 2 ≤ s < 4, we necessarily have m ≤ 3, so that the sum in (11.29) has no term,
and then

∫ ∞

−∞
pn(x)r dx =

∫ ∞

−∞
ϕ(x)r dx + o

(
n− s−2

2
)
. (11.31)

In the more interesting case s ≥ 4, the leading term in the Edgeworth expansion
(11.24) may be written explicitly, as was already done in the representation (11.18).
It implies that, for some unique 1 ≤ k ≤ m − 2,

ϕm(x) = ϕ(x) + ϕ(x)
γk+2

(k + 2)! Hk+2(x) n−k/2 + C(x)ϕ(x) (1 + |x|3(m−2)) n−(k+1)/2

(11.32)

with some function C(x) bounded by a constant which does not depend on x and
large n ≥ n0.

To study an asymptotic behavior of the truncated Lr -norm of ϕm, one may repeat
computations of the previous section in this simple particular case, or alternatively,
one may just refer to the general result described in Proposition 11.5.1. Indeed,
(11.32) is equivalent to saying that the first moments of X up to order k+1 coincide
with those of Z ∼ N(0, 1) for some 1 ≤ k ≤ m − 2. Therefore, as emphasized
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after Proposition 11.5.1, aj = 0 whenever 2j + 2 ≤ k + 1, that is, j ≤ k−1
2 . Then

also Qj = 0. In case 2j + 2 = k + 2, that is, j = k/2 with even k, all terms in
the sum (11.30) are vanishing, except (potentially) for the term corresponding to the
collection with k1 = · · · = k2j−1 = 0, k2j = 1. Then the right-hand side of (11.30)
becomes

r

∫ ∞
−∞

Q2j (x) ϕ(x)r dx = r

∫ ∞
−∞

Qk(x) ϕ(x)r dx = r
γk+2

(k + 2)!
∫ ∞
−∞

Hk+2(x) ϕ(x)r dx,

and hence (11.29) yields

∫ ∞

−∞
pn(x)r dx =

∫ ∞

−∞
ϕ(x)r dx + An−k/2 + O(n− k+1

2 ) + o
(
n− s−2

2
)
, (11.33)

where

A = r
γk+2

(k + 2)!
∫ ∞

−∞
Hk+2(x) ϕ(x)r dx, γk+2 = EXk+2 − EZk+2.

In particular, A = 0 for odd k, since then the Chebyshev-Hermite polynomial
Hk+2(x) is odd.

To proceed, we focus on the integrals I (k, r) = ∫ ∞
−∞ Hk(x) ϕ(x)r dx with even

k.

Lemma 11.6.1 For any k = 1, 2, . . . ,

I (2k, r) = (2k − 1)!!
r

2k+1
2 (2π)

r−1
2

(1 − r)k. (11.34)

Proof The k-th Chebyshev-Hermite polynomial

Hk(x) = (−1)k
(
e−x2/2)(k)

ex2/2 = E (x + iZ)k, Z ∼ N(0, 1), (11.35)

has generating function

∞∑
k=0

Hk(x)
zk

k! = exz−z2/2, z ∈ C,

from which one can find the generating function for the sequence ck = I (k, r).
Namely,

∞∑
k=0

ck
zk

k! =
∫ ∞

−∞
exz−z2/2 ϕ(x)r dx = 1

(2π)
r−1

2
√

r
e− 1

2 (1− 1
r
) z2

.
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Differentiating this equality 2k times and applying the definition (11.35), we arrive
at

c2k = 1

(2π)
r−1

2
√

r

(
1 − 1

r

)k

H2k(0).

It remains to apply the equality (11.35), which gives H2k(0) = (−1)k EZ2k =
(−1)k (2k − 1)!! ��

For the first three even values k = 2, 4, 6, we thus have

I (2, r) = − 1

r3/2 (2π)
r−1

2

(r − 1), I (4, r) = 3

r5/2 (2π)
r−1

2

(r − 1)2,

I (6, r) = − 15

r7/2 (2π)
r−1

2

(r − 1)3. (11.36)

One may also evaluate the integrals
∫ ∞
−∞ Hk(x)2 ϕ(x)r dx. For example,

∫ ∞
−∞

H3(x)2 ϕ(x)r dx = 1
√

r (2π)
r−1

2

E

(( Z√
r

)3 − 3
( Z√

r

))2
= 3 (5 − 6r + 3r2)

r7/2 (2π)
r−1

2

.

(11.37)

Thus, the formula (11.34) may be used in the asymptotic representation (11.33).
The particular case k = [s] − 2 should be mentioned separately.

Corollary 11.6.2 Suppose that EXl = EZl for l = 1, . . . ,m − 1 (m ≥ 3), where
Z ∼ N(0, 1). If βs < ∞ for some s ∈ [m,m + 1), then for all n large enough, Zn

have bounded densities pn. Moreover,

∫ ∞

−∞
pn(x)r dx =

∫ ∞

−∞
ϕ(x)r dx + An− m−2

2 + o
(
n− s−2

2
)

(11.38)

with A = 0 in the case m = 2k − 1 is odd, while in the case where m = 2k is even,
we have

A = γ2k

2kk!
(1 − r)k

(2π)
r−1

2 r
2k−1

2

, γ2k = EX2k − EZ2k.

If βs < ∞ for s = m + 1, then o-term in (11.38) may be replaced with O-term.

For example, if γ3 = EX3 = 0, so that m = 4, 4 ≤ s < 5, we have

A = γ4

8

1

(2π)
r−1

2

(1 − r)2

r
3
2

, γ4 = EX4 − EZ4 = EX4 − 3,
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and (11.38) becomes

∫ ∞

−∞
pn(x)r dx =

∫ ∞

−∞
ϕ(x)r dx + An−1 + o

(
n− s−2

2
)
. (11.39)

By (11.33), a similar formula remains to hold in the case 5 ≤ s < 6, but then the
o-term should be replaced with O(n−3/2).

11.7 Moments of Order 4 ≤ s ≤ 8

Returning to the general expansion (11.29) in Proposition 11.5.1 with coefficients
aj described in (11.30), let us now derive formulas similar to (11.39) for two regions
of the values of s without additional assumptions on the first cumulants. To evaluate
the integrals in that definition, we will use the formulas for the polynomials Qj

described in Sect. 11.3 for the indexes j ≤ 4.
If 4 ≤ s < 6, the expansion (11.29) contains only one term, namely, we get

∫ ∞

−∞
pn(x)r dx =

∫ ∞

−∞
ϕ(x)r dx + a1

n

∫ ∞

−∞
ϕ(x)r dx + o

(
n− s−2

2
)

(11.40)

with the coefficient for j = 1 in front of 1/n, i.e.,

A1 ≡ a1

∫ ∞

−∞
ϕ(x)r dx = (r)1

1!
∫ ∞

−∞
Q2(x) ϕ(x)r dx + (r)2

2!
∫ ∞

−∞
Q2

1(x) ϕ(x)r dx

= r

∫ ∞

−∞

(γ4

4! H4(x) + 1

2!
(γ3

3!
)2

H6(x)
)

ϕ(x)r dx

+ r(r − 1)

2

∫ ∞

−∞

(γ3

3! H3(x)
)2

ϕ(x)r dx.

Applying the formulas (11.36)–(11.37), we find that

A1 = r
γ 2

3

2! 3!2 I (6, r) + r
γ4

4! I (4, r) + r(r − 1)

2

(γ3

3!
)2

∫ ∞

−∞
H3(x)2 ϕ(x)r dx

= −r
γ 2

3

72

15

r7/2 (2π)
r−1

2

(r − 1)3 + r
γ4

24

3

r5/2 (2π)
r−1

2

(r − 1)2 + r(r − 1)
γ 2

3

24

5 − 6r + 3r2

r7/2 (2π)
r−1

2

.

Equivalently,

(2π)
r−1

2
r5/2

r − 1
A1 = − 5

24
(r − 1)2 γ 2

3 + 1

8
r(r − 1) γ4 + 1

24
(5 − 6r + 3r2) γ 2

3 .
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Collecting the coefficients in front of γ 2
3 , we arrive at the following refinement of

(11.40).

Proposition 11.7.1 Suppose that βs < ∞ for 4 ≤ s < 6. Then, for any r > 1,

∫ ∞

−∞
pn(x)r dx =

∫ ∞

−∞
ϕ(x)r dx + A1n

−1 + o
(
n− s−2

2
)
, (11.41)

where the constant A1 = A1(r) is given by

(2π)
r−1

2
r3/2

r − 1
A1(r) = 2 − r

12
γ 2

3 + r − 1

8
γ4. (11.42)

In the case s = 6, the formula (11.41) remains valid with the remainder term
O(n−2).

Note that limr→1
A1(r)
r−1 = 1

12 γ 2
3 . Also, if γ3 = 0, then (11.42) is simplified and

defines exactly the constant A in the equality (11.39).
For the region 6 ≤ s < 8, the sum in (11.29) contains two terms, proportional

to 1
n

and 1
n2 . The coefficient a1 is as before, while according to (11.30), we arrive at

the following refinement.

Proposition 11.7.2 Suppose that βs < ∞ for 6 ≤ s < 8. Then, for any r > 1,

∫ ∞

−∞
pn(x)r dx =

∫ ∞

−∞
ϕ(x)r dx + A1n

−1 + A2n
−2 + o

(
n− s−2

2
)
, (11.43)

where A1 is given in (11.42) and

A2 = r

∫ ∞

−∞
Q4(x) ϕ(x)r dx + (r)2

2

∫ ∞

−∞
(
Q2

2(x) + 2 Q1(x)Q3(x)
)
ϕ(x)r dx

+ (r)3

2

∫ ∞

−∞
Q2

1(x)Q2(x) ϕ(x)r dx + (r)4

24

∫ ∞

−∞
Q4

1(x) ϕ(x)r dx.

In the case s = 8, the formula (11.43) remains valid with the remainder term
O(n−3).

One can rewrite A2 explicitly in terms of the cumulants of X, cf. [6]. In the case
γ3 = 0, a long expression for this constant is simplified to

A2 = γ6 r

6!
∫ ∞

−∞
H6(x) ϕ(x)r dx+ γ 2

4 r

2! 4!2
∫ ∞

−∞
H8(x) ϕ(x)r dx+ γ 2

4 r(r − 1)

2! 4!2
∫ ∞

−∞
H4(x)2 ϕ(x)r dx.
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11.8 Expansions for Rényi Entropies

Let us now reformulate the asymptotic results about the integrals
∫ ∞
−∞ pn(x)r dx in

terms of the Rényi entropies and entropy powers

hr(Zn) = − 1

r − 1
log

∫ ∞

−∞
pn(x)r dx, Nr(Zn) =

( ∫ ∞

−∞
pn(x)r dx

)− 2
r−1

.

Since these functionals represent smooth functions of the Lr -norm, from Proposi-
tion 11.5.1 together with Taylor’s formulas

log(a + b + c) = log a + a−1b + O(b2 + |c|), (11.44)

(a + b + c)q = aq + qaq−1 b + O(b2 + |c|),

holding with a > 0, q �= 0, and b, c → 0, we immediately obtain:

Proposition 11.8.1 Let E |X|s < ∞ for some s ≥ 2, and m = [s]. Then, for any
r > 1,

hr(Zn) = hr(Z) +
[ m−2

2 ]∑
j=1

bj

nj
+ o

(
n− s−2

2
)
, (11.45)

Nr(Zn) = Nr(Z)

(
1 +

[ m−2
2 ]∑

j=1

cj

nj

)
+ o

(
n− s−2

2
)
, (11.46)

with coefficients bj and cj that are determined by r and by the moments of X up to
order 2j + 2.

Proof of Theorem 11.1.2 To evaluate the first coefficients in the expansions
(11.45)–(11.46), we apply Taylor’s formulas (11.44). For q = − 2

r−1 , the last
equality in (11.44) reads

(a + b + c)−
2

r−1 = a− 2
r−1 − 2

r − 1
a− r+1

r−1 b + O(b2 + |c|). (11.47)

In particular (with b = 0), the expansion of the form

∫ ∞

−∞
pn(x)r dx =

∫ ∞

−∞
ϕ(x)r dx + o

(
n− s−2

2
)
,
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which corresponds to Proposition 11.5.1 to the region 2 < s < 4, implies

log
∫ ∞

−∞
pn(x)r dx = log

∫ ∞

−∞
ϕ(x)r dx + o

(
n− s−2

2
)
.

Equivalently, hr(Zn) = hr(Z) + o(n− s−2
2 ) or Nr(Zn) = Nr(Z) + o(n− s−2

2 ) for
Z ∼ N(0, 1).

More generally, applying (11.44)–(11.47) to the expansion

∫ ∞

−∞
pn(x)r dx =

∫ ∞

−∞
ϕ(x)r dx + A1 n−1 + o

(
n− s−2

2
)
,

corresponding to Proposition 11.7.1 with its region 4 ≤ s < 6, we get

log
∫ ∞

−∞
pn(x)r dx = log

∫ ∞

−∞
ϕ(x)r dx + A1 n−1

(∫ ∞

−∞
ϕ(x)r dx

)−1

+ o
(
n− s−2

2
)
,

and

( ∫ ∞

−∞
pn(x)r dx

)− 2
r−1 =

( ∫ ∞

−∞
ϕ(x)r dx

)− 2
r−1

− 2A1

r − 1
n−1

(∫ ∞

−∞
ϕ(x)r dx

)− r+1
r−1 + o

(
n− s−2

2
)
.

Thus,

hr(Zn) = hr(Z) − A1

r − 1
Nr(Z)

r−1
2 n−1 + o(n− s−2

2 ), (11.48)

and (equivalently)

Nr(Zn) = Nr(Z)
[
1 − 2A1

r − 1
Nr(Z)

r−1
2 n−1

]
+ o(n− s−2

2 ). (11.49)

Recall that A1 = A1(r) is determined by r and the cumulants γ3 = EX3

and γ4 = EX4 − 3. More precisely, according to the formula (11.42) of Propo-
sition 11.7.1,

A1

r − 1
= 1

(2π)
r−1

2 r3/2

[
2 − r

12
γ 2

3 + r − 1

8
γ4

]
.

Since also

Nr(Z)
r−1

2 =
( ∫ ∞

−∞
ϕ(x)r dx

)−1

= (2π)
r−1

2 r1/2,
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the coefficients b1 and c1 in (11.45)–(11.46) in front of n−1 are simplified according
to (11.48)–(11.49) as

b1 = − A1

r − 1
Nr(Z)

r−1
2 = −1

r

[
2 − r

12
γ 2

3 + r − 1

8
γ4

]
, c1 = 2b1.

��
Let us complement the expansions of Theorem 11.1.2 with similar assertions

corresponding to the scenario from Corollary 11.6.2, where the first m−1 moments
of X coincide with those of Z ∼ N(0, 1), for some integer m ≥ 3. If βs is finite for
s ∈ [m,m + 1), in that case we have an expansion of the form

∫ ∞

−∞
pn(x)r dx =

∫ ∞

−∞
ϕ(x)r dx + An− m−2

2 + o
(
n− s−2

2
)
.

Hence, by (11.44)–(11.47),

log
∫ ∞

−∞
pn(x)r dx = log

∫ ∞

−∞
ϕ(x)r dx

+ A n− m−2
2

(∫ ∞

−∞
ϕ(x)r dx

)−1

+ O(n−(m−2)) + o
(
n− s−2

2
)
,

and

(∫ ∞

−∞
pn(x)r dx

)− 2
r−1 =

(∫ ∞

−∞
ϕ(x)r dx

)− 2
r−1

− 2A

r − 1
n− m−2

2

(∫ ∞

−∞
ϕ(x)r dx

)− r+1
r−1 + O(n−(m−2)) + o

(
n− s−2

2
)
.

Since m − 2 > s−2
2 , here O-term may be removed. In addition, as before, the

last integral with its power can be written as Nr(Z)
r+1

2 . Therefore, we obtain the
asymptotic relations

hr(Zn) = hr(Z) − A

r − 1
Nr(Z)

r−1
2 n− m−2

2 + o(n− s−2
2 )

and

Nr(Zn) = Nr(Z)

[
1 − 2A

r − 1
Nr(Z)

r−1
2 n− m−2

2

]
+ o(n− s−2

2 )

in full analogy with (11.48)–(11.49). The only difference is that we have a different
formula for the constant A = A(r). As stated in Corollary 11.6.2, here A = 0 in the
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case m = 2k − 1 is odd, while in the case m = 2k is even, we have

A = γ2k

2kk!
(1 − r)k

(2π)
r−1

2 r
2k−1

2

, γ2k = EX2k − EZ2k.

Using again Nr(Z)
r−1

2 = (2π)
r−1

2 r1/2, the coefficients bk−1 and ck−1 in (11.45)–

(11.46) in front of n− m−2
2 = n−(k−1) are simplified to

bk−1 = − A

r − 1
Nr(Z)

r−1
2 = γ2k

2kk!
(1 − r)k−1

rk−1 , ck−1 = 2bk−1.

Let us also remind that, if βs < ∞ for s = m+1, then o-term may be replaced with

O(n− m−1
2 ). We are thus ready to make a corresponding statement.

Proposition 11.8.2 Suppose that EXl = EZl for l = 3, . . . ,m − 1 (m ≥ 3). If
βs < ∞ for some s ∈ [m,m + 1), then for any r > 1,

hr(Zn) = hr(Z) + bn− m−2
2 + o(n− s−2

2 ),

Nr(Zn) = Nr(Z)
(
1 + 2b n− m−2

2
) + o(n− s−2

2 )

with constant b = 0 in the case m = 2k − 1 is odd, while in the case m = 2k is
even,

b = bk−1 = γ2k

2kk!
(1

r
− 1

)k−1
, γ2k = EX2k − EZ2k.

If βs < ∞ for s = m + 1, then o-term may be replaced with O(n− m−1
2 ).

For example, if γ3 = EX3 = 0, we return to the equality (11.4) from
Theorem 11.1.2.

11.9 Comparison with the Entropic CLT: Monotonicity

Put

�n(r) = hr(Z) − hr(Zn), �n = �n(1).

The latter quantity, which may also be written as D(Zn||Z) = ∫ ∞
−∞ pn(x) log pn(x)

ϕ(x)
dx, represents the Kullback-Leibler distance from the distribution of Zn to the
standard normal law (or, the relative entropy). As was mentioned, the sequence
�n is always non-negative and non-increasing. Moreover, the entropic CLT asserts
that �n → 0 as n → ∞, as long as �n is finite for some n (in general, it is a
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weaker condition in comparison with (11.2)). The basic references for these results
are [1, 2, 12].

The rate of convergence of �n to zero was studied in [8], and here we recall a few
asymptotic results, assuming that �n < ∞ for some n, and that βs = E |X|s < ∞
for a real number s ≥ 2. Namely, we have

�n = o

(
1

(n log n)
s−2

2

)
, 2 ≤ s < 4.

Modulo a logarithmic term, it is the same rate as for �n(r) indicated in Theo-
rem 11.1.2. Nevertheless, it is not yet clear, if one can similarly improve Theo-
rem 11.1.2. On the other hand, for any prescribed η > 1, it may occur that, for all n

large enough,

�n ≥ c

(n log n)
s−2

2 (log n)η

with some constant c = c(η, s) > 0 depending on η and s only ([8], Theorem 11.1.3).
The range s ≥ 4 is more interesting, since then one may control the speed of �n.

In particular,

�n = γ 2
3

12
n−1 + o

(
1

(n log n)
s−2

2

)
, 4 ≤ s < 6,

�n = γ 2
3

12
n−1 + O

(
1

(n log n)2

)
, s = 6.

Thus, if γ3 �= 0, then �n is equivalent to a decreasing sequence, which decreases at
rate n−1. (Strictly speaking, this property does not imply the monotonicity itself.)

Let us compare this asymptotic with what is given in Theorem 11.1.2. Namely,
for any r > 1, we have

�n(r) = B1 n−1 + o
(
n− s−2

2
)
, 4 ≤ s < 6, (11.50)

�n(r) = B1 n−1 + O
(
n−2), s = 6, (11.51)

where

B1 = B1(r) = −b = 1

4r

[
2 − r

3
γ 2

3 + r − 1

2
γ4

]
.

We see that B(r) → 1
12 γ 2

3 as r → 1, so that we recover the main term in the
asymptotic for �n, and at the same rate modulo a logarithmic factor.
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However, what can one say about the sign of B1(r) with fixed r > 1? First
suppose that γ3 �= 0. When r is sufficiently close to 1, then B1(r) > 0, so that
�n(r) is equivalent to a decreasing sequence like for r = 1. More precisely, this is
true for all r > 1, whenever γ4 ≥ 2

3 γ 2
3 . But, if γ4 < 2

3 γ 2
3 , then B1(r) < 0 for all

r > r0 = 4γ 2
3 − 3γ4

2γ 2
3 − 3γ4

.

Hence �n(r) becomes to be equivalent to an increasing sequence. In that case,
necessarily hr(Zn) > hr(Z) for all n large enough, which is impossible in the
Shannon case r = 1. This shows that �n(r) may not serve as distance!

If γ3 = 0 (as in case of symmetric distributions), the constant is simplified to

B1 = B1(r) = r − 1

8r
γ4, γ4 = EX4 − 3,

and then the sign of B1 coincides with the sign of γ4. Both cases, γ4 > 0 or γ4 < 0,
are typical, and one can make a similar conclusion as before, but for the whole
range r > 1. Namely, if γ4 > 0, then �n(r) is equivalent to a decreasing sequence,
which decreases at rate n−1, and if γ4 < 0, then �n(r) is equivalent to an increasing
sequence, which increases also at rate n−1.

Proof of Theorem 11.1.3 in Case r < ∞ In order to make a more rigorous conclu-
sion about the monotonicity of �n(r) for large n, the expansions for Rényi entropy
hr(Zn) such as (11.50)–(11.51) are insufficient. We need to use more terms in
the general Proposition 11.8.1 involving the quadratic terms b2/n2 and c2/n2.
This is possible under stronger moment assumptions, corresponding to the range
6 ≤ s < 8. Indeed, in that case, Proposition 11.8.1 provides the expansion (11.5) in
which the coefficient b1 = b is as before, and we also know that the coefficient b2
is only determined by r and by the moments of X up to order 6. In fact, one may
evaluate b2 on the basis of equality (11.43) of Proposition 11.7.2, which specializes
Proposition 11.5.1 to the range 6 ≤ s < 8. Since the formula for the coefficient
A2 = A2(r) is somewhat complicated, we will not go into tedious computations.

Now, from (11.5) it follows that

hr(Zn+1) − hr(Zn) = B1

n(n + 1)
+ o(n−2),

which thus proves Theorem 11.1.3 in case of finite r . ��
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11.10 Maximum of Density (the Case r = ∞)

Recall that N∞(X) = ‖p‖−2∞ when a random variable X has density p. An
expansion similar to the one of Proposition 11.5.1 can also be obtained for ‖pn‖∞
and hence for N∞(Zn). In order to deduce monotonicity, let us assume that β6 < ∞.

From the non-uniform local limit theorem it follows that ‖pn − ϕ6‖∞ = o(n−2)

as n → ∞, where ϕ6 is the Edgeworth expansion of order 6. Hence

‖pn‖∞ = ‖ϕ6‖∞ + o(n−2). (11.52)

Here

ϕ6(x) = ϕ(x)
(

1 + Q1(x)
1√
n

+ Q2(x)
1

n
+ Q3(x)

1

n
3
2

+ Q4(x)
1

n2

)
,

where the polynomials Qk(x) are the same as in Sect. 11.3.
Let us find an asymptotic expansion for ‖ϕ6‖∞ (we refer to [6] for more

computational details). Since ϕ6(x) is vanishing at infinity, there exists a point x6(n)

such that ‖ϕ6‖∞ = |ϕ6(x6(n))|. Since also the functions ϕ(x) Qk(x) are bounded,
we have |ϕ6(x)| = O( 1√

n
) uniformly in the region |x| ≥ √

log n. On the other hand,

ϕ6(0) = ϕ(0) + ϕ(0)

4∑
k=1

Qk(0) n− k
2 ≥ 1

2
ϕ(0)

for n large. Therefore, ϕ6(0) > |ϕ6(x)| for all n large enough, as long as |x| ≥√
log n, and we conclude that

‖ϕ6‖∞ = sup
|x|≤√

log n

|ϕ6(x)| and |x6(n)| ≤ √
log n. (11.53)

Since x = x6(n) is the point of local extremum, we have ϕ′
6(x) = 0, that is,

x = Q′
1(x) − xQ1(x)√

n
+ Q′

2(x) − xQ2(x)

n
+ Q′

3(x) − xQ3(x)

n
3
2

+ Q′
4(x) − xQ4(x)

n2
.

(11.54)

Using (11.53), we deduce from (11.54) that x6(n) = O
( 1√

n
(log n)

13
2
)

and hence

|x6(n)| ≤ 1 for all n large enough. But then, from (11.54) again, x6(n) = O( 1√
n
).

For x = x6(n), we thus have

xQ3(x)

n
3
2

= O
(
n−5/2), Q′

4(x)

n2 = O
(
n−5/2), xQ4(x)

n2 = O
(
n−5/2),



196 S. G. Bobkov and A. Marsiglietti

and (11.54) is simplified to

x = Q′
1(x) − xQ1(x)√

n
+ Q′

2(x) − xQ2(x)

n
+ Q′

3(x)

n
3
2

+ O
(
n−5/2).

The Chebyshev-Hermite polynomials satisfy the relation H ′
k(x) − xHk(x) =

−Hk+1(x), so

H ′
3(x) − xH3(x) = −H4(x) = −3 + 6x2 − x4

H ′
4(x) − xH4(x) = −H5(x) = −15x + 10x3 − x5

H ′
6(x) − xH6(x) = −H7(x) = 105 x − 105 x3 + 21 x5 − x7.

Using these identities in the formulas for Qk’s, we easily find for x = O( 1√
n
) that

Q′
1(x) − xQ1(x)√

n
= − γ3

2
√

n
+ γ3

x2
√

n
+ O

(
n−5/2),

Q′
2(x) − xQ2(x)

n
=

( 105

2! 3!2 γ 2
3 − 15

4! γ4

) x

n
+ O

(
n−5/2),

Q′
3(x)

n
3
2

=
(945

3!4 γ 3
3 − 105

3! 4! γ3γ4 + 15

5! γ5

) 1

n
3
2

+ O
(
n−5/2).

As a result,

x = x6(n) = − γ3

2
√

n
+ γ3

x2

√
n

+
( 105

2 · 3!2 γ 2
3 − 15

4! γ4

)x

n

+
(945

3!4 γ 3
3 − 105

3!4! γ3γ4 + 15

5! γ5

) 1

n
3
2

+ O
(
n−5/2). (11.55)

One may use this asymptotic equation to find an expansion for x6(n) in powers
of 1/

√
n. Indeed, first we immediately obtain that

x = x6(n) = − γ3

2
√

n
+ O

(
n− 3

2
)
,

implying

x2

√
n

= γ 2
3

4

1

n
3
2

+ O
(
n−5/2), x

n
= −γ3

2

1

n
3
2

+ O
(
n−5/2).
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Inserting the above to (11.55), we deduce that

x = x6(n) = a1√
n

+ a2

n
3
2

+ O
(
n−5/2)

with coefficients

a1 = −1

2
γ3, a2 = 1

4
γ 3

3 − 5

12
γ3γ4 + 1

8
γ5.

In particular, a1 = a2 = 0 and therefore x = x6(n) = O
(
n−5/2

)
, as long as the

distribution of X is symmetric about the origin (in which case γ3 = γ5 = 0).
Still in the general case, keeping these coefficients, we deduce for x = x6(n) that

x = 1√
n

(
a1 + a2

1

n

)
+ O

(
n−5/2), x2 = 1

n

(
a2

1 + 2a1a2
1

n

)
+ O

(
n−5/2),

x3 = 1

n
3
2

a3
1 + O

(
n−5/2), x4 = 1

n2
a4

1 + O
(
n−5/2), xp = O

(
n−5/2) (p ≥ 5).

Hence

Q1(x)√
n

= γ3

6
√

n
(x3 − 3x) = γ 2

3

4n
+ b1

n2 + O
(
n−5/2), b1 = γ3

3! (a3
1 − 3a2).

Similarly,

Q2(x)

n
=

( 3

4! γ4 − 15

2! · 3!2 γ 2
3

) 1

n
+ b2

n2 + O
(
n−5/2),

Q3(x)

n
3
2

= b3

n2
+ O

(
n−5/2),

Q4(x)

n2 = b4

n2 + O
(
n−5/2)

with

b2 =
( 45

2 · 3!2 γ 2
3 − 6

4! γ4

)
a2

1, b3 =
(945

3!4 γ 3
3 − 105

3!4! γ3γ4 + 15

5! γ5

)
a1,

and

b4 = 10 395

4! · 3!4 γ 4
3 − 945

2 · 3!24! γ 2
3 γ4 + 105

3! · 5! γ3γ5 + 105

2 · 4!2 γ 2
4 − 15

6! γ6.

Note that in the case of symmetric distributions, b1 = b2 = b3 = 0, while
b4 = 105

2·4!2 γ 2
4 − 15

6! γ6.
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Now, as x → 0,

ϕ(x)

‖ϕ‖∞
= 1 − 1

2
x2 + 1

8
x4 + O(x6),

and recall that, for x = x6(n), we have x2 = 1
n

(a2
1 + 2a1a2

1
n
) + O(n−5/2) and

x4 = 1
n2 a4

1 + O(n−5/2). Thus,

ϕ(x)

‖ϕ‖∞
= 1 − a2

1

2n
+

(a4
1

8
− a1a2

) 1

n2 + O
(
n−5/2).

Therefore, denoting b = b1 + b2 + b3 + b4, we get

‖ϕ6‖∞
‖ϕ‖∞

= ϕ6(x)

‖ϕ‖∞
= ϕ(x)

‖ϕ‖∞
(

1 + Q1(x)√
n

+ Q2(x)

n
+ Q3(x)

n
3
2

+ Q4(x)

n2

)

= 1 +
(

− 1

2
a2

1 + 1

4
γ 2

3 + 3

4! γ4 − 15

2! · 3!2 γ 2
3

) 1

n

+
(

b + 1

8
a4

1 − a1a2 − 1

2

(1

4
γ 2

3 + 3

4! γ4 − 15

2! · 3!2 γ 2
3

)
a2

1

)
1

n2
+ O

(
n−5/2).

Simplifying the term in front of 1/n, we arrive at

‖ϕ6‖∞ = ‖ϕ‖∞ + ‖ϕ‖∞
n

A + ‖ϕ‖∞
n2

B + O
(
n−5/2),

where

A = 1

8

(
γ4 − 2

3
γ 2

3

)
, B = b + 1

8
a4

1 − a1a2 − 1

2

(1

4
γ 2

3 + 3

4! γ4 − 15

2! · 3!2 γ 2
3

)
a2

1 .

(11.56)

Using our assumptions, let us summarize by recalling the assertion (11.52). We
then get

‖pn‖∞ = ‖ϕ‖∞
(

1 + 1

n
A + 1

n2 B
)

+ o
(
n−2), (11.57)

where A and B are as above with a1 = − 1
2 γ3 and a2 = 1

4 γ 3
3 − 5

12 γ3γ4 + 1
8 γ5.

One can now reformulate this result in terms of the Rényi entropy of index r =
∞. Since N∞(Zn) = ‖pn‖−2∞ and N∞(Z) = ‖ϕ‖−2∞ for Z ∼ N(0, 1), the expansion
(11.57) yields:

Proposition 11.10.1 If β6 is finite, then as n → ∞,

N∞(Zn) = N∞(Z)
(

1 − Ã

n
+ B̃

n2

)
+ o

( 1

n2

)
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with Ã = 1
4 (γ4 − 2

3 γ 2
3 ), B̃ = 3A2 − 2B, where the constants A and B are given in

(11.56).

Proof of Theorem 11.1.3 in Case r = ∞ Denoting �n = N∞(Z) − N∞(Zn), from
(11.57) we get �n+1 − �n = − Ã

n(n+1)
+ o( 1

n2 ). ��
In the case γ3 = γ5 = 0, for example when X is symmetric, the coefficients

in Proposition 11.10.1 are simplified. Indeed, recalling the formula for b4 in such a
case, we have

A = 1

8
γ4, B = b4 = 105

2 · 4!2 γ 2
4 − 15

6! γ6,

and therefore,

Ã = 1

4
γ4, B̃ = 3A2 − 2B = 1

24
γ6 − 13

96
γ 2

4 .

As a consequence, the eventual monotonicity of N∞(Zn) can be deduced based on
the sign of γ4. However, if also γ4 = 0, we need to look at the sign of γ6.
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