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Abstract For sums of independent random variables Sn = X1 + · · · + Xn , Berry–
Esseen-type bounds are derived for the power transport distances Wp in terms of
Lyapunov coefficients L p+2. In the case of identically distributed summands, the
rates of convergence are refined under Cramér’s condition.
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1 Introduction

Let Fp denote the collection of all Borel probability measures on the real line R with
finite absolute moments of order p ≥ 1. The power transport distance of order p
between two measures μ, ν in Fp (also called the Kantorovich or minimal distance)
is defined by

Wp(μ, ν) = inf
π

(∫ ∞

−∞

∫ ∞

−∞
|x − y|p dπ(x, y)

)1/p

, (1.1)
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where the infimum runs over all probability measures π on R × R with marginals μ

and ν. The quantity Wp represents a metric in the space Fp, which is closely related
to the topology of week convergence of probability distributions on the line.

Given independent random variables X1, . . . , Xn with zero mean and variances
EX2

k = σ 2
k such that

∑n
k=1 σ 2

k = 1, we consider the transport distances from the
distribution μn of the sum Sn = X1 + · · · + Xn to the standard normal law γ , i.e., to
the Gaussian measure with density and distribution function

ϕ(x) = dγ (x)

dx
= 1√

2π
e−x2/2, �(x) = γ ((−∞, x]) =

∫ x

−∞
ϕ(y) dy (x ∈ R).

Of a large interest there has been the problem of rates at which μn may converge to γ

in Wp for growing n, as well as of finding sharp upper bounds on Wp(μn, γ ), which
would quantify the central limit theorem for this important class of metrics.

Like in many similar problems, it is natural to impose moment conditions by involv-
ing the Lyapunov coefficients

Ls =
n∑

k=1

E |Xk |s (s ≥ 2).

In case of the identically distributed random variables Xk = ξk/
√
n with Eξ1 = 0,

Eξ2
1 = 1, these quantities have a polynomial decay with respect to the number of

summands:

Ls = n−(s−2)/2 βs, where βs = E |ξ1|s .

For short, we refer to this particular model as the i.i.d. case.
For example, in presence of finite absolute moments of order 2 < s ≤ 3, for the

uniform (Kolmogorov) distance there is a Berry–Esseen bound

ρ (μn, γ ) = sup
x

|Fn(x) − �(x)| ≤ cLs, (1.2)

where Fn(x) = P{Sn ≤ x} is the distribution function of Sn , and c is a positive
numerical constant. This bound is optimal in terms of Ls , but is no longer true for
s > 3, as can be seen in the i.i.d. case with Bernoulli summands. Therefore, the critical
value s = 3 is most popular in (1.2), since it leads to the standard rate 1/

√
n in the

general i.i.d. case with finite 3rd absolute moment.
Similar results, the so-called “global forms of the CLT” (going back to the works of

Agnew and Esseen in 1950s, [1–3,19]) remain to hold for the L p distances between
Fn and �. In particular, under the 3rd order moment condition, using a non-uniform
Berry–Esseen bound due to Bikjalis (cf. e.g. Petrov [27], Chapter V), we have

‖Fn − �‖p =
(∫ ∞

−∞
|Fn(x) − �(x)|p dx

)1/p

≤ cL3, p ≥ 1.
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In view of the well-know representation W1(μn, γ ) = ‖Fn −�‖1, we are still lead to
the bound W1(μn, γ ) ≤ cL3 for p = 1 similarly to (1.2).

However, for the power transport distances of order p > 1, the situation turns out
to be somewhat different. First, one should mention the work by Sakhanenko [33],
who derived a transport inequality (with a stronger cost function) implying

Wp (μn, γ ) ≤ cp L
1/p
p , p ≥ 2, (1.3)

with some p-dependent constants cp. In the i.i.d. case, it yields Wp(μn, γ ) =
O(n

1
p − 1

2 ), which is however worse than the standard rate. A similar bound was earlier
derived by Bártfai [4], assuming that an exponential moment for ξ1 is finite. After-
wards, an important step in this direction was made Rio [29,30], who discovered
that, in order to reach the desired relation Wp(μn, γ ) = O( 1√

n
) in the i.i.d. case, we

have to require that the moment βp+2 be finite. More precisely, he derived a general
Berry–Esseen-type inequality

Wp(μn, γ ) ≤ cL1/p
p+2, 1 ≤ p ≤ 2, (1.4)

which in the i.i.d. case reads

Wp(μn, γ ) ≤ c√
n

β
1/p
p+2. (1.5)

Moreover, the latter was shown to be optimal with respect to the absolute moment: For
any p ≥ 1 and any prescribed number βp+2 ≥ 1, there is a sequence of i.i.d. random
variables ξ1, ξ2, . . ., such that Eξ1 = 0, Eξ2

1 = 1, E |ξ1|p+2 = βp+2, and with the
property that

lim inf
n→∞

[
Wp (μn, γ )

√
n

] ≥ 1

4
β

1/p
p+2

([30], Theorems 4.1 and 5.1). In particular, up to an absolute factor, the right-hand
side of (1.4) cannot be improved as a function of Lyapunov’s coefficients.

The proof of (1.4) given in [30] was based on the relating the transport distances
to Zolotarev’s ideal metrics and on the Poisson approximation. For the particular
parameter p = 2, a different approach to this result was proposed in [10]; it makes use
of the Talagrand transport-entropy inequality. However, whether or not the bound (1.4)
is true for p > 2 up to some p-dependent constants remained open (which would be
the best possible relation); it was known as Rio’s conjecture. Recently, Bonis [15] has
given an affirmative solution in the i.i.d case, by showing that we do have the standard
rate Wp(μn, γ ) = O( 1√

n
), as long as the moment βp+2 is finite. (In fact, when p = 2,

the new argument seems to extend this asymptotic result to the multidimensional
situation.)

The main purpose of this note is to prove Rio’s conjecture about the validity of the
Berry–Esseen bound such as (1.4) for the whole range of the parameter p.
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Theorem 1.1 For any real p ≥ 1, we have Wp(μn, γ ) ≤ cp L
1/p
p+2 with some con-

stants cp continuously depending on p.

As was noted in [30], cf. Corollary 4.2, once L p+2 is finite, one may also involve
stronger transport distances than Wp. More precisely, combining Theorem 1.1 with
the Sakhanenko bound (1.3) and applying Hölder’s inequality, we get the following
more general assertion.

Corollary 1.2 For any p ≥ 1 and r ∈ [p, p + 2], we have Wr (μn, γ ) ≤ cp L
1/r
p+2

with some constants cp depending on p.

These bounds cover the i.i.d. case as well. In fact, then, under stronger moment
assumptions, the bound (1.5) may be further strengthened, if we involve the Cramér
condition

lim sup
t→∞

|E eitξ1 | < 1. (1.6)

In the sequel, we denote by Z a standard normal random variable.

Theorem 1.3 Given p ≥ 1 and an integer l ≥ 3, suppose that the first l − 1 moments
of ξ1 coincide with the corresponding moments of Z with β(l−2)p+2 < ∞, and let

(1.6) be fulfilled. Then Wp(μn, γ ) = O(n− l−2
2 ), and moreover,

lim
n→∞

[
n

l−2
2 Wp (μn, γ )

]
= |γl |

l!
(
E |Hl−1(Z)|p)1/p

. (1.7)

Here, Hl−1 denotes the Chebyshev–Hermite polynomial of degree l − 1, and γl
stands for the l-th cumulant of ξ1, which under the above moment assumptions may
be defined just as the difference of the l-th moments E ξ l1 − E Zl .

In case l = 3 we return in Theorem 1.3 to the basic moment assumptions Eξ1 = 0,
Eξ2

1 = 1, and then (1.7) yields an asymptotic result refining the bound with the
standard rate. Namely,

lim
n→∞

[√
n Wp (μn, γ )

] = |γ3|
6

(
E

∣∣∣Z2 − 1
∣∣∣p)1/p

, γ3 = Eξ3
1 ,

provided that βp+2 is finite. This relation was established by Rio [31] for the range
1 < p ≤ 2, under a weaker assumption that ξ1 has a non-lattice distribution [which
replaces (1.6)].

If the distribution of ξ1 is symmetric about the origin, so that Eξ3
1 = 0 (that is,

l = 4), then, under Cramer’s condition, we get a stronger convergence

lim
n→∞

[
n Wp (μn, γ )

] = |γ4|
24

(
E

∣∣∣Z3 − 3Z
∣∣∣p)1/p

, γ4 = Eξ4
1 − 3,

provided that the moment β2p+2 is finite.
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In the context of a strong approximation, these results allow a coupling reformula-
tion in terms of L p-closeness of Sn to the sum ζ1 + · · · + ζn of independent centered
Gaussian random variables with E ζ 2

k = σ 2
k , defined on the same underlying probabil-

ity space. Assuming that this space is reach enough, e.g., a Lebesgue space in the sense
of Rokhlin, let us give such a statement in the i.i.d. situation (see also Theorem 11.2
below).

Corollary 1.4 Let ξ1, . . . , ξn be i.i.d. random variables such that Eξ1 = 0, Eξ2
1 = 1,

and βp+2 < ∞ (p ≥ 1). Then on the same probability space there exist i.i.d. random
variables ζ1, . . . , ζn with a standard normal distribution such that

(
E

∣∣∣∣∣
n∑

k=1

ξk −
n∑

k=1

ζk

∣∣∣∣∣
p)1/p

≤ cp β
1/p
p+2.

Moreover, under the assumptions of Theorem1.3, this L p-norm ≤ c n−(l−3)/2 with
some constant c which does not depend on n.

One natural approach to these results is relying on the employment of Edgeworth
expansions. As was mentioned before, the distributions μn are at the distance at most
L3 from γ in the Kolmogorov metric ρ. But, if the Lyapunov coefficient Ls is finite
for some integer value s > 3, the rate of approximation of μn can be made in some
(different) sense much better—to be of order at most Ls , if we replace the normal
law by a certain “corrected normal” signed measure νs−1 on the real line. The density
ϕs−1 of this measure involves the cumulants γr of Sn of orders up to s − 1 (which are
just the sums of the cumulants of Xk); for example,

ϕ3(x) = ϕ(x)
(

1 + γ3

3! H3(x)
)

,

ϕ4(x) = ϕ(x)

(
1 + γ3

3! H3(x) + γ4

4! H4(x) + γ 2
3

2! 3!2 H6(x)

)
.

If s is not integer, s = m + α with m integer and 0 < α < 1, then, as a corresponding
approximation for μn , one may take the measure νm . It represents a small oscillation
of γ , and on this way one can be reduced to the study of the distance Wp(μn, νm).
However, this quantity does not make sense in (1.1), since in general the approximating
measures are not positive. Therefore, we propose to redefine and extend the transport
distances to the larger space of measures.

Denote by Mp the collection of all Borel signed measures μ on the line with
total “mass” μ(R) = 1 and finite absolute moment of order p ≥ 1, i.e., such that∫ ∞
−∞ |x |p |dμ(x)| < ∞, where |μ| denotes the variation of μ (viewed as a positive

measure). With every μ in Mp we associate the generalized “distribution function”
F(x) = μ((−∞, x]), which may be an arbitrary right-continuous function of bounded
variation, with F(−∞) = 0, F(∞) = 1, and with finite p-th absolute moment for |μ|
(the monotonicity property is not required). For μ, ν ∈ Mp with distribution functions
F and G, respectively, put

123



234 S. G. Bobkov

W̃p(μ, ν) = sup
∫ ∞

−∞
|u(F(x)) − u(G(x))| dx, (1.8)

where the supremum is taken over all smooth functions u : R → R such that

‖u′‖q =
(∫ ∞

−∞
|u′(t)|q dt

)1/q

≤ 1,
1

p
+ 1

q
= 1.

As we will see, the quantity W̃p represents a metric on Mp, which coincides with
Wp on Fp (once this extension is recognized, one may use the same notation Wp

instead of W̃p). Formula (1.8) and the important triangle inequality for the extended
distance will allow us to activate the analysis of transport distances with participation
of corrected normal measures.

More details on the extended transport distances are given in Sects. 2, 3. Sections 5,
6 are focused on the study of asymptotic behavior and bounding of Wp(ν, γ ) in the sit-
uation where ν behaves similarly to the approximating measures νm (with preliminary
technical lemmas located in Sect. 4). In Sects. 7 and 9 we remind basic definitions
and results related to the Edgeworth expansions, including recent ones obtained in
[12] to cover the case of non-integer values of p. They are used to properly bound
Wp(μn, νm). As part of the proof of Theorem 1.1, a smoothing argument is discussed
separately in Sect. 8, and final steps are made in Sect. 10. We conclude with some
remarks on the “coupling” version of Theorem 1.1 in Sect. 11 (where Corollary 1.4 is
also proved).

Contents:

1. Introduction.
2. Extended transport metrics.
3. Explicit representations and general bounds.
4. Normal distribution function.
5. Perturbations of the Gaussian measure.
6. Second order approximation.
7. Edgeworth-type approximation in the non-i.i.d. case.
8. Smoothing.
9. Edgeworth expansion (the i.i.d. case).

10. Proof of Theorems 1.1 and 1.3.
11. Coupling.

2 Extended transport metrics

Returning to the definition (1.8), first let us state basic properties of the functional W̃p.

Proposition 2.1 For all μ, ν, λ ∈ Mp,

(a) 0 ≤ W̃p(μ, ν) < ∞; W̃p(μ, ν) = 0 ⇐⇒ μ = ν;
(b) W̃p(μ, ν) = W̃p(ν, μ);
(c) W̃p(μ, λ) ≤ W̃p(μ, ν) + W̃p(ν, λ).

That is, W̃p is ametric onMp.Moreover, W̃p(μ, ν) = Wp(μ, ν), wheneverμ, ν ∈ Fp.
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Proof Properties (a)–(c) are obvious except for the finiteness of W̃p. Let μ and ν have
(generalized) distribution functions F(x) = μ((−∞, x]) and G(x) = μ((−∞, x]).
We need to check that for every (equivalently, for some) point x0 ∈ R,

sup
∫ x0

−∞
|u(F(x)) − u(G(x))| dx < ∞, sup

∫ ∞

x0

|u(F(x)) − u(G(x))| dx < ∞,

where the supremum is running over all functions u as in (1.8). Since F(−∞) =
G(−∞) = 0 and F(∞) = G(∞) = 1, these assertions are equivalent to each other,
and one may assume additionally that u(0) = 0 under the first supremum. Hence, it
is sufficient to see that

sup
‖u′‖q≤1, u(0)=0

∫ x0

−∞
|u(F(x))| dx < ∞. (2.1)

Given a non-decreasing, bounded, right-continuous function A on the real line, such
that A(−∞) = 0, A(∞) = c (0 < c < ∞), define the generalized inverse function

A−1(t) = min{x ∈ R : A(x) ≥ t}, 0 < t < c. (2.2)

It is left-continuous, and as a random variable under the Lebesgue measure on (0, c),
it is distributed according to the Lebesgue–Stieltjes measure dA(x) generated by A,
so that

∫ c

0

∣∣∣A−1(t)
∣∣∣p dt =

∫ ∞

−∞
|x |p dA(x). (2.3)

We apply the definition (2.2) to A(x) defined to be the total variation of F on (−∞, x],
which is the total variation of μ restricted to this half-axis, so that dA(x) = |μ(dx)|.
In particular, |F(x)| ≤ A(x) ≤ c for all x ∈ R, where c = ‖μ‖TV ≥ 1. Since A−1 is
distributed on (0, c) according to |μ|, the integrals in (2.3) are finite, by the moment
assumption on μ.

Now, given a function u participating in the sup of (2.1), let ψ = |u′|, thus ‖ψ‖q ≤
1. By Fubini’s theorem,

∫ x0

−∞
|u(F(x))| dx ≤

∫ x0

−∞

∣∣∣∣∣
∫ F(x)

0
ψ(t) dt

∣∣∣∣∣ dx

=
∫ c

−c
ψ(t)ξ(t) dt ≤

(∫ c

−c
ξ(t)p dt

)1/p

, (2.4)

where ξ(t) = mes{x ≤ x0 : t is between 0 and F(x)}, and where we applied Hölder’s
inequality on the last step. In the case 0 < t < F(x), necessarily A(x) > t , hence
x ≥ A−1(t). If F(x) < t < 0, then A(x) ≥ −F(x) > −t , hence x ≥ A−1(−t). In
both cases x ≥ A−1(|t |) for any t ∈ (−c, c), which implies that
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236 S. G. Bobkov

ξ(t) ≤
(
x0 − A−1(|t |)

)
+ ≤ |x0| + |A−1(|t |)|.

Therefore, the last integral in (2.4) does not exceed 2p c |x0|p+2p−1
∫ c
−c |A−1(|t |)|p dt ,

which is finite according to (2.3). This proves (2.1) and provides the finiteness of W̃p.
To show that W̃p(μ, ν) = Wp(μ, ν) for all probability measures μ and ν on the

line with distribution functions F and G, we make use of the classical representation
going back to Fréchet [20],

Wp(μ, ν) =
(∫ 1

0

∣∣∣F−1(t) − G−1(t)
∣∣∣p dt

)1/p

, (2.5)

in terms of the inverse functions defined according to (2.2), cf. e.g. [35]. In analogy
with the previous step, put

ξ(t) = mes{x ∈ R : t is between F(x) and G(x)}.

For any function u with ‖u′‖q ≤ 1, putting ψ = |u′|, we have, by Hölder’s inequality,

∫ ∞

−∞
|u(F(x)) − u(G(x))| dx ≤

∫ ∞

−∞

∣∣∣∣∣
∫ G(x)

F(x)
ψ(t) dt

∣∣∣∣∣ dx

=
∫ 1

0
ψ(t)ξ(t) dt ≤

(∫ 1

0
ξ(t)p dt

)1/p

. (2.6)

But the inequalities F(x) < t < G(x) and G(x) < t < F(x) imply respectively that

G−1(t) ≤ x ≤ F−1(t) and F−1(t) ≤ x ≤ G−1(t).

So, ξ(t) ≤ |F−1(t) − G−1(t)| for any t ∈ (0, 1), and we obtain from (2.5)–(2.6) and
definition (1.8) that W̃p(μ, ν) ≤ Wp(μ, ν).

To derive an opposite bound, let us also show that one can remove the modulus
sign from the integrand in (1.8). Suppose that ψ ∈ Lq(0, 1), ‖ψ‖q ≤ 1. Putting
u(t) = ∫ t

0 ψ(s) ds and integrating by parts we have

∫ 1

0
ψ(t)

(
F−1(t) − G−1(t)

)
dt = −

∫ 1

0
u(t) d

(
F−1(t) − G−1(t)

)
.

As easy to verify, F−1(t) ≤ x < F−1(s), if and only if t ≤ F(x) < s for all
0 < t < s < 1. So, the map x → F(x) pushes forward the Lebesgue measure on
R to the (positive) Borel measure μF−1 on (0, 1) associated to F−1 via the equality
μF−1([t, s)) = F−1(s) − F−1(t). Hence, the identity

∫ ∞

−∞
u(F(x)) dx =

∫ 1

0
u(t) dμF−1(t) =

∫ 1

0
u(t) dF−1(t)
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holds true for all indicator functions u = 1[t,s) and therefore for any continuous
function u such that u(0) = u(1) = 0. Thus, for any absolutely continuous function
u : R → R with u(0) = u(1) = 0 and with Radon-Nikodym derivative u′ = ψ such
that ‖ψ‖q ≤ 1,

∫ 1

0
ψ(t)

(
F−1(t) − G−1(t)

)
dt = −

∫ ∞

−∞
(u(F(x)) − u(G(x))) dx . (2.7)

But this equality also holds for all affine functions u, so the constraint u(0) = u(1) = 0
may be removed. It remains to take supremum in (2.7) over all smooth u with ‖u′‖q =
‖ψ‖q ≤ 1. �


3 Explicit representations and general bounds

From now on, we use the notation Wp instead of W̃p. Following (1.8), one can give a
more explicit representation for Wp as an L p-norm of the function

η(t) = mes{x ∈ R : G(x) < t ≤ F(x)} − mes{x ∈ R : F(x) < t ≤ G(x)}, t ∈ R.

(3.1)

The properties F(−∞) = G(−∞) = 0 and F(∞) = G(∞) = 1 (together with
the boundedness of the total variation) ensure that, for any t �= 0, 1, both terms on
the right of (3.1) are finite and vanishing outside a large interval, so that η(t) is well-
defined and compactly supported on the real line. In addition, η(t) is bounded on sets
R\((−ε, ε) ∪ (1 − ε, 1 + ε)), ε > 0. Note also that this function appears as the limit
case η = η∞ for

ηT (t) = mes{x ∈ [−T, T ] : G(x) < t ≤ F(x)}
−mes{x ∈ [−T, T ] : F(x) < t ≤ G(x)}.

Proposition 3.1 For allμ, ν ∈ Mp with distribution functions F and G respectively,

Wp(μ, ν) =
(∫ ∞

−∞
|η(t)|p dt

)1/p

. (3.2)

Moreover, for any T > 0, with some |θ | ≤ 1

Wp(μ, ν) =
(∫ ∞

−∞
|ηT (t)|p dt

)1/p

+ θ

∫
|x |>T

|F(x) − G(x)|1/p dx, (3.3)

provided that the last integral is finite.

Equality (3.2) provides a natural generalization of (2.5), since in case μ, ν ∈ Fp,
we have |η| = |F−1 − G−1|. On the other hand, formula (3.2) follows from (3.3) by
letting T → ∞ (which has to be justified).
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Proof Any function u participating in the sup of (1.8) is Lip(α) for α = 1/p, with
Lipschitz semi-norm ≤ 1, so that

|u(F(x)) − u(G(x))| ≤ |F(x) − G(x)|1/p .

Integrating this inequality over the region |x | > T , we obtain

∫
|x |>T

(u(F(x)) − u(G(x))) dx = θ

∫
|x |>T

|F(x) − G(x)|1/p dx

with some θ = θ(u) such that |θ | ≤ 1. As for the interval |x | < T , we use the property
(as was explained before) that one can remove the modulus sign from the integrand
in (1.8). First write

u(F(x)) − u(G(x)) =
∫ ∞

−∞
u′(t)

(
1{G(x)<t≤F(x)} − 1{F(x)<t≤G(x)}

)
dt. (3.4)

Here, the integrand is vanishing outside some finite interval. Integrating over x , we
get

∫ T

−T
(u(F(x)) − u(G(x))) dx =

∫ ∞

−∞
u′(t) ηT (t) dt.

Hence

∫ ∞

−∞
(u(F(x))−u(G(x))) dx=

∫ ∞

−∞
u′(t) ηT (t) dt+θ

∫
|x |>T

|F(x)−G(x)|1/p dx .

It remains to take the supremum over all admissible u, and then we obtain (3.3).
To reach the limit case (3.2), fix N > 1, ε ∈ (0, 1

2 ), and assume that u belongs
to the class CN ,ε of all smooth functions on the line whose derivative u′ is supported
and bounded on the set AN ,ε = (−N , N )\((−ε, ε) ∪ (1 − ε, 1 + ε)), with ‖u′‖q ≤ 1.
Returning to (3.4), write

u(F(x)) − u(G(x)) =
∫
AN ,ε

u′(t) v(x, t) dt (3.5)

with v(x, t) = 1{G(x)<t≤F(x)} − 1{F(x)<t≤G(x)}. If N is large enough and t ∈ AN ,ε,
then v(x, t) = 0 whenever |x | > N . In this case, one may freely integrate (3.5) over
x , which gives

∫ ∞

−∞
(u(F(x)) − u(G(x))) dx =

∫
AN ,ε

u′(t) η(t) dt,
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where the left integral may be restricted to [−N , N ], while the integrand on the right
is a bounded function. From this,

sup
u∈CN ,ε

∣∣∣∣
∫ ∞

−∞
(u(F(x)) − u(G(x))) dx

∣∣∣∣ =
(∫

AN ,ε

|η(t)|p dt

)1/p

.

On this step, letting N → ∞ and ε → 0, the left supremum is extended to all u such
that ‖u′‖q ≤ 1, and then we arrive at (3.2). �


Since

ηT (t) ≤ ξT (t) = mes{x ∈ [−T, T ] : t is between F(x) and G(x)}, (3.6)

as an immediate consequence of Proposition 3.1, we obtain:

Corollary 3.2 For all μ, ν ∈ Mp with (generalized) distribution functions F and G
respectively,

Wp(μ, ν) ≤
∫ ∞

−∞
|F(x) − G(x)|1/p dx .

Moreover, for any T > 0,

Wp(μ, ν) ≤
(∫ ∞

−∞
ξT (t)p dt

)1/p

+
∫

|x |>T
|F(x) − G(x)|1/p dx .

The last bound will be used in the proof of Theorem 1.1, while the more precise
relation (3.3) is needed to study second order approximations for transport distances
as in Theorem 1.3.

Remark In general, the moment assumption μ, ν ∈ Mp with distribution functions
F and G does not guarantee the finiteness of the integral

∫ ∞
−∞ |F(x) − G(x)|1/p dx .

For a counter-example, one may take for ν any compactly supported measure with
total mass one, and for μ a probability measure with distribution function such that
1 − F(x) = (x log x)−p for large x .

4 Normal distribution function

Here we collect a few calculus relations involving the normal distribution function.
Although most of them are rather elementary and certainly known, we include some
proofs for reader’s convenience.

Lemma 4.1 For all x ≤ 0, we have �(x) ≤ 1
2 e

−x2/2. Moreover,

1

1 + |x | ϕ(x) ≤ �(x) ≤ 1

|x | ϕ(x). (4.1)
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Let us only explain the left inequality in (4.1). The function v(x) = (1− x)�(x)−
ϕ(x) satisfies v(−∞) = 0 and v(0) = 1

2 − 1√
2π

> 0. In addition,

v′(x) = −�(x) + ϕ(x), v′′(x) = −(1 + x) ϕ(x).

Hence, v is convex in x ≤ −1 and concave in x ≥ −1. Moreover, v′(x) ≥ − 1
|x | ϕ(x)+

ϕ(x) ≥ 0 for x ≤ −1, so v is also increasing on the half-axis x ≤ −1. These properties
readily imply that v is positive for all x ≤ 0.

Lemma 4.2 For all d ≥ 0 and x ≤ 0,

(
1 + |x |d

)
e−x2/2 ≤ 2π

(
1 + |x |d+1

)
�(x).

Proof If d = 0, the left inequality in (4.1) is a bit sharper. In the general case, for a
parameter a > 0, put v(x) = ϕ(x) − (a + x)(1 − �(x)), x ≥ 0. This function is

vanishing at infinity, while v(0) ≤ 0, as long as a ≥
√

2
π

. Using 1−�(x) ≤ 1
2 e

−x2/2,
we also get

v′(x) = −(1 − �(x)) + aϕ(x) ≥ 0, a ≥
√

π

2
,

in which case v is increasing. In particular, v(x) ≤ 0 for all x ≥ 0, that is, ϕ(x)
1−�(x) ≤√

π
2 + x , or e−x2/2

1−�(x) ≤ π + √
2π x . Equivalently, e−x2/2

�(x) ≤ π + √
2π |x | for all x ≤ 0,

which gives

(
1 + |x |d) e−x2/2

�(x)
≤ π(1 + |x |)

(
1 + |x |d

)
≤ 2π

(
1 + |x |d+1

)
.

�

Lemma 4.3 For all T ≥ 0 and d ≥ 0,

∫
|x |≥T

|x |d e−x2/2 dx ≤ 4dd/2 e−T 2/4. (4.2)

Proof Denote by Jd the integral in (4.2). If d ≥ 1, we apply the elementary inequalities

xd−1e−x2/4 ≤
(

2(d−1)
e

)(d−1)/2 ≤ dd/2 which give

Jd = 2
∫ ∞

T
xd−1e−x2/4 · xe−x2/4 dx

≤ 4

(
2(d − 1)

e

)(d−1)/2

e−T 2/4 ≤ 4dd/2 e−T 2/4.

123



Berry–Esseen bounds and Edgeworth expansions in the. . . 241

In case 0 ≤ d ≤ 1, one may integrate by parts and write

Jd = − 2

d + 1
T d+1e−T 2/2 + 2

d + 1

∫ ∞

T
xd+2e−x2/2 dx ≤ 1

d + 1
Jd+2.

By the previous step, the last expression is bounded by

4

d + 1

(
2(d + 1)

e

)(d+1)/2

e−T 2/4 = 4

(
2

e

)(d+1)/2

(d + 1)(d−1)/2 e−T 2/4

≤ 4

(
2

e

)(d+1)/2

e−T 2/4

= 4

(
2

e

)1/2 (
2

de

)d/2

dd/2 e−T 2/4.

Here, the quantity
( 2
de

)d/2
is maximized at d = 2

e2 , at which
( 2
e

)1/2 ( 2
de

)d/2 =
0.982 . . . < 1. �


Let us now turn to the inverse function �−1. Some of its properties can be explored
by involving the so-called Gaussian profile

I (t) = ϕ(�−1(t)), 0 ≤ t ≤ 1.

It is a (strongly) concave function on [0, 1], symmetric about the point 1/2, which
behaves near zero like t

√
2 log(1/t).

Lemma 4.4 Given β > 1, the function �−1(βt) − �−1(t) is increasing in 0 < t <

1/β.

This property follows from the (strong) concavity of I and the fact that (�−1(t))′ =
1/I (t).

Using ϕ′(x) = −xϕ(x), by the chain rule, I ′(t) = −�−1(t), which immediately
implies I ′′(t) = −1/I (t). Using the I -function, one can simplify further differentia-
tion of the inverse normal distribution function. In particular, for all t ∈ (0, 1),

(
�−1

)′′
(t) = �−1(t)

I (t)2 ,
(
�−1

)′′′
(t) = 1 + 2

(
�−1(t)

)2

I (t)3 .

Thus, the second derivative is strictly increasing. We are prepared to develop a Taylor
expansion of the inverse function up to the linear and second terms.

Lemma 4.5 If |ε| ≤ 1
2 (1+|x |) (x ∈ R), then 0 < �(x) + εϕ(x) < 1 and

∣∣∣�−1 (�(x) + εϕ(x)) − x
∣∣∣ ≤ 2ε.
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Moreover,

∣∣∣�−1 (�(x) + εϕ(x)) − x − ε

∣∣∣ ≤ 2 (1 + |x |) ε2.

Proof One may assume that x < 0, so that t = �(x) < 1
2 . The function R(ε) =

�−1(�(x) + εϕ(x)) is well-defined in the interval |ε| ϕ(x) < �(x), hence for |ε| <
1

1+|x | (by Lemma 4.1). Clearly, R(0) = x , R′(0) = 1, and putting δ = εϕ(x), we
have

R′(ε) = 1

I (t + δ)
ϕ(x) = I (t)

I (t + δ)
,

R′′(ε) =
(
�−1

)′′
(t + δ) ϕ(x)2 =

(
�−1

)′′
(t + δ)

I (t)2

I (t + δ)2 .

By the left inequality in (4.1), we have |δ| ≤ �(x)
2 = t

2 . Since (�−1)′′ is increasing,
we get

R′(ε) ≤ I (t)

I (t/2)
, |R′′(ε)|≤

∣∣∣∣
(
�−1

)′′
(t/2)

∣∣∣∣ I (t)2 =
∣∣∣�−1(t/2)

∣∣∣ I (t)2

I (t/2)2 . (4.3)

But, by the concavity, I (t/2) ≥ I (t)/2 for all t ∈ [0, 1], so R′(ε) ≤ 2. Also, by
Lemma 4.4,

�−1(t) − �−1(t/2) ≤ �−1(1/2) − �−1(1/4) < 0.7

for 0 < t ≤ 1
2 , and therefore |�−1(t/2)| < 1 + |�−1(t)| = 1 + |x |. As a result, the

last expression on the right-hand side of (4.3) is bounded by 4 (1 + |x |). It remains to
apply Taylor’s formula. �


5 Perturbations of the Gaussian measure

The second bound of Corollary 3.2 may be used to quantify the closeness of the
Edgeworth correction to the standard normal law in terms of the extended transport
distance. As a preliminary step, here we prove a more general assertion. Let ν ∈ Mp

have the (generalized) distribution function G.

Proposition 5.1 Assume that, for some real numbers ε > 0 and d ≥ 1,

|G(x) − �(x)| ≤ ε
(

1 + |x |d
)
e−x2/2, x ∈ R. (5.1)

Then

Wp(ν, γ ) ≤ Cp,d ε,

where one may take Cp,d = (Cpd)3(d+1)/2 with some absolute constant C.
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First, we derive:

Lemma 5.2 Assume that (5.1) is fulfilled with some ε ∈ (0, 1/e] and d ≥ 1. Then

Wp(ν, γ ) ≤ 13 dd/2p√p ε +
(∫ ∞

−∞
ξT (t)p dt

)1/p

, (5.2)

where T = 2
√
p log(1/ε) and

ξT (t) = mes{x ∈ [−T, T ] : t between �(x) and G(x)}.

Proof Applying �(x) ≤ 1
2 e

−x2/2 (x ≤ 0) and the assumption (5.1), in case x ≤ −1,
we have

|G(x)| ≤ �(x) +
(

1 + |x |d
)
e−x2/2 ≤ 5

2
|x |d e−x2/2

and hence

|G(x)|1/p ≤ 5

2
|x |d/p e−x2/2p.

A similar bound holds true for |1 − G(x)|1/p in case x ≥ 1. Since T ≥ 1, we get, by
(4.2),

∫ −T

−∞
|G(x)|1/p dx +

∫ ∞

T
|1 − G(x)|1/p dx ≤ 5

2

∫
|x |≥T

|x |d/p e−x2/2p dx

= 5

2
p

p+d
2p

∫
|y|≥T/

√
p
|y|d/p e−y2/2 dy

≤ 5

2
p

p+d
2p · 4

(
d

p

) d
2p

e−T 2/4p

= 10 dd/2p√p ε.

A similar bound is also true for � in place of G, even with better constants, since then

∫ −T

−∞
�(x)1/p dx +

∫ ∞

T
(1 − �(x))1/p dx ≤

∫
|x |≥T

e−x2/2p dx

= 2
√
p

∫ ∞

T/
√
p
e−y2/2 dy

= 2
√

2πp
(
1 − �(T/

√
p)

)
≤ √

2πp e−T 2/4p = √
2πp ε.

Combining the two inequalities and applying Corollary 3.2, we arrive at the bound
(5.2). �
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Proof of Proposition 5.1. We use Lemma 5.2 with ε ≤ ε0 ≡ (80 p(d + 1))−(d+1)

and in essence the linear bound of Lemma 4.5. As before, let T = 2
√
p log(1/ε). To

estimate ξT (t), one may assume that t ≤ 1
2 (by the symmetry of the problem about

the point t = 1
2 ).

First consider the inequalities �(x) < t < G(x). In particular, t > 0 and x <

�−1(t) ≤ 0. By the assumption (5.1) and applying Lemma 4.2, we have, for all
x ≤ 0,

t < G(x) ≤ �(x) + ε
(

1 + |x |d
)
e−x2/2 ≤ �(x)

(
1 + 2π

(
1 + |x |d+1

)
ε
)

.

(5.3)

In the interval |x | ≤ T ,

(
1 + |x |d+1

)
ε ≤

(
1 + T d+1

)
ε ≤ 2T d+1ε

= 2ε (4p log(1/ε))(d+1)/2 ≡ 2v(ε).

Putting ε = exp(−s), we have v(ε) = (4ps)(d+1)/2 e−s/2 e−s/2 ≤
(

4p(d+1)
e

)(d+1)/2

√
ε. Hence

2T d+1ε ≤ 2

(
4p(d + 1)

e

)(d+1)/2 √
ε.

But, since ε ≤ ε0, we get 2T d+1ε ≤ 2
( 1

20e

)(d+1)/2 ≤ 1
10e and thus

2π
(

1 + |x |d+1
)

ε ≤ 2π

10 e
<

1

4
. (5.4)

In particular, 1 + 2π
(
1 + |x |d+1

)
ε < 2 and t < G(x) ≤ 2 �(x) implying |x | ≤

|�−1(t/2)|. Hence, from (5.3),

t < �(x)

(
1 + 2π

(
1 +

∣∣∣�−1(t/2)

∣∣∣d+1
)

ε

)
.

By Lemma 4.4 (as was already noted before), |�−1(t/2)| ≤ 0.7+|�−1(t)|. Applying
the latter together with Jensen’s inequality, the above bound can easily be simplified
to

t < �(x)

(
1 + 5d+1

(
1 +

∣∣∣�−1(t)
∣∣∣d+1

)
ε

)
,
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which is solved as x > �−1
(

t
1+c(t)ε

)
with

c(t) = 5d+1
(

1 +
∣∣∣�−1(t)

∣∣∣d+1
)

. (5.5)

Consequently, for any t ∈ (0, 1
2 ],

mes {x ∈ [−T, T ] : �(x) < t < G(x)} ≤ �−1(t) − �−1
(

t

1 + c(t)ε

)
. (5.6)

Now consider the second possibility described by the inequalities G(x) < t <

�(x). Necessarily x > �−1(t). By the assumption (5.1) and once more Lemma 4.2,
for all x ,

t > G(x) ≥ �(x)

(
1 − ε

(
1 + |x |d) e−x2/2

�(x)

)
≥ �(x)

(
1 − 2π

(
1 + |x |d+1

)
ε
)

.

(5.7)

Here, for |x | ≤ T , according to (5.4), the expression on the right is positive and,
moreover, it is larger than 3

4 �(x). Using 1
1−δ

≤ 1 + 4
3 δ for 0 ≤ δ ≤ 1

4 , we therefore
obtain from (5.7) that

�(x) ≤ t

(
1 + 8π

3

(
1 + |x |d+1

)
ε

)
. (5.8)

In particular, t > 0. Moreover, by Lemma 4.4, x < �−1
( 4

3 t
) ≤ �−1(t)+�−1

( 2
3

)
<

�−1(t) + 0.7. Hence, |x | ≤ 0.7 + ∣∣�−1(t)
∣∣, and (5.8) readily implies that

�(x) ≤ t

(
1 + 5d+1

(
1 +

∣∣∣�−1(t)
∣∣∣d+1

)
ε

)
.

It is solved as x < �−1 (t (1 + c(t)ε)) with the same function c(t) as in (5.5).
As a result, we obtain an analog of (5.6), namely

mes {x ∈ [−T, T ] : G(x) < t < �(x)} ≤ �−1 (t (1 + c1(t)ε)) − �−1(t),

where the left-hand side is vanishing for t ≤ 0. Combining this with (5.6), we conclude
that ξT (t) = 0 for t ≤ 0, and moreover,

ξT (t) ≤ �−1 (t (1 + c(t)ε)) − �−1
(

t

1 + c(t)ε

)
(5.9)

for any 0 < t ≤ 1
2 with the function c(t) described in (5.5). On this stage, we need

to verify that the values t (1 + c(t)ε) are bounded away from 1. Putting t = �(−y),
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y ≥ 0, we have

t
∣∣∣�−1(t)

∣∣∣d+1 = yd+1�(−y) ≤ 1

2
yd+1 e−y2/2 ≤ 1

2
(d + 1)(d+1)/2.

Hence

tc(t) ε = 5d+1
(
t + t

∣∣∣�−1(t)
∣∣∣d+1

)
ε

≤ 5d+1
(

1

2
+ 1

2
(d + 1)(d+1)/2

)
· (80 p(d + 1))−(d+1)

≤ 5d+1 (d + 1)(d+1)/2 · (80 p(d + 1))−(d+1) ≤ 1

32
,

so that, t (1 + c(t)ε) ≤ 0.6.
Now, to simplify the bound (5.9), we recall that the derivative of �−1(s) is 1/I (s),

while, by the concavity, I (s) ≥ 2I (1/2) s ≥ 1
2 s in the interval 0 < s ≤ 1

2 . Hence,
using also I (0.6) > 1

3 , we have, for all 0 < a < b < 0.6 (a ≤ 1
2 ),

�−1(b) − �−1(a) =
∫ b

a

1

I (s)
ds ≤ b − a

min {I (a), I (b)} ≤ b − a

min
{ 1

2 a, 1
3

} ≤ 2
b − a

a
.

Using this bound in (5.9) with a = t
1+c(t)ε , b = t (1 + c(t)ε), first note that

b − a = tε
2c(t) + c(t)2ε

1 + c(t)ε
≤ tε (1 + c(t))2.

Using a ≥ t
1+c(t) , we get b−a

a ≤ 2ε(1 + ε(t))3. Thus, we may conclude that, for all

0 < t ≤ 1
2 .

ξT (t) ≤ 4ε (1 + c(t))3 (5.10)

with ξT (t) = 0 for t ≤ 0.
But the function c(t) is symmetric about 1/2, so (5.10) remains to hold for 1

2 ≤
t < 1 as well, and ξT (t) = 0 for t ≥ 1. Moreover, the function on the right-hand
side of (5.10) belongs to L p(0, 1) and has an L p-norm which only depends on p
and d. To derive a quantitative bound on this norm, one may use the property that
Z = �−1(t) has a standard normal distribution under the uniform measure on (0, 1).
First, by Jensen’s inequality, (1 + c(t))3p ≤ 23p−1 + 23p−1c(t)3p and c(t)3p ≤
53p(d+1) 23p−1

(
1 + |Z |3p(d+1)

)
. Using also (4.2) with T = 0 so as to bound absolute

moments of Z , we have

4
∫ 1

0
(1 + c(t))3p dt ≤ 23p+1 + 53p(d+1) 43p

(
1 + E |Z |3p(d+1)

)

≤ 23p+1 + 53p(d+1) 43p · 2π
(

1 + 4 (3p(d + 1))3p(d+1)/2
)

.
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From this and (5.10),

1

ε

(∫ 1

0
ξT (t)p dt

)1/p

≤ 16 + 128 π · 53(d+1)
(

1 + 4 (3p(d + 1))3(d+1)/2
)

≤ (Cpd)3(d+1)/2

with some absolute constant C . In view of (5.2), a similar bound also holds for
1
ε
Wp(ν, γ ).
Finally, in case ε ≥ ε0, one may apply the first estimate of Corollary 3.2. Under

the assumption (5.1), and using (5.2) with T = 0, we get

Wp(ν, γ ) ≤
∫ ∞

−∞
|G(x) − �(x)|1/p dx

≤ ε1/p
∫ ∞

−∞

(
1 + |x |d/p

)
e−x2/2p ≤ 4ε1/p

√
2p π

(
1 + dd/2p

)
.

Since ε1/p ≤ 1
ε0

ε = (80 p(d + 1))(d+1) ε, we get an estimate Wp(ν, γ ) ≤
(Cpd)d+3/2 ε. �


6 Second order approximation

Under stronger assumptions on G, Proposition 5.1 may further be sharpened with the
help of the quadratic bound of Lemma 4.5. Let us consider a measure ν ∈ Mp with
(generalized) distribution function of the form

G(x) = �(x) + ε(x) ϕ(x), x ∈ R. (6.1)

when ε(x) is small and regular in some sense, our next aim is to show that Wp(ν, γ )

is described by the quantity

Ip =
(∫ ∞

−∞
|ε(x)|p ϕ(x) dx

)1/p

= ‖ε(Z)‖p, Z ∼ N (0, 1),

up to an error term which has a smaller order. To make a corresponding estimate
simpler, we assume that the integral

∫ ∞
−∞ |F(x)−G(x)|1/p dx is finite. Below we use

θ to denote a quantity such that |θ | ≤ 1.

Proposition 6.1 If the function ε(x) is smooth and satisfies on the interval [−T, T ]

|ε(x)| ≤ 1

2 (1 + |x |) ,
∣∣ε′(x)

∣∣ ≤ 1

2
, (6.2)

then

Wp(ν, γ ) = Ap + θ

∫
|x |>T

|ε(x)|1/p ϕ(x)1/p dx, (6.3)
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where Ap ≥ 0 satisfies

∣∣Ap
p − I pp

∣∣ ≤
∫

|x |>T
|ε(x)|p ϕ(x) dx +

∫ T

−T
|ε(x)|p |ε′(x)| ϕ(x) dx

+
(
p · 2p+1 + 1

) ∫ T

−T
|ε(x)|p+1 (1 + |x |) ϕ(x) dx + 2 (2T )p−1 ϕ(T ).

(6.4)

Letting T → ∞ in (6.3)–(6.4), we get a simpler representation

W p
p (ν, γ ) = I pp + θ

∫ ∞

−∞
|ε(x)|p |ε′(x)| ϕ(x) dx

+ θ
(
p · 2p+1 + 1

) ∫ ∞

−∞
|ε(x)|p+1 (1 + |x |) ϕ(x) dx,

however, under a much stronger requirement that condition (6.2) is fulfilled on the
whole real line. In further applications, we will use Proposition 6.1 with ε(x) being
small multiples of polynomials [and then (6.2) may only hold on bounded, although
large intervals].

Proof Proposition 3.1 for the couple (�,G)provides (6.3) with Ap
p =∫ ∞

−∞ |ηT (t)|p dt,
where ηT (t)=η+

T (t) − η−
T (t),

η+
T (t) = mes{x ∈ [−T, T ] : G(x) < t ≤ �(x)},

η−
T (t) = mes{x ∈ [−T, T ] : �(x) < t ≤ G(x)}.

Put G(−T ) = t0, G(T ) = t1, and note that 0 < t0 < t1 < 1 (by Lemma 4.5). In
particular, 0 < G(x) < 1 on [−T, T ], so, η+

T (t) = η−
T (t) = 0 outside [0, 1], and thus

Ap
p =

∫ 1

0
|ηT (t)|p dt.

If 0 < t < t0, then η+
T (t) = 0 and

η−
T (t)≤mes{x ∈ [−T, T ] : x<�−1(t)}≤(�−1(t) + T )+ =max{�−1(t) + T, 0}.

The latter expression may only be positive in the interval �(−T ) ≤ t ≤ G(−T ),
whose length is at most |ε(−T )| ϕ(−T ) ≤ 1

2 (1+T )
ϕ(T ), according to (6.1)-(6.2). On

the other hand, η−
T (t) ≤ 2T . Hence

∫ t0

0
|ηT (t)|p dt ≤ (2T )p−1 ϕ(T ). (6.5)
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If t1 < t < 1, then η−
T (t) = 0 and, by similar arguments,

∫ 1

t1
|ηT (t)|p dt ≤ (2T )p−1 ϕ(T ). (6.6)

As for the intermediate interval (t0, t1), we first note that G has density

g(x) = (
1 + ε′(x) − ε(x) x

)
ϕ(x),

which is positive on [−T, T ] under the assumption (6.2). Hence G is increasing on
this interval, and moreover, for all |x | ≤ T ,

|g(x) − ϕ(x)| ≤ (|ε′(x)| + |ε(x)| |x |) ϕ(x) < ϕ(x). (6.7)

Denote byG−1 : [t0, t1] → [−T, T ] the inverse function toG restricted to [−T, T ].
Then, for t0 < t < t1,

η+
T (t) =

(
�−1(t) − G−1(t)

)+
, η−

T (t) =
(
G−1(t) − �−1(t)

)+
,

so that |ηT (t)| = |�−1(t)−G−1(t)|. Changing the variable t = G(x), one may write

∫ t1

t0
|ηT (t)|p dt =

∫ t1

t0
|�−1(t) − G−1(t)|p dt =

∫ T

−T
|�−1(G(x)) − x |p g(x) dx

≡ JT .

By Lemma 4.5,

�(x) ≡ �−1(G(x)) − x = ε(x) (1 + 2θ (1 + |x |) ε(x)) , |θ | ≤ 1.

Applying a simple inequality | |1 + y|p − 1| ≤ p · 2p−1 |y|, |y| ≤ 1, with y =
2θ (1 + |x |) ε(x), we get

|�(x)|p = |ε(x)|p + p · 2p θ (1 + |x |) |ε(x)|p+1

and thus [using g ≤ 2ϕ according to (6.7)],

JT =
∫ T

−T
|ε(x)|p g(x) dx + θp · 2p

∫ T

−T
(1 + |x |) |ε(x)|p+1 g(x) dx

=
∫ T

−T
|ε(x)|p g(x) dx + θp · 2p+1

∫ T

−T
(1 + |x |) |ε(x)|p+1 ϕ(x) dx .

Moreover, the first integral on the right may be written as

∫ T

−T
|ε(x)|p ϕ(x) dx + θ

∫ T

−T
|ε(x)|p (

ε′(x) − ε(x) x
)

ϕ(x) dx .
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Therefore,

JT =
∫ T

−T
|ε(x)|p ϕ(x) dx

+ θ
(
p · 2p+1 + 1

) ∫ T

−T
(1 + |x |) |ε(x)|p+1 ϕ(x) dx

+ θ

∫ T

−T
|ε(x)|p |ε′(x)| ϕ(x) dx . (6.8)

The first integral in (6.8) is exactly I pp up to the summand
∫
|x |>T |ε(x)|p ϕ(x) dx .

Since, by (6.5)-(6.6), Ap
p = JT + 2θ (2T )p−1 ϕ(T ), the relation (6.8) leads to the

estimate (6.4). �


7 Edgeworth-type approximation in the non-i.i.d. case

Let us return to the sum Sn = X1 + · · · + Xn of n independent random variables,
such that EXk = 0,

∑n
k=1 EX

2
k = 1, and with finite Lyapunov coefficient Ls =∑n

k=1 E |Xk |s (s > 2). In this case, the characteristic function fn(t) = E eit Sn has [s]
continuous derivatives on the real line, and one may introduce the cumulants

γr = γr (Sn) = dr

ir dtr
log fn(t)

∣∣
t=0 =

n∑
k=1

γr (Xk), r = 1, . . . , [s].

The first values are γ1 = 0, γ2 = 1. Each γr represents a polynomial in the moments
of Xk up to order r ; however, an explicit expression for them will not be needed for
our aims.

Writing s = m + α with integer m ≥ 2 and 0 < α ≤ 1, the corrected normal
“characteristic” function of order m for the distribution of Sn is given by the formula

gm(t) = e−t2/2 + e−t2/2
∑ 1

k1! · · · km−2!
(γ3

3!
)k1 · · ·

(γm

m!
)km−2

(i t)k,

where the summation is running over all collections of non-negative integers
k1, . . . , km−2 that are not all zero and such that k1 +2k2 +· · ·+(m−2)km−2 ≤ m−2,
with k = 3k1 +· · ·+mkm−2. The polynomial in the sum has degree at most 3(m − 2)

in the variable t . The index m for gm indicates that the cumulants up to γm participate
in the construction. If s = m + 1 is integer, one may also consider the function gm+1,
involving the next cumulant γm+1.

The function gm represents the Fourier–Stieltjes transform of a signed measure νm
with density

ϕm(x) = ϕ(x) + ϕ(x)
∑ 1

k1! · · · km−2!
(γ3

3!
)k1 · · ·

(γm

m!
)km−2

Hk(x),
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where the summation is as above, and where Hk(x) denotes the Chebyshev–Hermite
polynomial with leading term xk . Since Hk(x)ϕ(x) = −(Hk−1(x)ϕ(x))′, the corre-
sponding generalized distribution function

�m(x) = νm((−∞, x]) =
∫ x

−∞
ϕm(y) dy (x ∈ R)

may explicitly be written by virtue of the analogous expression

�m(x) = �(x) − ϕ(x)
∑ 1

k1! · · · km−2!
(γ3

3!
)k1 · · ·

(γm

m!
)km−2

Hk−1(x). (7.1)

Let us note that, when 2 < s ≤ 3, necessarily g2(t) = e−t2/2, that is, ν2 is the
standard Gaussian measure γ . If s > 3 and Ls is small, the measure νm is close to γ

in many senses. For example, if Ls ≤ 1, there is a simple bound on the total variation
distance

‖νm − γ ‖TV ≤ m
√

(3(m − 2))! L
1

s−2
s

(cf. [12]). Here the right-hand side may be replaced with a much smaller quantity, if
we compare the corresponding “characteristic” functions. In particular, we have:

Proposition 7.1 If s ≥ 3, then in the interval |t | ≤ 1
L3
, for all r = 0, 1, . . . , [s],

∣∣∣∣ d
r

dtr
( fn(t) − gm(t))

∣∣∣∣ ≤ CsLs min
{
1, |t |s−r} e−t2/8, (7.2)

where Cs depends on s only, e.g., one may take Cs = (Cs)3s with some absolute
constant C. In case 2 < s < 3, the same inequality holds true in the interval |t | ≤
(6Ls)

− 1
s−2 for r = 0, 1, 2.

In the literature, inequalities similar to (7.2) can be found for integer values s =
m + 1, often for i.i.d. summands and r = 0, only. In the book by Petrov [27], (7.2)
is proved in the i.i.d. case without the derivative of the maximal order p = m + 1,
and with an indefinite constant Cs (Lemma 4, p. 140). Bikjalis derived a more precise
statement with explicit constants that also depend on r ([8], cf. also [7,34] on the non-
i.i.d. case with r = 0). A variant of (7.2) can be found in the book by Bhattacharya
and Ranga Rao [6], who considered multidimensional summands. Their Theorem 9.9
covers the interval of the form |t | ≤ cs L

−1/(s−2)
s for all r ≤ m + 1, although it does

not specify the constants as functions of s. As easy to see, the interval |t | ≤ 1/L3
in (7.2) is longest possible (up to an absolute factor), but the question on the worst
growth of the s-dependent constants in such inequalities seems to be open. The current
formulation with not necessarily integer values of s may be found in the recent paper
[12].

Proposition 7.1 may be used to derive the following non-uniform bounds.
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Proposition 7.2 Let Ls < ∞ (s ≥ 3), and suppose that the characteristic function
fn(t) is vanishing outside the interval |t | ≤ L−1/(s−2)

s . Then, for all x ∈ R,

|Fn(x) − �m(x)| ≤ CsLs

(1 + |x |)m−1 , |Fn(x) − �m(x)| ≤ CsLs/α

(1 + |x |)m , (7.3)

where one may take Cs = (Cs)3s with some absolute constant C.

Proof The function Ar (x) = xr (Fn(x) − �m(x)) has bounded variation on the real
line, and its Fourier–Stieltjes transform may be written as

ar (t) = i−r dr

dtr
a(t)

t
= i−r

∫ 1

0

(
a(r)(t) − a(r)(ηt)

)
rηr−1 dη (t �= 0),

where a(t) = fn(t) − gm(t) (for more details, we refer an interested reader to [11]).
Hence, by the Fourier inversion formula, for all x ,

|Ar (x)| ≤ 1

2π

∫ ∞

−∞

∫ 1

0

∣∣a(r)(t)
∣∣ + ∣∣a(r)(ηt)

∣∣
|t | rηr−1 dη dt = 2

π

∫ ∞

0

∣∣a(r)(t)
∣∣

t
dt.

Using the assumption on fn and applying (7.2), we see that the last integral does not
exceed

CsLs

∫ L
− 1
s−2

s

0

min
{
1, |t |s−r

}
t

e−t2/8 dt +
∫ ∞

L
− 1
s−2

s

∣∣g(r)(t)
∣∣

t
dt. (7.4)

Up to an absolute constant C , the derivatives of the corrected normal characteristic
function admit the bound

|g(r)(t)| ≤ (Cs)2s Ls e
−t2/8, for |t | max

{
L

1
s−2
s , L

1
3(s−2)
s

}
≥ 1, r = 0, 1, . . . , [s]

(cf. [12], Proposition 17.1). Hence, if Ls ≤ 1, the second integral in (7.4) is bounded
by a similar quantity (Cs)2s Ls . One can make the same conclusion about the first
integral in case r ≤ m − 1, and then we are led to the first bound in (7.3). However,
in case r = m, when integrating over (0, 1), we gain an additional factor, which may
only be bounded by 1/α.

Let us also note that, by Taylor’s formula, | fn(t) − 1| ≤ 1
2 t

2, so fn(t) may not
vanish in the interval |t | <

√
2, and thus necessarily Ls ≤ 1. �


8 Smoothing

Keeping the same notations, the bounds in (7.3) immediately yield:
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Proposition 8.1 Let Ls be finite for s ≥ 3 and let 1 ≤ p ≤ s − 2. Under the
assumptions of Proposition 7.2, for the distribution μn of Sn we have

Wp(μn, νm) ≤ (CsLs)
1/p (8.1)

with some s-dependent constant Cs.

Proof We apply Corollary 3.2 and the first inequality in (7.3) to get

Wp(μn, νm) ≤
∫ ∞

−∞
|Fn(x) − �m(x)| 1

p dx ≤ (CsLs)
1
p

∫ ∞

−∞
dx

(1 + |x |)m−1
p

.

If α ≤ 1
2 , then m−1

p ≥ p+1−α
p ≥ 1 + 1

2p . Hence, the last integral does not exceed 4p.

In case α > 1
2 , one may use the second inequality in (7.3), which similarly gives

Wp(μn, νm) ≤ 2 (CsLs)
1
p

∫ ∞

−∞
dx

(1 + |x |)m
p

≤ 4p (CsLs)
1
p .

�

Using a smoothing argument, the assumption on the support,

fn(t) = 0 outside the interval |t | ≤ L
− 1

s−2
s , (8.2)

can be removed from Proposition 8.1 for the critical value p = s − 2. As a standard
choice of smoothing, we consider the probability densities of the form

wr (x) = λ

�

(
sin(λx)

λx

)2r

, r = 2, 3, . . . ,

where the positive parameters � = �r and λ = λr are defined by

� =
∫ ∞

−∞

(
sin x

x

)2r

dx, λ2 = 1

�

∫ ∞

−∞
x2

(
sin x

x

)2r

dx .

Here, the normalizing constant � is chosen to ensure that wr is a probability den-
sity, while the choice of λ guarantees that the second moment is equal to 1. The
corresponding characteristic functions hr (t) are supported on the segments [−Tr , Tr ],
where Tr = 2r

λ
> 1; they represent normalized rescaled r -fold power convolutions of

the triangle characteristic function (1 − |t |)+.
Let ξ be a random variable with density wr . Clearly, it has finite r -th absolute

moment Mr = E |ξ |r . Taking r = [s] + 1, we apply Proposition 8.1 to the random
vector X̃ in R

n+1 with components
√

1 − τ 2 X1, . . . ,
√

1 − τ 2 Xn, τξ , where τ =
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cL1/(s−2)
s ≤ 1 with a proper constant c > 0, and assuming that ξ is independent of all

Xk . Then the sum of the components

Sn+1 =
√

1 − τ 2 Sn + τξ

has the characteristic function fn+1(t) = fn(t)hr (τ t) vanishing outside the interval
|t | ≤ Tr/τ . In addition, assuming that Ls ≤ 1, the Lyapunov coefficient L̃s corre-
sponding to X̃ satisfies

L̃s ≤ Ls + τ sMr ≤ Ls(1 + Mr ).

Therefore, the requirement (8.2) is met for X̃ , that is, for fn+1 and L̃s , as long as

Tr
τ

≤ (Ls(1 + Mr ))
− 1

s−2

which is the same as c ≥ c0 ≡ Tr (1 + Mr )
1

s−2 . Choosing c = c0 and assuming that
Ls ≤ c−(s−2)

0 (in order to guarantee that τ ≤ 1), the inequality (8.1) will thus hold for
the distribution μn+1 of Sn+1, i.e., we have

Ws−2(μn+1, νm) ≤ CsL
1

s−2
s (8.3)

with some s-dependent constants Cs .
On the other hand, by the definition (1.1) of the power transport distance,

Wp (μn+1, μn) ≤ (
E |Sn+1 − Sn|p

)1/p

≤
(

1 −
√

1 − τ 2
)

(E |Sn|p)1/p + τM1/p
r ≤ τ

[
(E |Sn|p)1/p + M1/p

r

]
.

Here, according to Rosenthal’s inequality, E |Sn|p ≤ Bp with some constants Bp

depending on p, only. Applying the results of [22], this inequality may be shown to
hold, for example, with Bp = (2p)p, cf. also [21,28]. Hence, with p = s − 2 we get

Ws−2(μn+1, μn) ≤ C ′
s L

1
s−2
s .

It remains to combine this inequality with (8.3), and then we arrive at (8.1), by applying
the triangle inequality for the distance Ws−2. At this point, the condition Ls ≤ c−(s−2)

0
may easily be removed.

Corollary 8.2 Let Ls < ∞ for s ≥ 3. For the distribution μn of Sn we have

Ws−2(μn, νm) ≤ CsL
1

s−2
s (8.4)

with some constants Cs continuously depending on s.
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9 Edgeworth expansion (the i.i.d. case)

If the random variables Xk = ξk/
√
n are identically distributed, with Eξ1 = 0 and

Eξ2
1 = 1, then γ j+2 = n− j/2 γ j+2(ξ1) in the sum (7.1), and the sum itself may be

viewed as a polynomial in 1/
√
n of degree at most m − 2, namely

�m(x) = �(x) − ϕ(x)
m−2∑
j=1

n− j
2 Q j (x). (9.1)

Here

Q j (x) =
∑ 1

k1! · · · km−2!
(

γ3(ξ1)

3!
)k1

· · ·
(

γm(ξ1)

m!
)km−2

Hk−1(x)

with summation over all integers k1, . . . , km−2 ≥ 0 such that k1 + 2k2 + · · · + (m −
2)km−2 = j , and where k = 3k1 +· · ·+mkm−2. Following Esseen [18], formula (9.1)
defines the Edgeworth expansion for the distribution function Fn(x) = P{Sn ≤ x}.

In particular, �2(x) = �(x) and

�3(x) = �(x) − γ3

6
√
n

(x2 − 1) ϕ(x), γ3 = Eξ3
1 .

More generally, if γ3(ξ1) = · · · = γl−1(ξ1) = 0 (3 ≤ l ≤ m), that is, if the first l − 1
moments of ξ1 coincide with those of a standard normal random variable Z , then the
first l−3 terms in the sum (9.1) are vanishing, γl = Eξ l1 −EZl , and (9.1) is simplified
to

�m(x) = �(x) − γl

l! Hl−1(x) ϕ(x) n− l−2
2 − ϕ(x)

m−2∑
r=l−2

n− r
2 Qr (x). (9.2)

Although Proposition 7.2 may be applied in the i.i.d. case, recall that it contains the
assumption on the support of the characteristic function fn(t). Actually, this assump-
tion may be weakened to the requirement that fn(t) is sufficiently small on larger
intervals in comparison with |t | ≤ L−1/(s−2)

s . For the i.i.d. random variables as above,
this is fulfilled under the Cramér condition (1.6), in which case much more is known.
When s = m + 1 is integer, Cramér proved that Fn(x) − �s−1(x) = O(n−(s−2)/2)

uniformly over all x , while adding another term to the Edgeworth expansion, Esseen
strengthened this result to

sup
x

|Fn(x) − �s(x)| = o(n−(s−2)/2),

cf. [16,17] and [18], Theorem 1, p. 49. The following important refinement, with
extension to not necessarily integer values of s, is due to Osipov [25,26], see also
[27], Theorem 2, p. 168, and a more general Theorem 1, p. 159.
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Proposition 9.1 Assume that (1.6) is fulfilled, and let E |ξ1|s < ∞ (s ≥ 3). Then

∣∣Fn(x) − �[s](x)
∣∣ ≤ εn

(1 + |x |)s n
−(s−2)/2 (9.3)

uniformly over all x ∈ R with some sequence εn → 0 as n → ∞.

The critical case s = 3 is rather special in obtaining of uniform and non-uniform
bounds. For example, Esseen showed that the relation Fn(x) − �3(x) = o(n−1/2)

remains to hold under a weaker restriction that ξ1 has a non-lattice distribution. Remov-
ing any restriction and replacing �3 with the normal distribution function, there is also
a non-uniform bound

|Fn(x) − �(x)| ≤ Cβ3

(1 + |x |)3
√
n
.

This result was obtained by Nagaev [23], and later Bikjalis [9] extended it to the range
2 < s ≤ 3 in terms of Ls ; see also [24] for the history of the problem for this range.

In a full analogy with Proposition 8.1, using the bound (9.3) and applying Corol-
lary 3.2, we obtain a refinement of the inequality (8.4).

Corollary 9.2 Let E |ξ1|s < ∞ for s ≥ 3 and let 1 ≤ p ≤ s − 2. Under the Cramér
condition (1.6), for the signed measure νm with distribution function �m, m = [s], we
have

Wp(μn, νm) = o
(
n−(s−2)/2p

)
. (9.4)

10 Proof of Theorems 1.1 and 1.3

Due to the triangle inequality, the Edgeworth correction νm in Corollaries 8.2 and 9.2
may be replaced with the standard Gaussian measure γ at the expense of an additional
term Wp(νm, γ ). Hence, the final step in the proof Theorem 1.1 should be provided
by the corresponding bound on this distance in case p = s − 2.

Lemma 10.1 If Ls ≤ 1 for s ≥ 3, then

Ws−2(νm, γ ) ≤ CsL
1

s−2
s , (10.1)

where one may take Cs = (Cs)12s with some absolute constant C.

Proof If a random variable X has mean zero, its cumulants admit a simple bound in
terms of the absolute moments, namely

|γr (X)| ≤ (r − 1)!E |X |r
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(Bikjalis [8], cf. also [12]). Hence, a similar relation also holds for the cumulants
γr = γr (Sn) of the sum Sn in terms of the Lyapunov coefficients Lr . Moreover, since
the function L1/(r−2)

r is non-decreasing in r (in view of ES2
n = 1), we have

|γr | ≤ (r − 1)! Lr ≤ (r − 1)! L
r−2
s−2
s , 3 ≤ r ≤ [s].

Hence, for any tuple (k1, . . . , km−2) participating in (7.1),

∣∣∣∣
(γ3

3!
)k1 · · ·

(γm

m!
)km−2

∣∣∣∣ ≤ 1

3k1 · · ·mkm−2
L

l
s−2
s ,

where l = k1 + 2k2 + · · · + (m − 2)km−2. Necessarily, l ≥ 1, so, L
l

s−2
s ≤ L

1
s−2
s . In

addition,

∑ 1

k1! · · · km−2!
1

3k1 · · ·mkm−2
< e1/3 · · · e1/m < m.

Using these bounds together with a simple inequality |Hk(x)| ≤ k! (1 + |x |k) for the
Chebyshev–Hermite polynomials, which is needed with k ≤ 3(m − 2) + 1, we find
from (7.1) that

|�m(x) − �(x)| ≤ m (3m − 5)! L
1

s−2
s (1 + |x |3m−5) ϕ(x).

One can now apply Proposition 5.1 with ν = νm , G = �m , p = s − 2, d = 3m − 5
and ε = m (3m − 5)! L1/(s−2)

s . It then yields the desired conclusion with constant

Cs = m (3m − 5)! (C(s − 2)d)3(d+1)/2 < (C ′s)12s .

�

Proof of Theorem 1.1. Combining (10.1) with (8.4), we arrive at the desired conclu-
sion

Ws−2(μn, γ ) ≤ CsL
1

s−2
s ,

assuming that Ls ≤ 1. But, in the case Ls ≥ 1, this inequality also holds, by taking
into account the general relation relying on Rosenthal’s inequality: For all p ≥ 1,

Wp(μn, γ ) ≤ (E |Sn|p)1/p + (E |Z |p)1/p ≤ (2p)1/p L1/p
p∗ + (E |Z |p)1/p,

where p∗ = max{p, 2} and Z is a standard normal random variable. It remains to note
that in case s = p + 2, necessarily L p∗ ≤ max{L(p∗−2)/p

p+2 , 1} ≤ L p+2. �

Let us now turn to the i.i.d. case Xk = ξk/

√
n and derive the following refinement

of Lemma 10.1 for the special situation as in Theorem 1.2. As usual, βs = E |ξ1|s .
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Lemma 10.2 Let βs < ∞ for s = (l − 2)p + 2 and let the first l − 1 moments of ξ1
(l ≥ 3) coincide with the corresponding moments of Z ∼ N (0, 1). Then, under the
Cramér condition (1.6),

Wp
(
ν[s], γ

) = c n− l−2
2 + O

(
n− l−1

2

)
, (10.2)

where

c = |γl |
l!

(
E |Hl−1(Z)|p)1/p

. (10.3)

Proof We now involve Proposition 6.1 with the (generalized) distribution function
G(x) = �[s](x) = �(x) + ε(x)ϕ(x), where, according to (9.2),

ε(x) = −γl

l! Hl−1(x) n
− l−2

2 −
[s]−2∑
r=l−2

Qr (x) n
− r

2 . (10.4)

Since the polynomials Qr have degree at most 3(s − 2), we have

max{|ε(x)|, |ε′(x)|} ≤ C (1 + |x |)3(s−2) n− l−2
2 (10.5)

with some constant C which does not depend on n and x . Hence, condition (6.2) on
the behavior of ε(x) will be fulfilled on all intervals [−T, T ] with T ≥ 1 such that

2C (2T )3(s−2)+1 ≤ n
l−2

2 .

In particular, we may choose T = Tn = nβ with a sufficiently small β > 0.
From (10.5) we also obtain that

∫
|x |>Tn

|ε(x)|1/p ϕ(x)1/p dx = o(n−q)

for any q > 0. Hence, we get the representation Wp
(
ν[s], γ

) = Ap + o(n−q), in
which

|Ap
p − I pp | ≤

∫
|x |>Tn

|ε(x)|p ϕ(x) dx +
∫ ∞

−∞
|ε(x)|p |ε′(x)| ϕ(x) dx

+
(
p · 2p+1+1

) ∫ ∞

−∞
|ε(x)|p+1 (1+|x |) ϕ(x) dx+2 (2Tn)

p−1 ϕ(Tn),

where

I pp =
∫ ∞

−∞
|ε(x)|p ϕ(x) dx = E |ε(Z)|p.
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By (10.5), this gives Ap
p − I pp = O

(
n− l−2

2 (p+1)
)

. In addition, it follows from (10.4)

that

E |ε(Z)|p = cp n− (l−2)p
2 + O

(
n− (l−2)p+1

2

)

with constant c described in (10.3). Therefore, the same expansion is also true for Ap,
so,

W p
p

(
ν[s], γ

) = Ap
p + o(n−q) = cp n− (l−2)p

2 + O
(
n− (l−2)p+1

2

)
.

Raising this equality to the power 1/p, we arrive at (10.2). �

Proof of Theorem 1.3 Again, let s = (l − 2)p + 2. As in the proof of Theorem 1.1
(final step), one can now combine (10.2) with inequality (9.4) of Corollary 9.2. By the
triangle inequality, with some |θ | ≤ 1 this gives

Wp(μn, γ ) = Wp
(
ν[s], γ

) + θ Wp
(
μn, ν[s]

)
= c n− l−2

2 + O
(
n− l−1

2

)
+ o

(
n− s−2

2p

)
= c n− l−2

2 + o
(
n− l−2

2

)
.

�


11 Coupling

The assertion in Corollary 1.3 relies upon the following general observation on the
transport distances between probability measures on R

n for a special cost function

c(x, y) =
∣∣∣∣∣

n∑
k=1

xk −
n∑

k=1

yk

∣∣∣∣∣
p

, x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n .

(11.1)

Lemma 11.1 Let X = (X1, . . . , Xn) and Y = (Y1, . . . ,Yn) be random vectors in
R
n with finite absolute moments of order p ≥ 1. Then, the Wp-distance between

the distributions μ and ν of the sums X1 + · · · + Xn and Y1 + · · · + Yn admits the
representation

Wp(μ, ν) = inf
π

(∫
Rn

∫
Rn

c(x, y) dπ(x, y)

)1/p

, (11.2)

where the infimum runs over all Borel probability measures π on R
n × R

n whose
marginals are equal to the distributions of X and Y , respectively.

Proof The argument is based on the dual description of transport distances, which we
apply with the cost function c(x, y) as in (11.1). Let Kn(P, Q) denote the p-th power
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of the right-hand side of (11.2) for the distributions P and Q of X and Y . Then, we
have

Kn(P, Q) = Jn(P, Q), (11.3)

where

Jn(P, Q) = sup

[∫
Rn

u(x) dP(x) +
∫
Rn

v(y) dQ(y)

]
(11.4)

with supremum running over all Borel measurable functions u, v on R
n such that

u(x) + v(y) ≤ c(x, y), x, y ∈ R
n . (11.5)

The latter condition together with the moment assumption ensures that the integrals in
(11.4) exist in the Lebesgue sense and may not take the value +∞, so that Jn(P, Q)

is well-defined.
The identity (11.3) is rather universal; as was shown in [5], it holds in the setting of

an arbitrary complete separable metric space and for an arbitrary cost function c ≥ 0
integrable with respect to the product measure P ⊗ Q (cf. also [14], p. 24). Moreover,
the infimum in (11.2) is always attained at some π (called an optimal transference
plan, cf. [14], p. 19).

Now, restricting the sup in (11.4) to the functions of the form u = u(x1 +· · ·+ xn)
and v = v(y1 +· · ·+ yn), the constraint (11.5) is simplified to u(a)+v(b) ≤ |a−b|p
(a, b ∈ R). Hence, by the one-dimensional variant of (11.3), the restricted supremum
is equal to W p

p (μ, ν), and thus Jn(P, Q) ≥ W p
p (μ, ν).

For an opposite direction, consider the partition of the n-space into the hyperplanes
H(a) = {x ∈ R

n : x1 + · · · + xn = a}, a ∈ R. There exist a family of conditional
probability measures (Pa)a∈R and (Qa)a∈R for P and Q, that are supported on Ha

and satisfy

∫
Rn

u(x) dP(x) =
∫ ∞

−∞

[∫
H(a)

u dPa

]
dμ(a), (11.6)

∫
Rn

v(y) dQ(y) =
∫ ∞

−∞

[∫
H(b)

v dQb

]
dν(b) (11.7)

(cf. [13,32] for a general theory). According to (11.5), u(x) + v(y) ≤ |a − b|p
whenever x ∈ H(a) and y ∈ H(b). Hence, there is an apriori weaker property
ũ(a) + ṽ(b) ≤ |a − b|p for the functions

ũ(a) =
∫
H(a)

u dPa, ṽ(b) =
∫
H(b)

u dQb.

Again, by the one-dimensional variant of (11.3),

∫ ∞

−∞
ũ dμ +

∫ ∞

−∞
ṽ dμ ≤ J1(μ, ν) = K1(μ, ν) = W p

p (μ, ν),
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which, by (11.6)–(11.7), yields the desired bound

∫
Rn

u(x) dP(x) +
∫
Rn

v(y) dQ(y) ≤ W p
p (μ, ν).

�

Lemma 11.1 allows us to reformulate Theorem 1.1 as a statement on the closeness of

product measures to the standard Gaussian measure γn on R
n in terms of transference

plans onRn×R
n . Let P be a product probability measure onRn whose k-th marginals

have mean zero and variances σ 2
k such that σ 2

1 + · · · + σ 2
n = 1. The corresponding

Lyapunov coefficients may be written as

Ls =
∫
Rn

n∑
k=1

|xk |s d P(x) (s ≥ 2).

Theorem 11.2 If L p+2 is finite for p ≥ 1, then for some probability measure π on
R
n × R

n with marginals P and γn,

[∫
Rn

∫
Rn

∣∣∣∣∣
n∑

k=1

xk −
n∑

k=1

yk

∣∣∣∣∣
p

dπ(x, y)

]1/p

≤ cp L
1/p
p+2

with some constants cp continuously depending on p.

In the i.i.d. case we arrive at the first assertion of Corollary 1.3, while the second
one is similar.
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