
E l e c t r o
n i

c

J
o
u
r n

a l
o
f

P
r
o b a b i l i t y

Electron. J. Probab. 23 (2018), no. 92, 1–22.
ISSN: 1083-6489 https://doi.org/10.1214/18-EJP195

Berry–Esseen bounds
for typical weighted sums

S. G. Bobkov*†‡ G. P. Chistyakov§† F. Götze¶†

Abstract

Under correlation-type conditions, we derive upper bounds of order 1√
n
for the Kol-

mogorov distance between the distributions of weighted sums of dependent summands
and the normal law.
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1 Introduction

Given a random vector X = (X1, . . . , Xn) in the Euclidean space Rn (n ≥ 2), we
consider the weighted sums

Sθ = θ1X1 + · · ·+ θnXn, θ = (θ1, . . . , θn) ∈ Sn−1,

parameterized by points of the unit sphere Sn−1 = {θ ∈ Rn : θ21+ · · ·+θ2n = 1}. According
to the celebrated result by Sudakov [23], if n is large, and if the covariance matrix of X
has bounded spectral radius, the distribution functions Fθ(x) = P{Sθ ≤ x} concentrate
around a certain typical distribution function given by the mean

F (x) = EθFθ(x) ≡
∫
Sn−1

Fθ(x) dµn−1(θ), x ∈ R, (1.1)

over the uniform probability measure µn−1 on Sn−1. In contrast to the classical scheme of
independent summands, this theorem has a much wider range of applicability. However,
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Weighted sums

the problem of possible rates of concentration, including the rates for the µn−1-mean of
the Kolmogorov distance

ρ(Fθ, F ) = sup
x

|Fθ(x)− F (x)|,

is rather delicate, and the answers depend upon correlation-type characteristics of the
distribution of X. A natural characteristic is for example the maximal Lp-norm

Mp = sup
θ

(
E|Sθ|p

)1/p
, p ≥ 1.

Moreover, if we want to study the approximation for most of Fθ’s by the standard
normal distribution function

Φ(x) =
1√
2π

∫ x

−∞
e−y2/2 dy, x ∈ R,

one is led to study another concentration problem – namely rates for the distance ρ(F,Φ).
To this aim, let us rewrite the definition (1.1) as F (x) = P{rZn ≤ x} with

r2 =
|X|2

n
=

X2
1 + · · ·+X2

n

n
(r ≥ 0),

where the random variable Zn is independent of r and has the same distribution as
√
nθ1

under µn−1. Since Zn is close to being standard normal, F itself is approximately normal,
if and only if r2 is nearly a constant, which translates into a weak law of large numbers
for the sequence X2

k . This property – that the distribution of r2 is concentrated around a
point – may be quantified by the variance-type functionals

σ2p =
√
n
(
E |r2 − 1|p

)1/p
.

In reasonable situations, these functionals are expected to be bounded by quantities
that are independent of n (at least, they are finite, as long as M2p < ∞). For example,
if |X|2 = n a.s., we have σ2p = 0. If the components Xk are pairwise independent,
identically distributed, and EX2

1 = 1, then

σ2
4 =

1

n
Var(|X|2) = Var(X2

1 ).

It turns out that control of the two functionals, M3 and σ3 is sufficient to guarantee
a Berry-Esseen type rate of normal approximation for Fθ on average, in analogy with
the Berry-Esseen theorem for independent identically distributed random variables.
Since the second moment for the typical distribution F is equal to Er2, a normalization
condition for this moment is desirable.

Theorem 1.1. If E |X|2 = n, then with some absolute constant c

Eθ ρ(Fθ,Φ) ≤ c (M3
3 + σ

3/2
3 )

1√
n
. (1.2)

In the case of non-correlated random variables Xk with mean zero and variance
one, all Sθ have also mean zero and variance one, so that M2 = 1. In many interesting
examples, M3 is known to be of the same order as M2 (in particular, when Khinchine-
type inequalities are available for linear functionals of Xk). In some other examples,
the magnitude of M3 is however much larger, and here control via M2, as in the next
assertion, is preferable.

Theorem 1.2. If E |X|2 = n, then for some absolute constant c

Eθ ρ(Fθ,Φ) ≤ c (M2
2 + σ2)

log n√
n

. (1.3)

EJP 23 (2018), paper 92.
Page 2/22

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP195
http://www.imstat.org/ejp/


Weighted sums

Thus, modulo an additional logarithmic factor, a Berry-Esseen type rate holds for this
average under a second moment assumption, only.

For an illustration, consider the trigonometric system X = (X1, . . . , Xn) with compo-
nents

X2k−1(ω) =
√
2 cos(kω),

X2k(ω) =
√
2 sin(kω), −π < ω < π, k = 1, . . . , n/2,

assuming that n is even. They may be treated as random variables on the probability
space Ω = (−π, π) equipped with the normalized Lebesgue measure P, such that the
linear forms

Sθ =
√
2

n/2∑
k=1

(
θ2k−1 cos(kω) + θ2k sin(kω)

)
represent trigonometric polynomials of degree at most n

2 . The normalization
√
2 is

chosen for convenience only, since then X is isotropic, so that M2 = 1. Since also σ2 = 0,
by Theorem 1.2, most of the distributions Fθ of Sθ are approximately standard normal,
and we have an upper bound

Eθ ρ(Fθ,Φ) ≤ c
log n√

n
. (1.4)

The study of asymptotic normality for trigonometric polynomials has a long history,
starting with results on lacunary systems due to Kac [13], Salem and Zygmund [21]-[22],
Gaposhkin [12]; see also [9]-[10], [1], [11], [2]. As we see, normality with an almost
Berry-Esseen type rate remains valid for most choices of coefficients even without an
assumption of lacunarity. One can show that the inequality (1.4) still holds for many other
functional orthogonal systems as well, including, for instance, Chebyshev’s polynomials
on the interval Ω = (−1, 1), the Walsh system on the Boolean cube {−1, 1}n. It holds
as well for any system of functions of the form Xk(ω1, ω2) = f(kω1 + ω2), ω1, ω2 ∈ (0, 1),
where f is 1-periodic and belongs to L4(0, 1) (this is a strictly stationary sequence of
pairwise independent random variables). A common feature of all listed examples is that
(1.4) may actually be reversed modulo a logarithmic factor, in the sense that

Eθ ρ(Fθ,Φ) ≥ c
1√

n (log n)s

with some s > 0. (However, we do not derive lower bounds here referring the interested
reader to [8]).

The conditions of Theorem 1.2 may be further relaxed in order to eliminate de-
pendence on σ2

2. This can be achieved by replacing it by the requirement that the
probabilities P{|X −Y |2 ≤ n/4} are small enough, where Y is an independent copy of X,
cf. Theorem 6.3 below. This extends the applicability of our results to further groups of
examples, while replacing Φ by a certain mixture of centered Gaussian measures. More
precisely, define G to be the law of rZ, where Z ∼ N(0, 1) is independent of r = 1

n |X|.
In particular, we have:

Theorem 1.3. If the components Xk of the random vector X in Rn are independent,
identically distributed, have mean zero and finite second moment, then

Eθ ρ(Fθ, G) ≤ c

√
log n

n
,

where the constant c depends on the distribution of X1 only.
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Weighted sums

At first sight it seems surprising that an approximate Berry-Esseen type rate holds
under no additional assumption beyond the finiteness of the second moment. Indeed,
in the classical situation of equal coefficients, and when EX1 = 0, EX2

1 = 1, the
distributions Fn of the normalized sums Sn = (X1 + · · · + Xn)/

√
n may approach the

standard normal law at an arbitrary slow rate: For any sequence εn → 0+, one may
choose the distribution of X1 such that

ρ(Fn,Φ) ≥ εn

for all n large enough (cf. [17]). This shows that for typical coefficients, the distributions
Fθ behave in a more stable way in comparison to Fn. This interesting phenomenon has
been studied before. For example, Klartag and Sodin [15] have shown in the i.i.d. case
and under the 4-th moment assumption, that

Eθ ρ(Fθ,Φ) ≤ c
β4

n
, β4 = EX4

1 ,

thus essentially improving the standard rate in the Berry-Esseen theorem. A similar
observation was also made by Klartag under a certain dependency hypothesis. It
was shown that, if the random vector X has an isotropic, coordinatewise symmetric
distribution with a logarithmically concave density, then, for all θ ∈ Sn−1,

ρ(Fθ,Φ) ≤ c

n∑
k=1

θ4k

with some absolute constant c ([14], Theorem 1). In particular, Eθ ρ(Fθ,Φ) ≤ c
n .

The paper is organized as follows. We start with comments on general properties of
the moment and variance-type functionals. Then we turn to the normal approximation for
distributions of the first coordinate on the sphere (with rate of order 1/n), which is used
in Section 4 to describe proper bounds on the distance from the typical distributions to
the standard normal law. Proofs of both Theorems 1.1 and 1.2 rely upon the spherical
Poincaré inequality and Berry-Esseen-type estimates in terms of characteristic functions.
The characteristic functions of the weighted sums are discussed separately in Section 5.
Their properties are used in Section 6 to complete the proof of Theorem 1.2 (in a more
general form). Theorem 1.1 is proved in Section 8, and in the last section we add some
remarks concerning Theorem 1.3.

2 Moment and variance-type functionals

First let us describe some basic properties of the functionals Mp = Mp(X) and
σ2p = σ2p(X). We shall as well introduce a few additional functionals. Define

mp = mp(X) =
1√
n

(
E | 〈X,Y 〉 |p

)1/p

, p ≥ 1, (2.1)

where Y is an independent copy of X. All these quantities do not depend on the systems
of coordinates, that is,

mp(UX) = mp(X), Mp(UX) = Mp(X)

for any orthogonal linear map U : Rn → Rn.
We call Mp the p-th moment of X. In case M2 is finite, one may consider the

covariance operator (matrix) of X which is defined by the equality

E 〈X, a〉2 = 〈Ra, a〉 , a ∈ Rn.
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It is symmetric, positive definite, and has non-negative eigenvalues λk (1 ≤ k ≤ n).
Choosing a system of coordinates such that R is diagonal with entries λk, we see that

M2
2 = max

k
λk, m2

2 =
1

n
E 〈X,Y 〉2 =

1

n

n∑
k=1

λ2
k, E |X|2 =

n∑
k=1

λk. (2.2)

The random vector X is called isotropic (or having an isotropic distribution), if the
covariance matrix of X is an identity, i.e.,

E 〈X, a〉2 = |a|2 for all a ∈ Rn.

In this case, m2 = M2 = 1, and E |X|2 = n. Isotropic distributions are invariant under
orthogonal transformations of the space.

Applying Cauchy’s inequality, from (2.2) we immediately obtain:

Proposition 2.1. For any random vector X in Rn with E |X|2 = n, we have m2 ≥ 1,
where equality is attained, if and only if X is isotropic.

The p-th moments of X may easily be related to the moments of |X|.
Proposition 2.2. Given p ≥ 2, for any random vector X in Rn,

(E |X|p)1/p ≤ Mp

√
n.

If X is isotropic, there is an opposite inequality (E |X|p)1/p ≥ (E |X|2)1/2 =
√
n.

Proof. By the rotational invariance of the uniform distribution on Sn−1, we have

Eθ | 〈θ, a〉 |p = |a|pEθ |θ1|p, a ∈ Rn,

where Eθ denotes the integral over the uniform measure µn−1 . Inserting here a = X,
we get

|X|pEθ |θ1|p = Eθ | 〈X, θ〉 |p.
Next, take the expectation with respect to X and use E | 〈X, θ〉 |p ≤ Mp to arrive at the
upper bound

E |X|p ≤
Mp

p (X)

Eθ |θ1|p
.

Here, since Eθ θ
2
1 = 1

n , we have

(Eθ |θ1|p)1/p ≥ (Eθ |θ1|2)1/2 =
1√
n
.

Corollary 2.3. mp ≤ M2
p for any p ≥ 2.

Indeed, let Y be an independent copy of the random vector X. By the very definition,
for any particular value of Y , we have EX | 〈X,Y 〉 |p ≤ Mp

p |Y |p. It remains to take the
expectation with respect to Y .

In particular, m2 ≤ M2
2 , as can also be seen from (2.2). The identities in (2.2) also

show that, in the general non-isotropic case, M2
2 may be larger than m2.

Let us now turn to the functionals

σ2p = σ2p(X) =
√
n

(
E

∣∣∣ |X|2

n
− 1

∣∣∣p)1/p

, p ≥ 1,

where it is natural to assume that E |X|2 = n. Note that σ2p represents a non-decreasing
function of p, which attains its minimum at p = 1 with value

σ2 = σ2(X) =
1√
n
E
∣∣ |X|2 − n

∣∣.
Another important value is σ4 = 1

n Var(|X|2). They may be related to the variance of the
Euclidean norm.
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Proposition 2.4. If E |X|2 = n, then Var(|X|) ≤ σ2
4 . In addition,

1

4
σ2
2 ≤ Var(|X|) ≤ σ2

√
n.

Proof. Put ξ = 1√
n
|X| and a =

√
Eξ2. Then, since ξ ≥ 0,

Var(ξ2) = E (ξ2 − a2)2

= E (ξ − a)2(ξ + a)2 ≥ E (ξ − a)2 · a2 ≥ Var(ξ) · a2.

That is, Eξ2 Var(ξ) ≤ Var(ξ2), which is exactly the first required relation.
Now, in terms of ξ, one may write

Var(|X|) = nVar(ξ) = n (1− (Eξ)2) = n (1− Eξ) (1 + Eξ),

while σ2 =
√
nE |1− ξ2|. By Cauchy’s inequality,

(E |1− ξ2|)2 ≤ E (1− ξ)2E (1 + ξ)2 = 4E (1− ξ)E (1 + ξ),

implying that σ2
2 ≤ 4Var(|X|).

The last inequality of the proposition may be rewritten as 1− (Eξ)2 ≤ E |1− ξ2|. If
(Ω,P) is the underlying probability space, define the probability measure

dQ = (1 + ξ) dP/E (1 + ξ)

and write EQ for the expectation with respect to it. The required inequality then takes
the form EQ |1− ξ| ≥ EQ(1− ξ), which is obvious.

The functionals σ2
2p and mp are useful in the problem of estimation of “small” ball

probabilities.

Proposition 2.5. Let Y be an independent copy of a random vector X in Rn such that
E |X|2 = n. For all p, q ≥ 1,

P
{
|X − Y |2 ≤ 1

4
n
}

≤ 4q

nq/2
mq

q +
42p

np
σ2p
2p .

In particular,

P
{
|X − Y |2 ≤ 1

4
n
}

≤ C

np

with C = 42p (m2p
2p + σ2p

2p).

Proof. According to the definition,

σp
2p = n−p/2E

∣∣ |X|2 − n
∣∣p.

Hence, for any λ ∈ (0, 1), by Chebyshev’s inequality,

P
{
|X|2 ≤ λn

}
= P

{
E |X|2 − |X|2 ≥ (1− λ)E |X|2

}
≤

σp
2pn

p/2

(1− λ)p (E |X|2)p
=

σp
2p

(1− λ)p np/2
.

In particular, choosing λ = 3/4, we get

P
{
|X|2 + |Y |2 ≤ 3

4
n
}

≤ P
{
|X|2 ≤ 3

4
n
}
P
{
|Y |2 ≤ 3

4
n
}

≤
42p σ2p

2p

np
.
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On the other hand, by Markov’s inequality,

P
{
| 〈X,Y 〉 | ≥ 1

4
n
}
≤ 4q E | 〈X,Y 〉 |q

nq
=

4q mq
q

nq/2
.

One may now write
|X − Y |2 = |X|2 + |Y |2 − 2 〈X,Y 〉

and split the event |X − Y |2 ≤ 1
4 n into the case | 〈X,Y 〉 | ≥ 1

4 n and the case of the
opposite inequality. In view of the set inclusion{

|X − Y |2 ≤ 1

4
n
}
⊂

{
| 〈X,Y 〉 | ≥ 1

4
n
}
∪
{
|X|2 + |Y |2 ≤ 3

4
n
}
,

the proposition follows.

3 Linear functionals on the sphere

The aim of this section is to quantify the asymptotic normality of distributions of linear
functionals with respect to the normalized Lebesgue measure µn−1 on the unit sphere
Sn−1 ⊂ Rn (n ≥ 2). By the rotational invariance of this measure, all linear functionals
f(θ) = 〈θ, v〉 with |v| = 1 have equal distributions, and it is sufficient to focus just on the
first coordinate θ1 of the vector θ ∈ Sn−1. As a random variable on the probability space
(Sn−1, µn−1), it has density

cn
(
1− x2

)n−3
2

+
, x ∈ R,

where cn =
Γ(n

2 )
√
π Γ(n−1

2 )
is a normalizing constant.

Let us denote by ϕn the density of the normalized first coordinate Zn =
√
n θ1 under

the measure µn−1, i.e.,

ϕn(x) = c′n

(
1− x2

n

)n−3
2

+
, c′n =

cn√
n
=

Γ
(
n
2

)
√
πn Γ

(
n−1
2

) .
Clearly, as n → ∞,

ϕn(x) → ϕ(x) =
1√
2π

e−x2/2, c′n → 1√
2π

,

and one can show that c′n < 1√
2π

for all n ≥ 2.

We are interested in non-uniform deviation bounds of ϕn(x) from ϕ(x).

Proposition 3.1. If n ≥ 3, then for all x ∈ R, with some universal constant C

|ϕn(x)− ϕ(x)| ≤ C

n
e−x2/8. (3.1)

Proof. Since the random variable Z3 has a uniform distribution on [−
√
3,
√
3], inequality

(3.1) obviously holds for n = 3. Hence, let n ≥ 4.
First we consider the asymptotic behavior of the functions

pn(x) =
(
1− x2

n

)n−3
2

+
, x ∈ R.

Clearly, pn(x) → e−x2/2 for all x. Moreover, for |x| <
√
n, we have

− log pn(x) = −n− 3

2
log

(
1− x2

n

)
≥ n− 3

2

x2

n
≥ x2

8
,
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so that there is a uniform bound

pn(x) ≤ e−x2/8, x ∈ R. (3.2)

To study the rate of convergence of pn(x), assume that |x| ≤ 1
2

√
n. By Taylor’s

expansion, with some 0 ≤ ε ≤ 1

− log pn(x) =
n− 3

2

[ x2

n
+
(x2

n

)2 ∞∑
k=2

1

k

(x2

n

)k−2 ]
=

n− 3

2

(x2

n
+

x4

n2
ε
)

=
x2

2
+

x2

2n

(
− 3 +

n− 3

n
x2ε

)
,

that is,

pn(x) = e−x2/2 e−δ with δ =
x2

2n

(
− 3 +

n− 3

n
x2ε

)
.

Since δ ≥ − 3x2

2n ≥ − 3
8n ≥ − 3

32 , we have

|e−δ − 1| ≤ |δ| e3/32 ≤ 1.1 |δ|.

On the other hand,

δ ≤ x2

2n

(
− 3 +

n− 3

n
x2

)
≤ x4

2n
,

which together with the lower bound on δ yields

1.1 |δ| ≤ 1.1
(3x2

2n
+

x4

2n

)
≤ 1

n
(3x2 + x4).

Thus,

|pn(x)− e−x2/2| ≤ 1

n
(3x2 + x4) e−x2/2, |x| ≤ 1

2

√
n.

Combining this inequality with (3.2), we also get a non-uniform bound on the whole real
line, namely

|pn(x)− e−x2/2| ≤ C

n
e−x2/8, x ∈ R,

where C is an absolute constant. Let us integrate this inequality over x. Since∫ ∞

−∞
pn(x) dx =

1

c′n
,

∫ ∞

−∞
e−x2/2 dx =

√
2π,

we get that | 1
c′n

−
√
2π| ≤ C

n with some absolute constant C. Hence, we arrive at the
conclusion (3.1) for the densities ϕn for n ≥ 4 as well.

In the sequel we denote by Jn the characteristic function of the first coordinate θ1
of a random vector θ which is uniformly distributed on the unit sphere Sn−1. In a more
explicit form, for any t ∈ R,

Jn(t) = cn

∫ ∞

−∞
eitx (1− x2)

n−3
2

+ dx

= c′n

∫ ∞

−∞
eitx/

√
n
(
1− x2

n

)n−3
2

+
dx.

Note that the equality

J̃ν(t) =
1

√
π Γ(ν + 1

2 )

( t

2

)ν
∫ 1

−1

eitx (1− x2)ν−
1
2 dx
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defines the classical Bessel function of the first kind with index ν ([3], p. 81). Therefore,

Jn(t) =
1

cn

√
π Γ(ν +

1

2
)
( t

2

)−ν

J̃ν(t), ν =
n

2
− 1.

However, this relationship will not be used in the sequel.
Thus, the characteristic function of Zn = θ1

√
n is given by

ϕ̂n(t) = Jn
(
t
√
n
)
=

∫ ∞

−∞
eitxϕn(x) dx,

which is the Fourier transform of the probability density ϕn. One immediate consequence
from Proposition 3.1 is the following:

Corollary 3.2. For all t ∈ R, we have∣∣Jn(t√n
)
− e−t2/2

∣∣ ≤ C

n
,

where C is an absolute constant.

For large t, this bound may be improved by virtue of the following upper bound.

Proposition 3.3. For all t ∈ R,∣∣Jn(t√n)
∣∣ ≤ 4.1 e−t2/2 + 4 e−n/12. (3.3)

Proof. One may assume that n ≥ 4 (since 4 e−n/12 > 1 for n = 2 and n = 3, while |Jn| ≤ 1).
For the approximation we shall use an approach based on contour integration in complex
analyis.

The function z → (1− z2)
n−3
2 is analytic in the whole complex plane when n is odd

and in the strip z = x + iy, |x| < 1, when n is even. Therefore, integrating along the
boundary of the rectangle C = [−1, 1]× [0, y] with y > 0 (slightly modifying the contour
in a standard way near the points −1 and 1), we have∫

C

eitz
(
1− z2

)n−3
2 dz = 0.

Then we obtain a natural decomposition Jn(t
√
n) = cn

(
I1(t) + I2(t) + I3(t)

)
for t > 0,

where

I1(t) = e−ty
√
n
(
1 + y2

)n−3
2

∫ 1

−1

eitx
√
n
(1− (x+ iy)2

1 + y2

)n−3
2

dx,

I2(t) = −eit
√
n

∫ y

0

e−ts
√
n
(
1− (1 + is)2

)n−3
2 ds,

I3(t) = e−it
√
n

∫ y

0

e−ts
√
n
(
1− (1− is)2

)n−3
2 ds.

For 0 ≤ s ≤ y ≤ α, ∣∣ 1− (1 + is)2
∣∣ = s

√
s2 + 4 ≤ α

√
α2 + 4 ≡ β.

Choosing α = 1√
6
, we have β = 5

6 . Hence, for all t > 0,

|I2(t)| ≤ β
n−3
2

∫ y

0

e−ts
√
n ds ≤ 1

t
√
n
β

n−3
2 . (3.4)

The same estimates hold for I3(t).
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Weighted sums

In order to estimate I1(t), we use an elementary identity∣∣1− (x+ iy)2
∣∣2 = (1− 2x2)(1 + y2)2 + x2 (x2 + 6y2 + 2y4) (x, y ∈ R),

which for the region |x| ≤ 1 yields∣∣∣∣1− (x+ iy)2

1 + y2

∣∣∣∣2 ≤ 1− 2x2 + x2 v(y2), v(z) =
1 + 6z + 2z2

(1 + z)2
.

Since v′(z) = 4−2z
(1+z)3 > 0, this function increases in 0 ≤ z ≤ 2, and since z = y2 ≤ 1

6 , we

have v(y2) ≤ v(1/6) = 74
49 . Hence∣∣∣∣1− (x+ iy)2

1 + y2

∣∣∣∣2 ≤ 1− 24

49
x2 ≤ e−

24
49 x2

.

Using this estimate together with n− 3 ≥ 1
4 n, we have∫ 1

−1

( |1− (x+ iy)2|
1 + y2

)n−3
2

dx ≤
∫ 1

1

e−
12
49

n−3
2 x2

dx

=

√
49

12

√
2π

n− 3
≤ 14√

12

√
2π

n
≤ 4.1

√
2π

n
.

This upper bound allows us to conclude that

|I1(t)| ≤ 4.1

√
2π

n
e−ty

√
n
(
1 + y2

)n−3
2

≤ 4.1

√
2π

n
exp

{
− ty

√
n+

n− 3

2
y2
}
.

Choosing here y = t√
n
, the expression in the exponent will be smaller than t2/2, hence

|I1(t)| ≤ 4.1 e−t2/2, 0 ≤ t ≤
√
n/6. (3.5)

In the case t >
√
n/6, we choose y = 1√

6
and then −ty

√
n+ n−3

2 y2 < − n
12 − 1

4 , so that

|I1(t)| ≤ 4.1

√
2π

n
e−

n
12−

1
4 , t ≥

√
n/6. (3.6)

Let us collect these estimates. For 2 ≤ t ≤
√
n/6, we combine (3.5) with (3.4) and a

similar bound for I3(t), and use cn < 1√
2π

√
n with β

n−3
2 < 0.77 e−n/12. This leads to

cn
(
|I1(t)|+ |I2(t)|+ |I3(t)|

)
≤ cn√

n
β

n−3
2 + 4.1 cn

√
2π

n
e−t2/2

≤ 0.31 e−n/12 + 4.1 cn e
−t2/2.

Similarly, in case t >
√
n/6, we use (3.6) leading to

cn
(
|I1(t)|+ |I2(t)|+ |I3(t)|

)
≤ 0.31 e−n/12 + 4.1 e−1/4 e−n/12 < 4e−n/12.

Finally, if 0 ≤ t ≤ 2, then |Jn(t
√
n)| ≤ 1 ≤ 4 e−t2/2.
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Weighted sums

4 Typical distributions and mixtures of Gaussian measures

The asymptotic normality of the typical distributions F in Sudakov’s theorem, defined
in (1.1), may be described in the next assertion proved in [7].

Proposition 4.1. Given a random vector X in Rn, suppose that E |X|2 = n. With some
absolute constant c > 0 we have∫ ∞

−∞
(1 + x2) |F (dx)− Φ(dx)| ≤ c

( 1

n
+Var(r)

)
, (4.1)

where r = 1√
n
|X|.

Here the positive measure |F − Φ| denotes the variation in the sense of measure
theory, and the left integral represents the weighted total variation of F−Φ. In particular,
we have a similar bound for the usual total variation distance between F and Φ, as well
as for the Kolmogorov distance ρ(F,Φ). Applying Proposition 2.4, the latter may be
related to the variance-type functionals σ2p (cf. also [18]).

Corollary 4.2. In particular (under the same conditions),

ρ(F,Φ) ≤ c
1 + σ2

4

n
, ρ(F,Φ) ≤ c

1 + σ2√
n

.

The proof of Proposition 4.1 is based on the following observation about general
mixtures of centered Gaussian measure on the real line. Given a random variable
r ≥ 0, let us denote by Φr the distribution function of the random variable rZ, where
Z ∼ N(0, 1) is independent of r. That is,

Φr(x) = P{rZ ≤ x} = EΦ(x/r), x ∈ R.

As shown in [7], if Er2 = 1, then with some absolute constant c we have∫ ∞

−∞
(1 + x2) |Φr − Φ|(dx) ≤ cVar(r). (4.2)

To explain the transition from (4.2) to (4.1), assume that n ≥ 3. Let Φn and ϕn denote
respectively the distribution function and the density of Zn = θ1

√
n, where θ1 is the

first coordinate of a random point θ uniformly distributed in Sn−1. If r2 = 1
n |X|2 is

independent of Zn (r ≥ 0), then, by the definition of the typical distribution,

F (x) = P{rZn ≤ x} = EΦn(x/r), x ∈ R,

so that∫ ∞

−∞
(1 + x2) |F (dx)− Φr(dx)| =

∫ ∞

−∞
(1 + x2) |EΦn(dx/r)− EΦ(dx/r)|. (4.3)

But, for any fixed value of r,∫ ∞

−∞
(1 + x2) |Φn(dx/r)− Φ(dx/r)| =

∫ ∞

−∞
(1 + r2x2) |Φn(dx)− Φ(dx)|,

hence, by (4.3), taking the expectation with respect to r and using Jensen’s inequality,
we get ∫ ∞

−∞
(1 + x2) |F (dx)− Φr(dx)| ≤ E

∫ ∞

−∞
(1 + x2) |Φn(dx/r)− Φ(dx/r)|

= E

∫ ∞

−∞
(1 + r2x2) |Φn(dx)− Φ(dx)|

=

∫ ∞

−∞
(1 + x2) |Φn(dx)− Φ(dx)|.
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Weighted sums

It remains to apply (3.1), which yields∫ ∞

−∞
(1 + x2) |Φn(dx)− Φ(dx)| =

∫ ∞

−∞
(1 + x2) |ϕn(x)− ϕ(x)| dx ≤ C

n

with some universal constant C.

5 Characteristic functions of weighted sums

As before, let X = (X1, . . . , Xn) denote a random vector in Rn, n ≥ 2. The concentra-
tion problems for distributions of weighted sums Sθ = 〈X, θ〉 may be studied by means of
their characteristic functions

fθ(t) = E eit〈X,θ〉, t ∈ R. (5.1)

In particular, we intend to quantify the concentration of fθ around the characteristic
function f of the typical distribution F on average over the directions θ in terms of
correlation-type functionals. Note that the characteristic function of F is given by

f(t) = Eθfθ(t) = Eθ E eit〈X,θ〉 = E Jn(t|X|), t ∈ R,

where Jn is the characteristic function of the first coordinate θ1 under the uniform
measure µn−1 on the unit sphere Sn−1.

First let us describe the decay of t → |fθ(t)| at infinity on average with respect to θ.
Starting from (5.1), write

Eθ |fθ(t)|2 = Eθ e
it〈X−Y,θ〉 = E Jn(t|X − Y |),

where Y is an independent copy of X. To proceed, let us rewrite the Gaussian-type
bound (3.3) of Proposition 3.3 as

|Jn(t)| ≤ 4.1 e−t2/2n + 4 e−n/12 (5.2)

which gives
Eθ |fθ(t)|2 ≤ 4.1E e−t2|X−Y |2/2n + 4 e−n/12.

Splitting the latter expectation into the event A = {|X − Y |2 ≤ λn} and its complement,
we get the following general bound.

Lemma 5.1. The characteristic functions fθ satisfy, for all t ∈ R and λ > 0,

1

2.1
Eθ |fθ(t)| ≤ e−λt2/4 + e−n/24 +

√
P{|X − Y |2 ≤ λn} ,

where Y is an independent copy of X.

In case E |X|2 = n, the right-hand side of these bounds can be further quantified
by using the moment and variance-type functionals, which we have discussed before,
namely

mp =
1√
n
(E | 〈X,Y 〉 |p)1/p, σ2p =

√
n

(
E

∣∣∣ |X|2

n
− 1

∣∣∣p)1/p

.

Note that both mp and σp are non-decreasing functions in p ≥ 1. In order to estimate the
probability of the event A, we shall use Proposition 2.5, which gives

P(A) ≤ C

np

with a constant C = 42p (m2p
2p + σ2p

2p). Hence, from Lemma 5.1 and using m2p ≥ m2 ≥ 1

(cf. Proposition 2.1), we deduce:
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Lemma 5.2. Suppose that E |X|2 = n. If the moment m2p is finite for p ≥ 1, then with
some constant cp > 0 depending on p,

cpEθ |fθ(t)| ≤
mp

2p + σp
2p

np/2
+ e−t2/16.

By the triangle inequality, |f(t)| ≤ Eθ |fθ(t)|. Hence, the characteristic function of
the typical distribution shares the same bounds. In fact, here the parameter m2p is not
needed. Indeed, as was shown in the proof of Proposition 2.5 with λ = 1

2 , we have

P
{
|X|2 ≤ 1

2
n
}

≤ 2p
σp
2p

np/2
.

Hence, by (5.2),

|f(t)| ≤ E |Jn(t|X|)| 1{|X|≤
√

n/2} + E |Jn(t|X|)| 1{|X|>
√

n/2}

≤ 2p
σp
2p

np/2
+ C

(
e−t2/4 + e−n/12

)
.

Thus, we get:

Lemma 5.3. Suppose that E |X|2 = n. Then with some constant cp > 0 depending on
p ≥ 1, for all t ∈ R,

cp |f(t)| ≤
1 + σp

2p

np/2
+ e−t2/4,

and therefore, for all T > 0,

cp
T

∫ T

0

|f(t)| dt ≤
1 + σp

2p

np/2
+

1

T
.

We first study the concentration properties of fθ(t) as functions of θ on the sphere
with fixed t ∈ R (rather than directly for the distributions Fθ). This can be done in terms
of the moment functionals

Mp = Mp(X) = sup
θ∈Sn−1

(
E | 〈X, θ〉 |p

)1/p

.

Our basic tool is a well-known spherical Poincaré inequality∫
Sn−1

|u(θ)− a|2 dµn−1(θ) ≤
1

n− 1

∫
Sn−1

|∇u(θ)|2 dµn−1(θ). (5.3)

It holds true for any complex-valued function u which is defined and smooth in a neigh-
borhood of the sphere, and has gradient ∇u and the mean a =

∫
u dµn−1 (cf. [16]).

According to (5.1), the function θ → fθ(t) is smooth on the whole space Rn and has
partial derivatives

∂jfθ(t)

∂θj
= itEXj e

it〈X,θ〉

or in the vector form

〈∇fθ(t), v〉 = itE 〈X, v〉 eit〈X,θ〉, v ∈ Rn.

Hence
| 〈∇fθ(t), v〉 | ≤ |t|E | 〈X, v〉 |.

Taking the sup over all v ∈ Sn−1, we obtain a uniform bound on the modulus of the
gradient, namely |∇fθ(t)| ≤ M1|t|.
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A similar bound holds as well in average. To this aim, let us square the vector
representation and write

〈∇fθ(t), v〉2 = t2E 〈X, v〉 〈Y, v〉 eit〈X−Y,θ〉,

where Y is an independent copy of X. Integrating over v with respect to µn−1, we get
the representation

|∇fθ(t)|2 = t2E 〈X,Y 〉 eit〈X−Y,θ〉,

so that
Eθ |∇fθ(t)|2 = t2E 〈X,Y 〉 Jn(t(X − Y )).

(where Eθ refers to integration over µn−1). Applying (5.3), one can summarize.

Lemma 5.4. Given a random vector X in Rn with finite moment M1, for all t ∈ R,

Eθ |fθ(t)− f(t)|2 ≤ t2

n− 1
M2

1 .

In addition,

Eθ |fθ(t)− f(t)|2 ≤ t2

n− 1
E 〈X,Y 〉 Jn(t(X − Y )),

where Y is an independent copy of X.

6 Berry-Esseen bounds. Theorem 1.2 and its generalization

Fourier Analysis provides a well-established tool to prove Berry-Esseen-type bounds
for the Kolmogorov distance

ρ(Fθ, F ) = sup
x

|Fθ(x)− F (x)|.

To study the average behavior of this distance with respect to θ using the uniform
measure µn−1 on the unit sphere, as a preliminary step, let us first introduce two
auxiliary bounds.

Lemma 6.1. Let X be a random vector in Rn. With some absolute constant c > 0, for all
T ≥ T0 > 0,

cEθ ρ(Fθ, F ) ≤
∫ T0

0

Eθ |fθ(t)− f(t)|
t

dt

+

∫ T

T0

Eθ |fθ(t)|
t

dt+
1

T

∫ T

0

|f(t)| dt. (6.1)

As before, here Fθ denote distribution functions of the weighted sums Sθ = 〈X, θ〉
with their characteristic functions

fθ(t) = E eit〈X,θ〉 =

∫ ∞

−∞
eitx dFθ(x), t ∈ R, θ ∈ Sn−1,

and F (x) = EθFθ(x) is the typical distribution function with characteristic function

f(t) = Eθfθ(t) =

∫ ∞

−∞
eitx dF (x).

For an estimation of the Kolmogorov distance, the following general Berry-Esseen
bound will be convenient:

c ρ(U, V ) ≤
∫ T

0

|u(t)− v(t)|
t

dt+
1

T

∫ T

0

|v(t)| dt (T > 0). (6.2)
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Here U and V may be arbitrary distribution functions on the line with characteristic
functions u and v, respectively, and c > 0 is an absolute constant (cf. e.g. [6], [19], [20]).

In our situation, we take U = Fθ and V = F . In order to estimate the first integral in
(6.2), we shall split the integration into the two intervals, [0, T0] (the interval of moderate
values of t), where it is easier to control the closeness of the two characteristic functions,
and the long interval [T0, T ], where both characteristic functions can be shown to be
sufficiently small. Note that, by the triangle inequality, we have |f(t)| ≤ Eθ |fθ(t)|, which
implies Eθ |fθ(t) − f(t)| ≤ 2Eθ |fθ(t)|. Using this on the long interval, we arrive at the
more specific variant of (6.2), namely (6.1).

The estimation of the integrals in (6.1) will be done in terms of the functionals
mp = mp(X), Mp = Mp(X) and σ2p = σ2p(X).

Lemma 6.2. Suppose that X has a finite moment of order 2p (p ≥ 1), and E |X|2 = n.
Then with some constant cp depending on p only, for all T ≥ T0 > 0,

cpEθ ρ(Fθ, F ) ≤
∫ T0

0

Eθ |fθ(t)− f(t)| dt
t

+
mp

2p + σp
2p

np/2

(
1 + log

T

T0

)
+

1

T
+ e−T 2

0 /16.

Proof. By the second inequality of Lemma 5.3 (on this step we use the assumption
E |X|2 = n), we have

cp
T

∫ T

0

|f(t)| dt ≤
1 + σp

2p

np/2
+

1

T
,

while Lemma 5.2 yields the bound

cp

∫ T

T0

Eθ |fθ(t)|
t

dt ≤
mp

2p + σp
2p

np/2
log

T

T0
+ e−T 2

0 /16.

This allows us to estimate the second last and last integrals in (6.1).

We are now prepared to establish Theorem 1.2, in fact – in somewhat more general
form which requires the first moment, only. Recall that

σ2 =
1√
n
E
∣∣ |X|2 − n

∣∣.
Theorem 6.3. If the random vector X in Rn has finite first moment M1, then

cEθ ρ(Fθ, F ) ≤ M1

√
log n

n
+

√
P
{
|X − Y |2 ≤ n/4

}
log n+

1

n
, (6.3)

where c > 0 is an absolute constant, and Y is an independent copy of X. As a conse-
quence, if X has finite 2-nd moment M2 and E |X|2 = n, then

cEθ ρ(Fθ, F ) ≤ (M1 +m2 + σ2)
log n√

n
. (6.4)

A similar bound also holds for the normal distribution function Φ in place of F .

The coefficient in (6.4) may be simplified by using m2 ≤ M2
2 and M1 ≤ M2. Since

necessarily M2 ≥ 1, (6.4) implies the inequality (1.3) of Theorem 1.2.

Proof. We apply Lemma 6.1 with T0 = 5
√
log n and T = 5n. The first integral in (6.1) can

be bounded by virtue of the spherical Poincaré-type inequality, i.e., using the first bound
of Lemma 5.4. It gives

Eθ |fθ(t)− f(t)| ≤ M1t√
n− 1

(t ≥ 0)
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and hence ∫ T0

0

Eθ |fθ(t)− f(t)|
t

dt ≤ 5M1√
n− 1

√
log n.

Next, we apply Lemma 5.1 with λ = 1/4 which gives

1

T

∫ T

0

|f(t)| dt ≤ 1

T

∫ T

0

Eθ |fθ(t)| dt

≤ 2.1

T

∫ T

0

(
e−t2/16 + e−n/24 +

√
P{|X − Y |2 ≤ n/4}

)
dt

≤ c

T
+ 2.1

√
P{|X − Y |2 ≤ n/4}

with some absolute constant c > 0. Similarly,

c

∫ T

T0

Eθ |fθ(t)|
t

dt ≤
(
e−n/24 +

√
P{|X − Y |2 ≤ n/4}

)
log

T

T0
+ e−T 2

0 /16.

These bounds prove the first assertion of the theorem.
For the second assertion, it remains to recall that, by Proposition 2.5,

P{|X − Y |2 ≤ n/4} ≤ 16
m2

2 + σ2
2

n
,

so that from (6.3) we get

cEθ ρ(Fθ, F ) ≤ M1

√
log n

n
+ 4

m2 + σ2√
n

log n+
1

n
. (6.5)

Here, the last term 1/n is dominated by m2/n. This leads to the bound (6.4), in which F

may be replaced with the standard normal distribution function Φ due to the estimate
ρ(F,Φ) ≤ C√

n

(
1 + σ2

)
, cf. Corollary 4.2.

Remark 6.4. Working with the Lévy distance L, which in general is weaker then the
Kolmogorov distance ρ, one can get guaranteed rates with respect to n for Eθ L(Fθ, F )

in terms of M1 or M2. In particular, if X isotropic, it is known that

µn−1{L(Fθ, F ) ≥ δ} ≤ 4n3/8 e−nδ4/8, δ > 0.

This deviation bound yields

Eθ L(Fθ, F ) ≤ C
( log n

n

)1/4

with some absolute constant C ([4]). See also [5] for similar results about the Kantorovich
distance.

7 Proof of Theorem 1.1

In order to get rid of the logarithmic term in the bounds of Theorems 1.2/6.3, one
may involve the 3-rd moment assumptions in terms of the moment and variance-type
functionals mp and σp of index p = 3. They are defined by

m3 = m3(X) =
1√
n

(
E | 〈X,Y 〉 |3

)1/3
,

where Y is an independent copy of X, and

σ3 = σ3(X) =
√
n

(
E

∣∣∣ |X|2

n
− 1

∣∣∣ 3
2

) 2
3

=
1√
n

(
E
∣∣ |X|2 − n

∣∣ 3
2

) 2
3

.
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Let us recall that m3 ≤ M2
3 . Hence, Theorem 1.1 will follow from the following, slightly

sharpened assertion.

Theorem 7.1. Let X be a random vector in Rn with finite 3-rd moment, and such that
E |X|2 = n. Then with some absolute constant c

Eθ ρ(Fθ,Φ) ≤ c (m
3/2
3 + σ

3/2
3 )

1√
n
. (7.1)

Proof. We now apply Lemma 6.2, choosing there p = 3/2, T = 4n and T0 = 4
√
log n.

Since necessarily m3 ≥ 1, the last term e−T 2
0 /16 is negligible, and we get the bound

cEθ ρ(Fθ, F ) ≤
∫ T0

0

Eθ |fθ(t)− f(t)|
t

dt+ (m
3/2
3 + σ

3/2
3 )

log n

n3/4

with some absolute constant c > 0. To analyze the last integral over the interval [0, T0],
we apply Lemma 5.4, which gives

Eθ |fθ(t)− f(t)| ≤ t√
n− 1

√
E 〈X,Y 〉 Jn(t(X − Y )), t ≥ 0,

and hence

cEθ ρ(Fθ, F ) ≤ 1√
n

∫ T0

0

√
E 〈X,Y 〉 Jn(t(X − Y )) dt

+ (m
3/2
3 + σ

3/2
3 )

log n

n3/4
. (7.2)

Next, let us apply the bound of Corollary 3.2, |Jn
(
t
√
n
)
− e−t2/2| ≤ C

n , which allows

one to replace the Jn-term with e−t2|X−Y |2/2n at the expense of an error of order

1

n
T0

√
E | 〈X,Y 〉 | ≤

√
m2

n3/4
T0 ≤ m

3/2
3

n3/4
T0,

where we used the inequalitym3 ≥ m2 ≥ 1. As a result, the bound (7.2) may be simplified
to

cEθ ρ(Fθ, F ) ≤ 1√
n

∫ T0

0

√
I(t) dt+ (m

3/2
3 + σ

3/2
3 )

log n

n3/4
(7.3)

with
I(t) = E 〈X,Y 〉 e−t2|X−Y |2/2n.

Note that I(t) ≥ 0 which follows from I(t) =
∣∣E eit〈X,Z〉/

√
n |2, where the random vector

Z is independent of X and has a standard normal distribution on Rn.
Now, focusing on I(t), consider the events

A =
{
|X − Y |2 ≤ 1

4
n
}
, B =

{
|X − Y |2 >

1

4
n
}
.

We split the expectation in the definition of I(t) into the sets A and B, so that I(t) =
I1(t) + I2(t), where

I1(t) = E 〈X,Y 〉 e−t2|X−Y |2/2n 1A, I2(t) = E 〈X,Y 〉 e−t2|X−Y |2/2n 1B .

As we know (cf. Proposition 2.5),

P(A) ≤ 64
m3

3 + σ3
3

n3/2
.
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Hence, applying Hölder’s inequality, we have

|I1(t)| ≤
(
E | 〈X,Y 〉 |3)1/3 (P(A))2/3

= m3

√
n · 16 m2

3 + σ2
3

n
≤ 32√

n
(m3

3 + σ3
3),

where we used that m3 ≥ 1.
Now, we represent the second expectation as

I2(t) = e−t2 E 〈X,Y 〉 e−t2
(

|X−Y |2
2n −1

)
1B

= e−t2 E 〈X,Y 〉
(
e−t2

(
|X−Y |2

2n −1
)
− 1

)
1B − e−t2 E 〈X,Y 〉 1A.

Here the last expectation has been already bounded by 32√
n
(m3

3 + σ3
3). To estimate the

first one, we use an elementary inequality

|e−x − 1| ≤ |x| ex0 (x0 ≥ 0, x ≥ −x0).

Since on the set B, there is a uniform bound t2( |X−Y |2
2n − 1) ≥ − 7

8 t
2, we conclude by

virtue of Hölder’s inequality that

E | 〈X,Y 〉 |
∣∣ e−t2

(
|X−Y |2

2n −1
)
− 1

∣∣ 1B ≤ t2e7t
2/8E | 〈X,Y 〉 |

∣∣∣ |X − Y |2

2n
− 1

∣∣∣
≤ t2e7t

2/8
(
E | 〈X,Y 〉 |3

) 1
3

(
E

∣∣∣ |X − Y |2

2n
− 1

∣∣∣ 3
2

) 2
3

.

The first expectation on the right-hand side is E | 〈X,Y 〉 |3 = (m3
√
n)3. Writing

|X − Y |2

2n
− 1 =

1

2

( |X|2

n
− 1

)
+

1

2

( |Y |2

n
− 1

)
− 1

n
〈X,Y 〉 ,

we also have, by Jensen’s inequality,∣∣∣ |X − Y |2

2n
− 1

∣∣∣ 3
2 ≤

∣∣∣ |X|2

n
− 1

∣∣∣ 3
2

+
∣∣∣ |Y |2

n
− 1

∣∣∣ 3
2

+
2

n3/2
| 〈X,Y 〉 | 32 .

Therefore

E

∣∣∣ |X − Y |2

2n
− 1

∣∣∣ 3
2 ≤ 2

∣∣∣ |X|2

n
− 1

∣∣∣ 3
2

+
2

n3/2

(
E | 〈X,Y 〉 |3

)1/2

=
2

n3/4

(
σ
3/2
3 +m

3/2
3

)
,

which gives (
E

∣∣∣ |X − Y |2

2n
− 1

∣∣∣ 3
2

) 2
3

≤ 2√
n

(
σ3 +m3

)
.

Hence

E | 〈X,Y 〉 |
∣∣ e−t2

(
|X−Y |2

2n −1
)
− 1

∣∣ 1B ≤ 2t2e7t
2/8 m3 (m3 + σ3)

≤ 4t2e7t
2/8 (m2

3 + σ2
3),

and, as a result,

I2(t) ≤ 32
e−t2

√
n

(m3
3 + σ3

3) + 4t2e−t2/8 (m2
3 + σ2

3),

where the factor e−t2 in the first term can be removed without loss of strength.
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Together with the estimate on I1(t), we get

I(t) ≤ 64√
n
(m3

3 + σ3
3) + 4t2e−t2/8 (m2

3 + σ2
3),

so √
I(t) ≤ 8

n1/4
(m

3/2
3 + σ

3/2
3 ) + 2|t| e−t2/16 (m3 + σ3)

and

1√
n

∫ T0

0

√
I(t) dt ≤ 4T0

n3/4
(m

3/2
3 + σ

3/2
3 ) +

C√
n
(m3 + σ3)

with some absolute constant C.

Returning to the bound (7.3), we thus obtain that

cEθ ρ(Fθ, F ) ≤ log n

n3/4
(m

3/2
3 + σ

3/2
3 ) +

C√
n
(m3 + σ3)

To simplify it, one may use again thatm3 ≥ 1, which implies thatm3+σ3 ≤ 2(m
3/2
3 +σ

3/2
3 )

for all values of σ3. Thus, with some absolute constant c > 0,

cEθ ρ(Fθ, F ) ≤ C√
n
(m

3/2
3 + σ

3/2
3 ).

To get a similar bound with Φ in place of F , i.e. (7.1), one may apply the estimate
ρ(F,Φ) ≤ C 1+σ2√

n
, where 1 + σ2

2 may further be bounded by 2(m
3/2
3 + σ

3/2
3 ).

8 The i.i.d. case

Theorem 1.3 follows from Theorem 6.3, by taking into account the following ele-
mentary statement (various variants of which under higher moment assumptions are
well-known).

Lemma 8.1. Assume that the non-negative random variables ξ1, . . . , ξn are independent
and identically distributed, with Eξ1 = 1. Given 0 < λ < 1, let a number κ > 0 is chosen
to satisfy

E ξ1 1{ξ1>κ} ≤ 1− λ

2
.

Then for the sum Sn = ξ1 + · · ·+ ξn, we have

P{Sn ≤ λn} ≤ exp
{
− (1− λ)2

8κ
n
}
. (8.1)

Proof. Let V denote the common distribution of ξk. The function

u(t) = E e−tξ1 =

∫ ∞

0

e−tx dV (x), t ≥ 0,

is positive, convex, non-increasing, and has a continuous, non-decreasing derivative

u′(t) = −E ξ1e
−tξ1 = −

∫ ∞

0

xe−tx dV (x),

with u(0) = 1, u′(0) = −1.
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Let κp denote the maximal quantile for the probability measure xdV (x) on (0,∞) of a
given order p ∈ (0, 1), i.e., the minimal number such that∫ ∞

κp

x dV (x) ≤ 1− p,

where the integration is performed over the open half-axis (κp,∞). Using the elementary
inequality 1− e−y ≤ y (y ≥ 0), we have, for all s > 0,

1 + u′(s) =

∫ ∞

0

x(1− e−sx) dV (x)

=

∫
0<x≤κp

x(1− e−sx) dV (x) +

∫
x>κp

x(1− e−tx) dV (x)

≤ s

∫
0<x≤κp

x2 dV (x) + p ≤ p+ κps.

This gives

u(t) = 1− t+

∫ t

0

(1 + u′(s)) ds

≤ 1− t+ pt+ κp
t2

2
≤ exp

{
− t+ pt+ κp

t2

2

}
,

and therefore

P{Sn ≤ λn} ≤ eλntE e−tSn = eλnt u(t)n

≤ exp
{
− n

(
(1− λ− p)t− κp

t2

2

)}
.

If p < 1− λ, the right-hand side is minimized at t = 1−λ−p
κp

, and we get

P{Sn ≤ λn} ≤ e−n (1−λ−p)2/2κp .

One may take, for example, p = (1− λ)/2, and then we arrive at (8.1).

Proof of Theorem 1.3. First let us derive the inequality

Eθ ρ(Fθ, F ) ≤ c

√
log n

n
(8.2)

with the typical distribution F in place of G. Let Y = (Y1, . . . , Yn) be an independent
copy of X. Since the Kolmogorov distance is scale invariant, without loss of generality
one may assume that E (X1 − Y1)

2 = 1. But then, by Lemma 8.1, applied to the random
variables ξk = (Xk − Yk)

2, we have

P{|X − Y |2 ≤ n/4} ≤ e−cn

with some constant c > 0 depending on the distribution of X1 only. In addition, M1 ≤
M2 = 1

2 . As a result, Theorem 6.3 yields (8.2).
Now, in order to replace F with G in (8.2), one may apply Proposition 3.1. Indeed,

F represents the distribution function of rZn, where r = 1√
n
|X| and Zn =

√
n θ1 is

independent of r. Similarly, G is the distribution function of rZ where Z ∼ N(0, 1)

is independent of r. Let Φn denote the distribution function of Zn and ϕn its density.
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Since F (x) = EΦn(x/r) and G(x) = EΦ(x/r), we conclude, by the triangle inequality,
that

ρ(F,G) ≤ E sup
x

|Φn(x/r)− Φ(x/r)|

= sup
x

|Φn(x)− Φ(x)| ≤
∫ ∞

−∞
|ϕn(x)− ϕ(x)| dx ≤ C

n
.
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