
Asymptotic Expansions for Products of
Characteristic Functions Under Moment
Assumptions of Non-integer Orders

Sergey G. Bobkov

Abstract This is mostly a review of results and proofs related to asymptotic
expansions for characteristic functions of sums of independent random variables
(known also as Edgeworth-type expansions). A number of known results is refined
in terms of Lyapunov coefficients of non-integer orders.

Let X1; : : : ;Xn be independent random variables with zero means, variances �2k D
Var.Xk/, such that

Pn
kD1 �2k D 1, and with finite absolute moments of some integer

order s � 2. Introduce the Lyapunov coefficients

Ls D
nX

kD1
E jXkjs .s � 2/:

If L3 is small, the distribution Fn of the sum Sn D X1 C � � � C Xn will be close in a
weak sense to the standard normal law with density and distribution function

'.x/ D 1p
2�

e�x2=2; ˆ.x/ D
Z x

�1
'.y/ dy .x 2 R/:

This variant of the central limit theorem may be quantified by virtue of the classical
Berry-Esseen bound

sup
x

jPfSn � xg �ˆ.x/j � cL3

(where c is an absolute constant). Moreover, in case s > 3, in some sense the rate
of approximation of Fn can be made much better – to be of order at most Ls, if we
replace the normal law by a certain “corrected normal” signed measure �s�1 on the
real line. The density 's�1 of this measure involves the cumulants �p of Sn of orders
up to s � 1 (which are just the sums of the cumulants of Xk); for example,
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'3.x/ D '.x/
�
1C �3

3Š
H3.x/

�
;

'4.x/ D '.x/
�
1C �3

3Š
H3.x/C �4

4Š
H4.x/C �23

2Š 3Š2
H6.x/

�
;

where Hk denotes the Chebyshev-Hermite polynomial of degree k. More generally,

's�1.x/ D '.x/
X 1

k1Š : : : ks�3Š

��3

3Š

�k1
: : :

� �s�1
.s � 1/Š

�ks�3

Hk.x/; (0.1)

where k D 3k1 C � � � C .s � 1/ks�3 and where the summation is running over all
collections of non-negative integers k1; : : : ; ks�3 such that k1 C 2k2 C � � � C .s �
3/ks�3 � s � 3.

When the random variables Xk D 1p
n
�k are identically distributed, the sum

in (0.1) represents a polynomial in 1p
n

of degree at most s � 3 with free term 1.
In that case, the Lyapunov coefficient

Ls D E j�1js n� s�2
2

has a smaller order for growing n in comparison with all terms of the sum.
The closeness of the measures Fn and �s�1 is usually studied with the help of

Fourier methods. That is, as the first step, it is established that on a relatively long
interval jtj � T the characteristic function fn.t/ D E eitSn together with its first s
derivatives are properly approximated by the Fourier-Stieltjes transform

gs�1.t/ D
Z 1

�1
eitx d�s�1.x/

and its derivatives. In particular, it is aimed to achieve relations such as

ˇ
ˇf .p/n .t/ � g.p/s�1.t/

ˇ
ˇ � CsLs minf1; jtjs�pg e�ct2 ; p D 0; 1; : : : ; s; (0.2)

in which case one may speak about an asymptotic expansion for fn by means of
gs�1. When it turns out possible to convert these relations to the statements about
the closeness of the distribution function associated to Fn and �s�1, one obtains an
Edgeworth expansion for Fn (or for density of Fn, when it exists). Basic results in
this direction were developed by many researchers in the 1930–1970s, including
Cramér, Esseen, Gnedenko, Petrov, Statulevičius, Bikjalis, Bhattacharya and Ranga
Rao, Götze and Hipp among others (cf. [C, E, G1, G-K, P1, P2, P3, St1, St2, Bi1,
Bi2, Bi3, B-C-G1, B-C-G2, B-C-G3, Pr1, Pr2, Bi1, Bi2, B-RR, G-H, Se, B1]).

In these notes, we focus on the questions that are only related to the first part
of the problem, i.e., to the asymptotic expansions for fn. We review several results,
clarify basic technical ingredients of the proofs, and make some refinements where
possible. In particular, the following questions are addressed: On which intervals
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do we have asymptotic expansions for the characteristic functions? How may the
constants Cs depend on the growing parameter s? Another issue, which is well
motivated, e.g., by limit problems about the normal approximation in terms of
transport distances (cf. [B2]), is how to extend corresponding statements to the case
of non-integer (or, fractional) values of s.

In a separate (first) part, we collect several results about the distributions of single
random variables, including general inequalities on the moments, cumulants, and
derivatives of characteristic functions, which lead to corresponding Taylor’s expan-
sions. In the second part, there have been collected some results on the behavior of
Lyapunov’s coefficients and moment inequalities for sums of independent random
variables, with first applications to products of characteristic functions. Asymptotic
expansions gs�1 for fn are constructed and studied in the third part. In particular, in
the interval jtj � cL�1=3.s�2/

s (in case Ls is small), we derive a sharper form of (0.2),

ˇ
ˇf .p/n .t/ � g.p/s�1.t/

ˇ
ˇ � CsLs maxfjtjs�p; jtj3.s�2/Cpg e�t2=2:

This interval of approximation, which we call moderate, appears in a natural way
in many investigations, mostly focused on the case p D 0 and when Xk’s are
equidistributed. The fourth part is devoted to the extension of this interval to the
size jtj � 1=L3 which we call a long interval. This is possible at the expense of
the constant in the exponent and with a different behavior of s-dependent factors, by
showing that both f .p/n .t/ and g.p/s�1.t/ are small in absolute value outside the moderate
interval. All results are developed for real values of the main parameter s. More
precisely, we use the following plan.

PART I. Single random variables

1. Generalized chain rule formula.
2. Logarithm of the characteristic functions.
3. Moments and cumulants.
4. Bounds on the derivatives of the logarithm.
5. Taylor expansion for Fourier-Stieltjes transforms.
6. Taylor expansion for logarithm of characteristic functions.

PART II. Lyapunov coefficients and products of characteristic functions

7. Properties of Lyapunov coefficients.
8. Logarithm of the product of characteristic functions.
9. The case 2 < s � 3.

PART III. “Corrected normal characteristic” functions

10. Polynomials Pm in the normal approximation.
11. Cumulant polynomials Qm.
12. Relations between Pm and Qm.
13. Corrected normal approximation on moderate intervals.
14. Signed measures �m associated with gm.
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PART IV Corrected normal approximation on long intervals

15. Upper bounds for characteristic functions fn.
16. Bounds on the derivatives of characteristic functions.
17. Upper bounds for approximating functions gm.
18. Approximation of fn and its derivatives on long intervals.

PART I. Single random variables

1 Generalized Chain Rule Formula

The following calculus formula is frequently used in a multiple differentiation.

Proposition 1.1 Suppose that a complex-valued function y D y.t/ is defined and
has p derivatives in some open interval of the real line .p � 1/. If z D z.y/ is
analytic in the region containing all values of y, then

dp

dtp
z.y.t// D pŠ

X dsp z.y/

dysp

ˇ
ˇ
ˇ
yDy.t/

pY

rD1

1

krŠ

�
1

rŠ

dry.t/

dtr

�kr

; (1.1)

where sp D k1C� � �Ckp and where the summation is performed over all non-negative
integer solutions .k1; : : : ; kp/ to the equation k1 C 2k2 C � � � C pkp D p.

This formula can be used to develop a number of interesting identities and
inequalities like the following ones given in the next lemma.

Lemma 1.2 With the summation as before, for any � 2 R and any integer p � 1,

X
.sp � 1/Š

pY

rD1

1

krŠ
�kr D .1C �/p � 1

p
(1.2)

X
spŠ

pY

rD1

1

krŠ
�kr D � .1C �/p�1: (1.3)

In particular, if 0 � � � 2�p �0, then

X pY

rD1

1

krŠ
�kr � � e�0=4: (1.4)

In addition,

X pY

rD1

1

krŠ

��r

r

�kr D �p: (1.5)
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Proof First, apply Proposition 1.1 with z.y/ D � log.1� y/, in which case (1.1)
becomes

� dp

dtp
log.1 � y.t// D pŠ

X .sp � 1/Š
.1 � y.t//sp

pY

rD1

1

krŠ

� 1

rŠ

dry.t/

dtr

�kr

: (1.6)

Choosing y.t/ D � t
1�t D �� C �.1 � t/�1 so that dry.t/

dtr D rŠ �.1 � t/�.rC1/, the
above sum on the right-hand side equals

X
.sp � 1/Š .1 � y.t//�sp .1 � t/�p�sp�sp

pY

rD1

1

krŠ
:

On the other hand, writing � log.1� y.t// D log.1� t/� log
�
.1C �/.1� t/� ��

;

we get

� dp

dtp
log.1 � y.t// D � .p � 1/Š

.1 � t/p
C .1C �/p

.p � 1/Š
�
.1C �/.1� t/ � �

�p :

Therefore, (1.6) yields

.p�1/Š
�

.1C �/p
�
.1C �/.1 � t/ � ��p � 1

.1 � t/p

	

D pŠ
X .sp � 1/Š �sp

.1� y.t//sp .1 � t/pCsp

pY

rD1

1

krŠ
:

Putting t D 0, we obtain the identity (1.2). Differentiating it with respect to � and
multiplying by �, we arrive at (1.3). In turn, using spŠ � 1 and the property that the
function p ! .p � 1/2�p is decreasing in p � 2, (1.3) implies that, for all p � 2,

.1C �/p�1 � e.p�1/� � e�0.p�1/2�p � e�0=4;

which obviously holds for p D 1 as well.
Finally, let us apply (1.1) with z.y/ D ey, when this identity becomes

dp

dtp
ey.t/ D pŠ ey.t/

X pY

rD1

1

krŠ

� 1

rŠ

dry.t/

dtr

�kr

: (1.7)

It remains to choose here y.t/ D � log.1� �t/, so that dry.t/
dtr D �r .r � 1/Š .1� t/�r ,

and then this equality yields (1.5) at the point t D 0. ut
For an illustration, consider Gaussian functions g.t/ D e�t2=2. By the definition,

g.p/.t/ D .�1/p�1Hp.t/g.t/;
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where Hp denotes the Chebyshev–Hermite polynomial of degree p with leading term
1. From (1.7) with y.t/ D �t2=2, we have

g.p/.t/ D pŠ g.t/
X

k1C2k2Dp

.�t/k1

k1Šk2Š
2�k2 :

Using jtjk1 � maxf1; jtjpg and applying the identity (1.5), we get a simple upper
bound

jHp.t/j � pŠ maxf1; jtjpg: (1.8)

2 Logarithm of the Characteristic Functions

If a random variable X has finite absolute moment ˇp D E jXjp for some integer
p � 1, its characteristic function f .t/ D E eitX has continuous derivatives up to
order p and is non-vanishing in some interval jtj � t0. Hence, in this interval the
principal value of the logarithm log f .t/ is well defined and also has continuous
derivatives up to order p, which actually can be expressed explicitly in terms of the
first derivatives of f . More precisely, the chain rule formula of Proposition 1.1 with
z.y/ D log y immediately yields the following identity:

Proposition 2.1 Let ˇp < 1 .p � 1/. In the interval jtj � t0, where f .t/ is non-
vanishing,

dp

dtp
log f .t/ D pŠ

X .�1/sp�1 .sp � 1/Š

f .t/sp

pY

rD1

1

krŠ

� 1

rŠ
f .r/.t/

�kr

; (2.1)

where sp D k1 C � � � C kp and the summation is running over all tuples .k1; : : : ; kp/

of non-negative integers such that k1 C 2k2 C � � � C pkp D p.

As was shown by Sakovič [Sa], in the interval
p
ˇ2 jtj � �

2
we necessarily have

Re.f .t// � 0. This result was sharpened by Rossberg [G2] proving that

Re.f .t// � cos.
p
ˇ2 jtj/ for

p
ˇ2 jtj � �:

See also Shevtsova [Sh2] for a more detailed exposition of the question. Thus, the
representation (2.1) holds true in the open interval

p
ˇ2 jtj < �

2
.

To quickly see that f .t/ is non-vanishing on a slightly smaller interval, one can
just apply Taylor’s formula. Indeed, if EX D 0, EX2 D ˇ2 D �2 .0 < � < 1/,
then f .0/ D 1, f 0.0/ D 0, jf 00.t/j � �2, and we get

j1 � f .t/j � sup
jzj�jtj

jf 00.z/j t2

2
� �2t2

2
< 1
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for � jtj < p
2. In particular, jf .t/j � 1

2
for � jtj � 1, so that in this interval the

principal value of the logarithm log f .t/ is continuous and has continuous derivatives
up to order p.

Let us mention several particular cases in (2.1). Clearly, .log f /0 D f 0f �1 and
.log f /00 D f 00f �1 � f 02f �2. The latter formula can be given in an equivalent form.

Proposition 2.2 If the variance �2 D Var.X/ is finite, then at any point t such that
f .t/ ¤ 0, we have

.log f .t//00 D � 1

2f .t/2
E .X � Y/2 eit.XCY/;

where Y is an independent copy of X. In particular,

j.log f .t//00j � �2

jf .t/j2 : (2.2)

Indeed, the right-hand side of the equality f .t/2 .log f .t//00 D f 00.t/f .t/ � f 0.t/2
may be written as

��
EX2eit.XCY/ � EXY eit.XCY/

� D �
�
E

X2 C Y2

2
eit.XCY/ � EXY eit.XCY/

�

D �1
2
E .X � Y/2 eit.XCY/:

Therefore,

jf .t/j2 j.log f .t//00j � 1

2
E .X � Y/2 D Var.X/:

For the next two derivatives, let us note that

f .t/3 .log f .t//000 D f 000.t/f .t/2 � 3f 00.t/f 0.t/f .t/C 2f 0.t/3; (2.3)

f .t/4 .log f .t//0000 D f 0000.t/f .t/3 � 4f 000.t/f 0.t/f .t/2 � 3f 00.t/2f .t/2

C 12f 00.t/f 0.t/2f .t/ � 6f 0.t/4: (2.4)

3 Moments and Cumulants

Again, let a random variable X have a finite absolute moment ˇp D E jXjp for an
integer p � 1. Since the characteristic function f .t/ D E eitX is non-vanishing in
some interval jtj � t0, and log f .t/ has continuous derivatives up to order p, one may
introduce the normalized derivatives at zero
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�r D �r.X/ D dr

ip dtr
log f .t/

ˇ
ˇ
tD0; r D 0; 1; 2; : : : ; p;

called the cumulants of X. Each �p is determined by the first moments ˛r D EXr,
r D 1; : : : ; p. Namely, at t D 0, the identity (2.1) of Proposition 1.1 gives:

Proposition 3.1 Let ˇp < 1 .p � 1/. For jtj � t0, we have

�p D pŠ
X

.�1/sp�1 .sp � 1/Š
pY

rD1

1

krŠ

�˛r

rŠ

�kr

; (3.1)

where sp D k1 C � � � C kp and where the summation is running over all tuples
.k1; : : : ; kp/ of non-negative integers such that k1 C 2k2 C � � � C pkp D p.

For example, �1 D ˛1, �2 D ˛2 � ˛21 . Moreover, if ˛1 D EX D 0, �2 D EX2,
then

�1 D ˛1; �2 D ˛2 D �2; �3 D ˛3; �4 D ˛4 � 3˛22 D ˇ4 � 3�4:

One may reverse (3.1) by applying the generalized chain rule to the composition
f .t/ D elog f .t/, see (1.7). We then get a similar formula

˛p D pŠ
X pY

rD1

1

krŠ

��r

rŠ

�kr

: (3.2)

Let us now turn to the question of bounding the cumulants in terms of the
moments. By Markov’s inequality, there are uniform bounds on the derivatives
jf .r/.t/j � ˇr � ˇ

r=p
p for r D 1; : : : ; p. Hence, the combination of identity (1.2)

of Lemma 1.2 with � D 1
jf .t/j and identity (2.1) of Proposition 2.1 leads to the

bound

ˇ
ˇ
ˇ

dp

dtp
log f .t/

ˇ
ˇ
ˇ �

h�
1C 1

jf .t/j
�p � 1

i
.p � 1/Š ˇp: (3.3)

This inequality may be compared to the result of Bikjalis [Bi3], who showed that

ˇ
ˇ
ˇ

dp

dtp
log f .t/

ˇ
ˇ
ˇ � 1

jf .t/jp
2p�1 .p � 1/Š ˇp: (3.4)

In particular, when jf .t/j � 1
2
, it gives the relation

ˇ
ˇ dp

dtp log f .t/
ˇ
ˇ � 22p�1 .p � 1/Š ˇp.

However, in this case (3.3) yields a better bound

ˇ
ˇ
ˇ

dp

dtp
log f .t/

ˇ
ˇ
ˇ � .3p � 1/ .p � 1/Š ˇp:
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We will discuss further sharpenings in the next section, and now just note that at the
point t D 0, (3.4) provides a bound on the cumulants, j�pj � .2p�1 � 1/ .p � 1/Š ˇp.
Another result of Bikjalis [Bi3] provides an improvement for mean zero random
variables.

Proposition 3.2 If ˇp D E jXjp < 1 for some integer p � 1, and EX D 0, then

j�pj � .p � 1/Š ˇp: (3.5)

Proof The case p D 1 is obvious. Since �2 D ˛2 D ˇ2 in case EX D 0,
the desired bound also follows for p D 2. So, let p � 3. Differentiating the identity
f 0.t/ D f .t/ .log f .t//0 near zero p�1 times in accordance with the binomial formula,
one gets

dp

dtp
f .t/ D

p�1X

rD0
Cr

p�1
dp�1�r

dtp�1�r
f .t/

drC1

dtrC1 log f .t/;

where here and in the sequel we use the notation Ck
n D nŠ

kŠ.n�k/Š for the binomial
coefficients. Equivalently,

dp

dtp
log f .t/ D 1

f .t/

dp

dtp
f .t/ � 1

f .t/

p�2X

rD0
Cr

p�1
dp�1�r

dtp�1�r
f .t/

drC1

dtrC1 log f .t/: (3.6)

At t D 0, this identity becomes

�p D ˛p �
p�3X

rD0
Cr

p�1 ˛p�1�r �rC1;

where we used the assumption ˛1 D 0. One can now proceed by induction on p.
Since j˛p�1�rj � ˇ

.p�1�r/=p
p and �rC1 � rŠˇ.rC1/=p

p (the induction hypothesis), we
obtain that

j�pj � ˇp C ˇp

p�3X

rD0
Cr

p�1 rŠ D .p � 1/Š ˇp

�
1

.p � 1/Š C
p�3X

rD0

1

.p � 1 � r/Š

	

:

The expression in the square brackets 1
.p�1/Š C . 1

2Š
C � � � C 1

.p�1/Š / is equal to 1 for

p D 2 and is smaller than 1
6

C .e � 2/ < 1 for p � 3. ut
The factorial growth of the constant in the inequality (3.5) is optimal, up to an

exponentially growing factor, which was noticed by Bulinskii [Bu] in his study
of upper bounds in a more general scheme of random vectors and associated
mixed cumulants. To illustrate possible lower bounds, he considered the symmetric
Bernoulli distribution assigning the mass 1

2
to the points ˙1. In this case, the

characteristic function is f .t/ D cos t, and one may use the Taylor expansion
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log f .t/ D log cos t D �
1X

pD1

22p .22p � 1/
.2p/Š

Bp
t2p

2p
; jtj < �

4
;

involving Bernoulli numbers Bp D 2 .2p/Š
.2�/2p d2p, where d2p D P1

nD1 1
n2p . Thus, for even

integer values of p,

j�pj D 2p .2p � 1/

p
Bp=2 D 2 .2p � 1/

�p
.p � 1/Š dp:

From Stirling’s formula, one gets j�pj � . p
�e /

p
p
2� . To compare with the upper

bound of Proposition 2.2, note that in this Bernoulli case, ˇp D 1 for all p.

4 Bounds on the Derivatives of the Logarithm

We will now extend the Bikjalis argument, so as to obtain the following improve-
ment of the bounds (3.3)–(3.4), assuming that X has mean zero and t is small
enough. More precisely, we are going to derive the bound

ˇ
ˇ
ˇ

dp

dtp
log f .t/

ˇ
ˇ
ˇ � .p � 1/Š ˇp (4.1)

in the interval � jtj � " D 1
5

(except for the value p D 2), where �2 D ˇ2 D EX2.
This can be done with the help of the lower bound

jf .t/j � 1 � �2t2

2
� 1 � "2

2
; � jtj � ": (4.2)

First let us check (4.1) for the first 4 values of p. Since jf 0.t/j � �2jtj, we have

j.log f .t//0j � ˇ2jtj
jf .t/j � 0:2 ˇ

1=2
2

1 � "2

2

� 0:21ˇ
1=2
2 : (4.3)

When p D 2, according to inequality (2.2) of Proposition 2.2,

j.log f .t//00j � ˇ2

jf .t/j2 � ˇ2

.1 � "2

2
/2

� 1:05ˇ2: (4.4)

When p D 3, we use (2.3) giving

j.log f .t//000j � 1C 3"C 2"3

jf .t/j3 ˇ3 � 1C 3"C 2"3

.1 � "2

2
/3

ˇ3 � 2ˇ3:
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When p D 4, we use (2.4) giving similarly

j.log f .t//0000j � 4C 4"C 12"2 C 6"4

jf .t/j4 ˇ4 � 4C 4"C 12"2 C 6"4

.1 � "2

2
/4

ˇ4 � 6ˇ4:

In order to derive (4.1) for p � 5, we perform the induction step, applying
(4.3)–(4.4) and assuming that, in the interval � jtj � ",

j.log f .t//.r/j � .r � 1/Š ˇr for 3 � r � p � 1: (4.5)

By this hypothesis, using the recursive formula (3.6) and the bounds (4.3)–(4.4), we
have

jf .t/j j.log f .t//.p/j � jf .p/.t/j C
p�2X

rD0
Cr

p�1 jf .p�1�r/.t/j j.log f .t//.rC1/j

D jf .p/.t/j C .p � 1/ jf 0.t/j j.log f .t//.p�1/j

C
p�3X

rD2
Cr

p�1 jf .p�1�r/.t/j j.log f .t//.rC1/j

C jf .p�1/.t/j j.log f .t//0j C .p � 1/ jf .p�2/.t/j j.log f .t//00j
� ˇp C .p � 1/ ˇ1=p

p " � ˇp�1.p � 2/Š

C
p�3X

rD2
Cr

p�1 ˇp�1�r ˇrC1 rŠC ˇp�1 � 0:21ˇ1=22

C.p � 1/ˇp�2 � 1:05 ˇ2:

Here we apply again ˇr � ˇ
r=p
p , giving

jf .t/j
ˇp

j.log f .t//.p/j � 1C .p � 1/Š

�

"C
p�3X

rD2

1

.p � 1 � r/Š

	

C 0:21C 1:05 .p � 1/

� 1C .p � 1/Š

�

"C
p�1X

kD2

1

kŠ

	

C 0:05 .p � 1/

� 1C 0:05 .p � 1/C .p � 1/Š ."C e � 2/:

Applying the lower bound (4.2), we obtain that

1

ˇp
j.log f .t//.p/j � 1

1 � "2

2

�
1C 0:05 .p � 1/C .p � 1/Š ."C e � 2/

�
:
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The latter expression does not exceed .p�1/Š (which is needed to make the induction
step, i.e., to derive (4.5) for r D p), if and only if this is true for p D 5 (since after
division by .p � 1/Š the expression on the right will be decreasing in p). That is,
we need to verify that 1

1� "2

2

.1:2 C 24 ."C e � 2// � 24; which is indeed true for

" D 0:2. Hence, we have proved:

Proposition 4.1 Let X be a random variable such that EX D 0, EX2 D �2 .� > 0/

and ˇp D E jXjp < 1 for some integer p � 2. Then, in the interval � jtj � 1
5
, the

characteristic function f .t/ of X is not vanishing and satisfies

j.log f .t//0j � 0:21 �; j.log f .t//00j � 1:05 �:

Moreover, if p � 3, then

ˇ
ˇ
ˇ

dp

dtp
log f .t/

ˇ
ˇ
ˇ � .p � 1/Š ˇp:

5 Taylor Expansion for Fourier-Stieltjes Transforms

Let X be a random variable with finite absolute moment ˇs D E jXjs of a real order
s > 0, not necessarily integer. Put

EXk D ˛k; E jXjk D ˇk .k D 0; 1; : : : ; Œs�/:

In general, suitable expansions for the characteristic function f .t/ D E eitX can be
developed according to the Taylor formula. Since f has Œs� continuous derivatives
with f .k/.0/ D ik˛k, it admits the Taylor expansion

f .t/ D
mX

kD0
˛k
.it/k

kŠ
C ı.t/ (5.1)

with ı.t/ D o.tm/, where here and elsewhere we represent s D m C ˛ with integer
m and 0 < ˛ � 1. The remainder term can be bounded in terms of ˇs as follows:

Proposition 5.1 For all t,

ˇ
ˇ
ˇ

dp

dtp
ı.t/

ˇ
ˇ
ˇ � 2ˇs

jtjs�p

.m � p/Š
; p D 0; 1; : : : ;m: (5.2)

Moreover, if s D m C 1 is integer, then

ˇ
ˇ
ˇ

dp

dtp
ı.t/

ˇ
ˇ
ˇ � ˇs

jtjs�p

.s � p/Š
; p D 0; 1; : : : ; s:



Asymptotic Expansions for Products of Characteristic Functions Under. . . 309

Proof By the very definition, ı.t/ D ERm.tX/, where Rm.u/ D eiu � Pm
lD0

.iu/l

lŠ ,
so that

ı.p/.t/ D E .iX/p Rm�p.tX/:

Given an integer number k � 1, note that R.j/k .0/ D 0 for all j D 0; : : : ; k with

jR.kC1/
k .u/j D 1. In addition, R.k/k .u/ D ik.eiu � 1/, so that jR.k/k .u/j � 2. Hence, by

Taylor’s formula,

jRk.u/j � jujkC1

.k C 1/Š
and jRk.u/j � 2

jujk

kŠ
:

Although some other interesting bounds on the functions Rk are available (cf., e.g.,
[Sh1]), these two inequalities are sufficient to conclude that, for any ˛ 2 Œ0; 1�,

jRk.u/j � min
n
2

jujk

kŠ
;

jujkC1

.k C 1/Š

o

D jujk

kŠ
min

n
2;

juj
k C 1

o
� jujk

kŠ
� 21�˛

.k C 1/˛
juj˛ � 2jujkC˛

kŠ
:

Therefore,

jı.p/.t/j � E

�

jXjp 2 jtXj.m�p/C˛

.m � p/Š

	

D 2 jtj.s�p/

.m � p/Š
ˇs:

In case s D m C 1, the function w.t/ D ı.p/.t/ has zero derivatives at t D 0 up to
order s � p � 1, while w.s�p/.t/ D ı.s/.t/ D E .iX/seitX is bounded in absolute value
by ˇs. Hence, by Taylor’s formula,

jw.t/j � max
jzj�jtj

jw.s�p/.z/j jtjs�p

.s � p/Š
� ˇs

jtjs�p

.s � p/Š
:

ut
More generally, consider the Fourier-Stieltjes transform a.t/ D R 1

�1 eitx d�.x/ of
a Borel signed measure � on the real line and introduce the corresponding absolute
moment

ˇs.�/ D
Z 1

�1
jxjs j�.dx/j;

where j�j is the variation of� treated as a positive measure on the line, and s > 0 is a
real number. Clearly, a is Œs� times continuously differentiable on R with derivatives
at the origin
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a.p/.0/ D
Z 1

�1
.ix/p d�.x/; p D 0; 1; : : : ; Œs�:

Here is a natural generalization of Proposition 5.1.

Proposition 5.2 Let s D m C ˛ with m � 0 integer and 0 < ˛ � 1. If a.p/.0/ D 0

for all p D 0; 1; : : : ;m, then for all t 2 R,

ja.p/.t/j � 2ˇs.�/
jtjs�p

.m � p/Š
; p D 0; 1; : : : ;m:

Moreover, if s D m C 1 is integer, then

ja.p/.t/j � ˇs.�/
jtjs�p

.s � p/Š
; p D 0; 1; : : : ; Œs�:

Proof Note that �.R/ D 0 due to a.0/ D 0. To prove the statement, one
can repeat the arguments used in the proof of Proposition 5.1. By the moment
assumption, a.t/ D R 1

�1 Rm.tx/ d�.x/, so

a.p/.t/ D
Z 1

�1
.ix/p Rm�p.tx/ d�.x/:

Using the previous bound jRk.u/j � 2jujkC˛

kŠ with k D m � p, we conclude that

ja.p/.t/j �
Z 1

�1

�

jxjp 2 jtxj.m�p/C˛

.m � p/Š

	

jd�.x/j D 2 jtj.s�p/

.m � p/Š
ˇs.�/:

The case s D m C 1 is similar. ut

6 Taylor Expansion for Logarithm of Characteristic
Functions

Our next task is to develop the Taylor expansion for log f .t/ in analogy with the
expansion (5.1) for the characteristic function f .t/ with a bound similar to (5.2),
which would hold even if t is close to zero. Note that, in the most important case
p D m, that bound yields

jf .m/.t/ � im˛mj � 2ˇs jtj˛: (6.1)

Hence, we need to derive a similar bound for log f .t/, by replacing ˛m with the
cumulant �m.
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We keep the same assumption as in the previous section: EX D 0, ˇs D E jXjs <

1, s D m C ˛ with m � 2 integer and 0 < ˛ � 1. Let us return to the recursive
formula

f .t/ .log f .t//.m/ D f .m/.t/ �
m�1X

rD1
Cr�1

m�1 f .m�r/.t/ .log f .t//.r/; (6.2)

which at t D 0 becomes

im�m D im˛m �
m�1X

rD1
Cr�1

m�1 im�r˛m�r ir�r: (6.3)

Since ˛1 D �1 D 0, the last summation may be reduced to the values 2 � r � m �2
for m � 4, while there is no sum for m D 3.

To argue by induction on m, our induction hypothesis will be

j.log f .t//.r/ � ir�rj � ABr.r � 1/Š ˇrC˛jtj˛; r D 1; 2; : : : ;m � 1; (6.4)

in the interval � jtj � 1
5
, where the parameters A;B � 1 are to be chosen later on.

Recall that Proposition 4.1 provides in this interval the bound

j.log f .t//.r/j � Ar.r � 1/Š ˇr; r D 2; : : : ;m; (6.5)

with constants A2 D 1:05 and Ar D 1 for r � 3. Now, let us apply (6.1) with
s D .m � r/C ˛. Then we have a similar relation

jf .m�r/.t/� im�r˛m�rj � 2ˇm�rC˛jtj˛; r D 0; 1; : : : ;m � 1; (6.6)

which is valid for all t. Write

f .m�r/.t/ .log f .t//.r/ D .f .m�r/.t/ � im�r˛m�r/ .log f .t//.r/

C im�r˛m�r
�

log f .t//.r/ � ir�r
� C im�r˛m�r ir�r:

Applying the bounds (6.4)–(6.6) for r D 2; : : : ;m � 1, we get

jf .m�r/.t/ .log f .t//.r/ � im�r˛m�r ir�rj � 2ˇm�rC˛jtj˛ � Ar.r � 1/Š ˇr

Cˇm�r � ABr.r � 1/Š ˇrC˛jtj˛
� .r � 1/Š ˇsjtj˛ .2Ar C ABr/:

When r D 1, we use a different bound based on the assumption that ˛1 D �1 D 0.
Namely, by Proposition 4.1 in part concerning the first derivative, we have

jf .m�1/.t/ .log f .t//0j � 2ˇm�1C˛jtj˛ � A1ˇ
1=2
2 � 2A1 ˇsjtj˛;
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where A1 D 0:21. Hence, subtracting the representation (6.3) from (6.2) and
applying the bound (6.1), we get

jf .t/ .log f .t//.m/ � im�mj � 2ˇsjtj˛ C .m � 1/Š ˇsjtj˛
m�1X

rD1

1

.m � r/Š
.2Ar C ABr/

D ABm .m � 1/Š ˇsjtj˛
�
2

ABm
C

m�1X

kD1

1

kŠ

�2Am�k

ABm
C B�k

�	

:

In addition, since jf .t/ � 1j � 2ˇ˛jtj˛, we have

jf .t/ .log f .t//.m/ � .log f .t//.m/j � Am.m � 1/Š ˇm � 2ˇ˛jtj˛ � 2.m � 1/Š ˇsjtj˛:

Hence

j.log f .t//.m/ � im�mj � ABm .m � 1/Š ˇsjtj˛
�
4

ABm
C

m�1X

kD1

1

kŠ

�2Am�k

ABm
C B�k

�	

;

and we can make an induction step by proving (6.4) for r D m, once the parameters
satisfy

4

ABm
C

m�1X

kD1

1

kŠ

�2Am�k

ABm
C B�k

�
� 1:

To simplify, let us use a uniform bound Am�k � 1:05, so that to estimate the above
left-hand side from above by

4

ABm
C

1X

kD1

1

kŠ

� 2:1

ABm
CB�k

�
D 4C 2:1 .e � 1/

ABm
C.e1=B �1/ < 7:61

ABm
C.e1=B �1/:

For example, for B D 2, the last term
p

e � 1 < 0:65. Hence, in case m � 3, we
need 7:61

8A � 0:35, where A D 2:72 fits well. Then we obtain (6.4) for r D m, i.e.,

j.log f .t//.m/ � im�mj � A � 2m.m � 1/Š ˇmC˛jtj˛ (6.7)

for all m � 1 and with any A � 2:72, once we have this inequality for the first two
values m D 1 and m D 2 (induction hypothesis).

When m D 1, according to (6.1) with s D 1C ˛, we have jf 0.t/j � 2ˇ1C˛jtj˛ , so

j.log f .t//0j D jf 0.t/j
jf .t/j � 2ˇ1C˛jtj˛

1 � "2

2

� 2:05 ˇ1C˛jtj˛;
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so (6.7) is fulfilled. When m D 2,

.log f .t//00 C �2 D f 00.t/f .t/ � f 0.t/2

f .t/2
C �2

D .f 00.t/C �2/f .t/C �2f .t/.f .t/ � 1/� f 0.t/2

f .t/2
:

According to (6.1), jf 00.t/C �2j � 2ˇ2C˛jtj˛ and jf .t/ � 1j � 2ˇ˛jtj˛. Hence,

j.log f .t//00 C �2j � 2ˇ2C˛jtj˛ C 2�2ˇ˛jtj˛ C 2ˇ1ˇ1C˛jtj˛
jf .t/j2

� 6ˇ2C˛jtj˛
.1 � "2

2
/2

� 6:25 ˇ2C˛jtj˛:

In both cases, (6.7) is fulfilled with A D 2:72. Thus, we have proved:

Lemma 6.1 Let X be a random variable such that EX D 0, EX2 D �2 (� > 0),
and ˇmC˛ < 1 for some integer m � 2 and 0 < ˛ � 1. Then, in the interval
� jtj � 1

5
, the characteristic function f .t/ of X is not vanishing and satisfies

ˇ
ˇ
ˇ

dm

dtm
log f .t/ � im�m

ˇ
ˇ
ˇ � 2:72 � 2m .m � 1/Š ˇmC˛jtj˛:

This inequality remains to hold for m D 1 as well, if EX2 is finite.

Now, if s is integer, for any p D 0; 1; : : : ; s, the function

w.t/ D dp

dtp
log f .t/ � dp

dtp

s�1X

kD2
�k
.it/k

kŠ

has zero derivatives at t D 0 up to order s � p � 1, while w.s�p/.t/ D ds

dts log f .t/.
Hence, by Proposition 4.1 and Taylor’s formula,

jw.t/j � sup
jzj�jtj

jw.s�p/.z/j jtjs�p

.s � p/Š
� .s � 1/Š ˇs

jtjs�p

.s � p/Š
; if � jtj � 1

5
:

In the general case s D m C ˛ with integer m � 2 and 0 < ˛ � 1, for any
p D 0; 1; : : : ;m, consider the function

w.t/ D dp

dtp
log f .t/ � dp

dtp

mX

kD2
�k
.it/k

kŠ
:
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It has zero derivatives at t D 0 up to order m�p�1, while w.m�p/.t/ D dm

dtm log f .t/�
�mim. Hence, for p � m � 1, by Taylor’s integral formula,

w.t/ D tm�p

.m � p � 1/Š
Z 1

0

.1 � u/m�p�1 w.m�p/.tu/ du

D tm�p

.m � p � 1/Š
Z 1

0

.1 � u/m�p�1 �
.log f /.m/.tu/� �mim

�
du:

Applying Lemma 6.1, we then get that

jw.t/j � jtjm�p

.m � p � 1/Š
Z 1

0

.1 � u/m�p�1 2:72 � 2m.m � 1/Š ˇs jtuj˛ du

D 2:72 � 2m .m � 1/Š ˇs jtjs�p 	.˛ C 1/

	.s � p C 1/
:

The obtained inequality is also true for p D m (Lemma 6.1). Using 	.˛ C 1/ � 1,
we arrive at:

Proposition 6.2 Let f be the characteristic function of a random variable X with
EX D 0 and ˇs D E jXjs < 1 for some s > 2. Put s D m C ˛ with m integer and
0 < ˛ � 1. Then in the interval � jtj � 1

5
,

log f .t/ D
mX

kD2
�k
.it/k

kŠ
C ".t/

with

ˇ
ˇ
ˇ

dp

dtp
".t/

ˇ
ˇ
ˇ � 2:72 � 2m.m � 1/Š ˇs

jtjs�p

	.s � p C 1/

for all p D 0; 1; : : : ;m. If ˛ D 1, in the same interval, for all p D 0; 1; : : : ;m C 1,

ˇ
ˇ
ˇ

dp

dtp
".t/

ˇ
ˇ
ˇ � mŠ ˇs

jtjs�p

	.s � p C 1/
:

Let us state particular cases in this statement corresponding to the values s D 3

and s D 4.

Corollary 6.3 Let f .t/ be the characteristic function of a random variable X
with EX D 0. If ˇ3 D E jXj3 < 1, then in the interval � jtj � 1

5
,

log f .t/ D ��
2t2

2
C ".t/ with

ˇ
ˇ
ˇ

dp

dtp
".t/

ˇ
ˇ
ˇ � 6ˇ3

jtj3�p

.3 � p/Š
; p D 0; 1; 2; 3:
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Moreover, if ˇ4 D EX4 < 1, then

log f .t/ D ��
2t2

2
C ˛3

.it/3

6
C ".t/ with

ˇ
ˇ
ˇ

dp

dtp
".t/

ˇ
ˇ
ˇ � 24 ˇ4

jtj4�p

.4 � p/Š
;

p D 0; 1; 2; 3; 4:

PART II. Lyapunov coefficients and products of characteristic functions

7 Properties of Lyapunov Coefficients

From now on, we deal with a sequence X1; : : : ;Xn of independent random variables
such that EXk D 0, EX2k D �2k .�k � 0/ and

Pn
kD1 �2k D 1. The latter insures that

the sum

Sn D X1 C � � � C Xn

has the first two moments ESn D 0 and ES2n D 1. For s � 2, consider the absolute
moments ˇs;k D E jXkjs and the corresponding Lyapunov coefficients

Ls D
nX

kD1
E jXkjs:

First, below we state a few simple, but useful auxiliary results about these quantities.

Proposition 7.1 The function L
1

s�2
s is non-decreasing in s > 2. In particular, L3 �

L
1

s�2
s for all s � 3.

Proof Let Fk denote the distribution of Xk. By the basic assumption on the
variances �2k , the equality d�.x/ D Pn

kD1 x2 dFk.x/ defines a probability measure
on the real line. Moreover,

Ls D
nX

kD1

Z 1

�1
jxjs dFk.x/ D

Z 1

�1
jxjs�2 d�.x/ D E j�js�2;

where � is a random variable distributed according to �. Hence, L
1

s�2
s D

.E j�js�2/ 1
s�2 . Here the right-hand side represents a non-decreasing function in

s. ut
Proposition 7.2 We have maxk �k � L1=s

s .s � 2/. In particular, L1=33 � maxk �k.

Proof Using � s
k � ˇs;k, we have maxk �k � � Pn

kD1 � s
k

�1=s � � P
kD1 ˇs;k

�1=s D
L1=s

s : ut
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There is also a uniform lower bound on the Lyapunov coefficients depending
upon n, only.

Proposition 7.3 We have Ls � n� s�2
2 .s � 2/. In particular, L3 � 1p

n
and L4 � 1

n .

Proof Let s > 2. By Hölder’s inequality with exponents p D s
s�2 and q D s

2
,

1 D
nX

kD1
�2k � n1=p

� nX

kD1
� s

k

�1=q

� n1=p

� nX

kD1
ˇs;k

�1=q

D n1=p L1=q
s :

Hence, Ls � n�q=p. ut
Note that the finiteness of the moments ˇs;k for all k � n is equivalent to

the finiteness of the Lyapunov coefficient Ls. In this case, one may introduce the
corresponding cumulants

�p;k D �p.Xk/ D dp

ip dtp
log vk.t/

ˇ
ˇ
tD0; p D 0; 1; 2; : : : ; Œs�;

where vk D E eitXk denote the characteristic functions of Xk. Since the characteristic
function of Sn is given by the product

fn.t/ D E eitSn D v1.t/ : : : vn.t/;

the cumulants of Sn exist for the same values of p and are given by

�p D �p.Sn/ D dp

ip dtp
log fn.t/

ˇ
ˇ
tD0 D

nX

kD1
�p;k:

The first values are �0 D �1 D 0, �2 D 1.
Applying Proposition 3.2 (Bikjalis inequality), we immediately obtain a similar

relation between the Lyapunov coefficients and the cumulants of the sums.

Proposition 7.4 For all p D 2; : : : ; Œs�,

j�pj � .p � 1/Š Lp: (7.1)

The Lyapunov coefficients may also be used to bound absolute moments of the
sums Sn. In particular, there is the following observation due to Rosenthal [R].

Proposition 7.5 With some constants As depending on s, only,

E jSnjs � As maxfLs; 1g: (7.2)
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Moment inequalities of the form (7.2) are called Rosenthal’s or Rosenthal-type
inequalities. The study of the best value As has a long story, and here we only
mention several results.

Define A�
s to be an optimal constant in (7.2), when it is additionally assumed that

the distributions of Xk are symmetric about the origin. By Jensen’s inequality, for
the optimal constant As there is a simple general relation

A�
s � As � 2s�1A�

s ;

which reduces in essence the study of Rosenthal-type inequalities to the symmetric
case.

Johnson, Schechtman, and Zinn [J-S-Z] have derived the two-sided bounds

sp
2 e log.max.s; e//

� .A�
s /
1=s � 7:35 s

log.max.s; e//
:

Hence, asymptotically A1=s
s is of order s= log s for growing values of s. They

have also obtained an upper bound with a better numerical factor, .A�
s /
1=s �

s=
p

log max.s; e/, which implies a simple bound

As � .2s/s; s > 2: (7.3)

As for the best constant in the symmetric case, it was shown by Ibragimov
and Sharakhmetov [I-S] that A�

s D E j� � 
js for s > 4, where � and 
 are
independent Poisson random variables with parameter � D 1

2
(cf. also [Pi] for a

similar description without the symmetry assumption). In particular, .A�
s /
1=s � s

e log s
as s tends to infinity. This result easily yields

A�
s � sŠ for s D 3; 4; 5; : : : ;

and thus As � 2s�1sŠ For even integers s, there is an alternative argument.
Applying the expression (3.2) to Sn (for the cumulants in terms of the moments)
and recalling (7.1), we get

E jSnjs D ˛s.Sn/ D sŠ
X sY

rD1

1

krŠ

��r.Sn/

rŠ

�kr � sŠ
X sY

rD1

1

krŠ

�Lr�

r

�kr

; (7.4)

where r� D max.r; 2/, and where the summation is performed over all tuples
.k1; : : : ; ks/ of non-negative integers such that k1 C 2k2 C � � � C sks D s. (The left

representation was emphasized in [P-U].) Now, by Proposition 7.1, Lr � L
r�2
s�2
s �

.max.Ls; 1//
r=s. Hence, by Lemma 1.2 (cf. (1.5)), the last sum in (7.4) does not

exceed
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X sY

rD2

1

krŠ

�
.max.L1=s

s ; 1//r

r

�kr

� max.Ls; 1/:

Hence, As � sŠ for s D 4; 6; 8; : : :

To involve real values of s, for our further purposes it will be sufficient to use the
upper bound (7.3).

8 Logarithm of the Product of Characteristic Functions

We keep the same notations and assumptions as in the previous section. Let us return
to the characteristic function

fn.t/ D E eitSn D v1.t/ : : : vn.t/

of the sum Sn D X1 C � � � C Xn in terms of the characteristic functions vk D E eitXk .
To get the Taylor expansion for fn, recall that, by Proposition 6.2, applied to each
Xk, we have

vk.t/ D exp


 mX

lD2
�l;k

.it/l

lŠ
C "k.t/

�

: (8.1)

As we know, the function "k has Œs� continuous derivative, satisfying in the interval
�kjtj � 1

5

ˇ
ˇ
ˇ

dp

dtp
"k.t/

ˇ
ˇ
ˇ � 2:72 � 2m.m � 1/Š ˇs;k

jtjs�p

	.s � p C 1/
; p D 0; 1; : : : ;m:

This assertion also extends to the case p D m C 1, when ˛ D 1 (with better
constants). Multiplying the expansions (8.1) and using �2 D 1, we arrive at a similar
expansion for f .

Lemma 8.1 Assume that Ls < 1 for some s D m C ˛ with m � 2 integer and
0 < ˛ � 1. Then, in the interval maxk �kjtj � 1

5
, we have

et2=2fn.t/ D exp
˚
Qm.it/C ".t/

�
; Qm.it/ D

mX

lD3
�l
.it/l

lŠ
; (8.2)

where the function " has Œs� continuous derivatives, satisfying for all p D
0; 1; : : : ;m,

ˇ
ˇ
ˇ

dp

dtp
".t/

ˇ
ˇ
ˇ � 2:72 � 2m.m � 1/Š Ls

jtjs�p

	.s � p C 1/
: (8.3)
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In addition, if s D m C 1 � 3, then in the same interval, for all p D 0; 1; : : : ;m C 1,

ˇ
ˇ
ˇ

dp

dtp
".t/

ˇ
ˇ
ˇ � mŠ Ls

jtjs�p

	.s � p C 1/
: (8.4)

Both bounds hold in the interval L
1
s
s jtj � 1

5
, since L

1
s
s � maxk �k (Proposi-

tion 8.2). In case s � 3, these bounds hold in the interval L3jtj3 � 1.
As a next natural step, we want to replace the term e".t/ in (8.2) with a simpler

one, 1 C ".t/, keeping similar bounds on the remainder term as in (8.3)–(8.4). To
this aim, in the smaller interval L1=s

s jtj � 1
8
, we consider the function

ı.t/ D e".t/ � 1:

By Proposition 1.1, for any p D 1; : : : ;m,

ı.p/.t/ D dp

dtp
e".t/ D pŠ e".t/

X pY

rD1

1

krŠ

� 1

rŠ
".r/.t/

�kr

; (8.5)

where the summation is performed over all non-negative integer solutions k D
.k1; : : : ; kp/ to k1 C 2k2 C � � � C pkp D p. By (8.3) with p D 0,

j".t/j � 2:72 � 2
m

m
Lsjtjs � 2:72

2m

m 8s
� 1:36

�1

4

�s
< 0:09;

since s � m � 2. Hence,

jı.t/j � e0:09 j".t/j � 3 � 2m

m
Lsjtjs:

As for derivatives of order 1 � r � m, applying (8.3) and the bound Cr
m � 2m�1, we

have

1

rŠ
j".r/.t/j � 2:72 � 2m.m � 1/Š

Lsjtjs�r

rŠ 	.s � r C 1/

� 2:72 � 2
m

m

mŠ

rŠ .m � r/Š
Lsjtjs�r � 1:36 � 4

m

m
Lsjtjs�r:

Here � � 1:36 � 4m

m Lsjtjs � 0:68 � 2�m � 0:68 � 2�p whenever 1 � p � m. Hence,
by Lemma 1.2 with this value of � and with �0 D 0:68 (cf. (1.4)), we have

X pY

rD1

1

krŠ

�
1:36 � 4

m

m
Lsjtjs�r

�kr � e0:17 1:36 � 4
m

m
Lsjtjs�p:
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As a result, from (8.5) we get

1

pŠ
jı.p/.t/j � ej".t/j X pY

rD1

1

krŠ

ˇ
ˇ
ˇ
1

rŠ
".r/.t/

ˇ
ˇ
ˇ
kr

� e0:09
X pY

rD1

1

krŠ

�
1:36 � 4

m

m
Lsjtjs�r

�kr

D e0:09 e0:17 1:36 � 4
m

m
Lsjtjs�p � 2 � 4

m

m
Lsjtjs�p:

As we have seen, the resulting bound also holds for p D 0 (with a better constant).
More precisely, we thus get

1

pŠ
jı.p/.t/j � 2 � 4

m

m
Lsjtjs�p .1 � p � m/; jı.t/j � 3 � 2

m

m
Lsjtjs .p D 0/:

Scenario 2. In case s D m C 1 is integer, m � 2, one may involve an additional
value p D m C 1. In case p D 0, (8.4) gives j".t/j � Lsjtjs � . 1

8
/3, and then

jı.t/j � e1=8
3 j".t/j � 1:002 Lsjtjs:

For the derivatives of order 1 � r � m C 1, we have

1

rŠ
j".r/.t/j � mŠ

Lsjtjs�r

rŠ 	.s � r C 1/

D mŠ

rŠ ..m C 1/� r/Š
Lsjtjs�r � 2m

m C 1
Lsjtjs�r:

Here 2m

mC1Lsjtjs � 1
3
. 2
8
/m < 1

12
2�p, if 1 � p � m C 1. Hence, by Lemma 1.2 with

�0 D 1
12

,

X pY

rD1

1

krŠ

� 2m

m C 1
Lsjtjs�r

�kr � e1=48 � 2m

m C 1
Lsjtjs�p:

As a result, for any p D 1; : : : ;m C 1,

1

pŠ
jı.p/.t/j � ej".t/j X pY

rD1

1

krŠ

ˇ
ˇ
ˇ
1

rŠ
".r/.t/

ˇ
ˇ
ˇ
kr

� 1:002
X pY

rD1

1

krŠ

� 2m

m C 1
Lsjtjs�r

�kr
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D 1:002 e1=48 � 2m

m C 1
Lsjtjs�p � 1:1 � 2m

m C 1
Lsjtjs�p:

We thus get

1

pŠ
jı.p/.t/j � 1:1 � 2m

m C 1
Lsjtjs�p .1 � p � m C 1/; jı.t/j � 1:1 Lsjtjs .p D 0/:

Let us summarize, replacing ı with " (as the notation, only).

Proposition 8.2 Assume that Ls < 1 for s D m C ˛ with m � 2 integer and

0 < ˛ � 1. Then in the interval L
1
s
s jtj � 1

8
, we have

et2=2fn.t/ D eQm.it/ .1C ".t//; Qm.it/ D
mX

lD3
�l
.it/l

lŠ
; (8.6)

where the function " has Œs� continuous derivatives, satisfying

1

pŠ

ˇ
ˇ
ˇ

dp

dtp
".t/

ˇ
ˇ
ˇ � CmLsjtjs�p; p D 0; 1; : : : ;m;

with Cm D 2 � 4m

m . Moreover, if s D m C 1, one may take Cm D 1:1 � 2m

mC1 for all

0 � p � m C 1. If p D 0, this bound holds with Cm D 3 � 2m

m . Moreover, one may
take Cm D 1:1 when s D m C 1.

9 The Case 2 < s � 3

For the values 2 < s � 3, the cumulant sum in (8.2) and (8.6) does not contain any
term, that is, Qm D 0, so

fn.t/ D e�t2=2 .1C ".t//:

Let us specify Proposition 8.2 in this case. If Ls < 1 for s D 2C ˛, 0 < ˛ � 1, we
obtain that in the interval L1=s

s jtj � 1
8
, the function ".t/ has Œs� continuous derivatives

satisfying

j".t/j � 6Lsjtjs;
ˇ
ˇ
ˇ

dp

dtp
".t/

ˇ
ˇ
ˇ � 16 Lsjtjs�p .p D 1; 2/:

Moreover, in case s D 3,

j".t/j � 1:1 Lsjtj3;
ˇ
ˇ
ˇ

dp

dtp
".t/

ˇ
ˇ
ˇ � 1:5 L3jtj3�p .p D 1; 2; 3/:

Using these representations, one may easily derive the following two propositions.
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Proposition 9.1 Let Ls < 1 for s D 2 C ˛ .0 < ˛ < 1/. Then in the interval

L
1
s
s jtj � 1

8
,

ˇ
ˇfn.t/ � e�t2=2

ˇ
ˇ � 6Lsjtjs e�t2=2;

ˇ
ˇ
ˇ

d

dt

�
fn.t/ � e�t2=2

�ˇˇ
ˇ � 16 Ls

�jtjs�1 C jtjsC1� e�t2=2;

ˇ
ˇ
ˇ

d2

dt2
�
fn.t/ � e�t2=2

�ˇˇ
ˇ � 32 Ls

�jtjs�2 C jtjsC2� e�t2=2:

Proof Introduce the function h.t/ D fn.t/ � e�t2=2 D e�t2=2 ".t/: The first
inequality is immediate. Next,

et2=2 jh0.t/j D j"0.t/ � t".t/j � 16Ls .jtjs�1 C jtjsC1/:

For the second derivative, we get

et2=2 jh00.t/j � j"00.t/j C 2jtj j"0.t/j C jt2 � 1j j".t/j
� 16Ls

�jtjs�2 C 2jtj jtjs�1 C jt2 � 1j jtjs
�

D 16Lsjtjs�2 �
1C 2t2 C jt2 � 1j t2

�
:

If jtj � 1, then the expression in the last brackets is equal to 1C2t2� t4 � 2 .1C t4/.
If jtj � 1, it is equal to 1C t2 C t4 � 2.1C t4/. ut
Proposition 9.2 Let L3 < 1. Then in the interval L1=33 jtj � 1

8
,

ˇ
ˇfn.t/ � e�t2=2

ˇ
ˇ � 1:1 L3jtj3 e�t2=2;

ˇ
ˇ
ˇ

d

dt

�
fn.t/ � e�t2=2

�ˇˇ
ˇ � 1:5 L3 .t

2 C t4/ e�t2=2;

ˇ
ˇ
ˇ

d2

dt2
�
fn.t/ � e�t2=2

�ˇˇ
ˇ � 3L3 .jtj C jtj5/ e�t2=2;

ˇ
ˇ
ˇ

d3

dt3
�
fn.t/ � e�t2=2

�ˇˇ
ˇ � 12L3 .1C t6/ e�t2=2:

Proof Again, consider the function h.t/ D fn.t/ � e�t2=2 D e�t2=2 ".t/. The case
p D 0 is immediate. For p D 1,we have

et2=2 jh0.t/j D j"0.t/ � t".t/j � 1:5 L3 .t
2 C t4/:
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For p D 2, we get, using the previous arguments,

et2=2 jh00.t/j � j"00.t/j C 2jtj j"0.t/j C jt2 � 1j j".t/j
� 1:5 L3

�jtj C 2jtj t2 C jt2 � 1j jtj3� � 3L3jtj
�
1C t4

�
:

Finally, for p D 3, using j".p/.t/j � 2:2 L3jtj3�p for p D 0; 1; 2; 3, we get

et2=2 jh000.t/j � j"000.t/j C 3jtj j"00.t/j C 3 jt2 � 1j j"0.t/j C jt3 � 3tj j".t/j
� 1:5 L3

�
1C 3t2 C 3 jt2 � 1j t2 C jt3 � 3tj jtj3

�
:

If jtj � 1, the expression in the brackets equals and does not exceed 1C 6t2 � t6 �
1C 4

p
2 < 8. If jtj � 1, it does not exceed 1C 6t4 C t6 � 8t6. ut

PART III. “Corrected normal characteristic” functions

10 Polynomials Pm in the Normal Approximation

Let us return to the approximation given in Proposition 8.2, i.e.,

et2=2fn.t/ D eQm.it/ .1C ".t//; where Qm.it/ D
mX

lD3
�l
.it/l

lŠ
.�l D �l.Sn//:

We are now going to simplify the expression eQm.it/ .1C".t// to the form 1CPm.it/C
".t/ with a certain polynomial Pm and with a new remainder term, which would be
still as small as the Lyapunov coefficient Ls (including the case of derivatives). This
may indeed be possible on a smaller interval in comparison with L1=s

s jtj � 1. In view
of Propositions 9.1–9.2, one may naturally assume that s > 3, so that s D m C ˛,
m � 3 (integer), 0 < ˛ � 1.

Using Taylor’s expansion for the exponential function, one can write

eQm.it/ D
1X

k1D0

��3

3Š

�k1 .it/3k1

k1Š
� � �

1X

ks�3D0

��m

mŠ

�km�2 .it/mkm�2

km�2Š

D
X

k1;:::;km�2�0

�
k1
3 : : : �

km�2
m

3Šk1 : : :mŠkm�2

.it/3k1C���Cmkm�2

k1Š : : : km�2Š
D

1X

kD0
ak .it/

k

with coefficients

ak D
X

3k1C���Cmkm�2Dk

1

k1Š : : : km�2Š

��3

3Š

�k1
: : :

��m

mŠ

�km�2

:
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Clearly, all these series are absolutely convergent for all t. A certain part of the last
infinite series represents the desired polynomial Pm.

Definition 10.1 Put

Pm.it/ D
X 1

k1Š : : : km�2Š

��3

3Š

�k1
: : :

��m

mŠ

�km�2

.it/3k1C���Cmkm�2 ;

where the summation runs over all collections of non-negative integers
.k1; : : : ; km�2/ that are not all zero and such that d � k1C2k2C� � �C.m�2/km�2 �
m � 2.

Here the constraint d � m � 2 has the aim to involve only those terms and
coefficients in Pm that may not be small in comparison with Ls. Indeed, as we know
from Proposition 7.4,

j�lj � .l � 1/Š Ll � .l � 1/Š L.l�2/=.s�2/s ; 3 � l � Œs�;

which gives

ˇ
ˇ
ˇ
��3

3Š

�k1
: : :

��m

mŠ

�km�2
ˇ
ˇ
ˇ � Ld=.s�2/

s

3k1 : : :mkm�2
: (10.1)

So, the left product is at least as small as Ls in case d � m � 1, when Ls is small. Of
course, this should be justified when comparing eQm.it/ and 1 C Pm.it/ on a proper
interval of the t-axis. This will be done in the next two sections.

The index m for P indicates that all cumulants up to �m participate in the
constructions of these polynomials. The power

k D 3k1 C � � � C mkm�2 D d C 2.k1 C k2 C � � � C km�2/

may vary from 3 to 3.m � 2/, with maximum 3.m � 2/ attainable when k1 D m � 2
and all other kr D 0. Anyway, deg.Pm/ � 3.m � 2/.

These observations imply a simple general bound on the growth of Pm, which will
be needed in the sequel. First, jtjk � max

˚jtj3; jtj3.m�2/�: Hence, by Definition 10.1,

jPm.it/j � max
˚jtj3; jtj3.m�2/� X 1

k1Š : : : km�2Š
Ld=.s�2/

s

3k1 : : :mkm�2
:

Using the elementary bound

X 1

k1Š : : : km�2Š
1

3k1 : : :mkm�2
< e1=3 : : : e1=m < m; (10.2)



Asymptotic Expansions for Products of Characteristic Functions Under. . . 325

we arrive at:

Proposition 10.2 For all t real,

jPm.it/j � m max
˚jtj3; jtj3.m�2/� max

˚
L

1
s�2
s ;L

m�2
s�2

s
�
:

Let us describe the first three polynomials. Clearly, P3.it/ D �3
.it/3

3Š
, while for

m D 4,

P4.it/ D
X

0<k1C2k2�2

1

k1Š k2Š

��3

3Š

�k1��4

4Š

�k2
.it/3k1C4k2 D �3

.it/3

3Š
C �4

.it/4

4Š
C �23

.it/6

2Š 3Š2
:

Correspondingly, for m D 5,

P5.it/ D
X

0<k1C2k2C3k3�3

1

k1Š k2Š k3Š

��3

3Š

�k1��4

4Š

�k2��5

5Š

�k3
.it/3k1C4k2C5k3

D �3
.it/3

3Š
C �4

.it/4

4Š
C �5

.it/5

5Š
C �23

.it/6

2Š 3Š2
C �33

.it/9

3Š 3Š3
:

11 Cumulant Polynomials Qm

Properties of the polynomials Pm will be explored via the study of the cumulant
polynomials

Qm.z/ D
mX

lD3

�l

lŠ
zl;

which will be treated as polynomials in the complex variable z. In this section we
collect auxiliary facts, assuming that Ls < 1 for some s D m C ˛, m � 3, where m
is integer and 0 < ˛ � 1. In that case, the first term in Qm is �3

3Š
z3.

Lemma 11.1 If jzj max
˚
L

1
s�2
s ;L

1
3.s�2/
s

� � 1
4
, then jQm.z/j < 0:007. Moreover,

jQm.z/j � 0:42 L
1

s�2
s jzj3:

Proof Since s ! L
1

s�2
s is non-decreasing, we have jzj max

˚
L

1
m�2
m ;L

1
3.m�2/
m

� � 1
4
.

As we know, for any integer 3 � l � m,

j�lj � .l � 1/Š Ll � .l � 1/Š L
l�2
m�2
m :
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Hence,

jQm.z/j �
mX

lD3

1

l
Lljzjl �

mX

lD3

1

l
L

l�2
m�2
m jzjl D L

1
m�2
m jzj3

mX

lD3

1

l

�
L

1
m�2
m jzj

�l�3

� 0:42 L
1

m�2
m jzj3 � 0:42 L

1
s�2
s jzj3;

where we used L
1

m�2
m jzj � 1

4
together with

P1
lD3 4

�.l�3/

l D 64 log 4
3

� 18 < 0:42.

This gives the second assertion. Finally, apply L
1

s�2
s jzj3 � 1

64
to get the uniform

bound on jQm.z/j. ut

Lemma 11.2 In the interval jtj max
˚
L

1
s�2
s ;L

1
3.s�2/
s

� � 1
8
, we have

eQm.it/ D
m�2X

kD0

Qm.it/k

kŠ
C ".t/

with

1

pŠ

ˇ
ˇ
ˇ

dp

dtp
".t/

ˇ
ˇ
ˇ � 4s�2 Lsjtj3.s�2/�p; p D 0; 1; : : :

Proof Consider the function of the complex variable‰.w/ D ew � Pm�2
kD0 wk

kŠ D
P1

kDm�1 wk

kŠ : If jwj � 1, then jwjk � jwjm�1 � jwjs�2 for all k � m � 1, so,

j‰.w/j � jwjs�2
1X

kDm�1

1

kŠ
� jwjs�2:

This inequality will be used with w D Qm.z/. The function ‰.Qm.z// is analytic in
the complex plane. So, we may apply Cauchy’s contour integral formula

dp

dtp
‰.Qm.it// D pŠ

2�

Z

jz�itjD�
‰.Qm.z//

.z � it/pC1 dz

with an arbitrary � > 0, which gives

ˇ
ˇ
ˇ

dp

dtp
‰.Qm.it//

ˇ
ˇ
ˇ � pŠ

�p
max

jz�itjD�
j‰.Qm.z//j:

Assume that jtj > 0 and choose � D jtj. Then on the circle jz � itj D �, necessarily
jzj � 2jtj and, by the assumption on t,

jzj max
˚
L

1
m�2
m ;L

1
3.m�2/
m

� � 2jtj max
˚
L

1
m�2
m ;L

1
3.m�2/
m

� � 1

4
:



Asymptotic Expansions for Products of Characteristic Functions Under. . . 327

Hence, we may apply the uniform estimate of Lemma 11.1, jQm.z/j � 0:007 < 1,
so that, involving also the non-uniform estimate of the same lemma, we get

j‰.Qm.z//j � jQm.z/js�2 �
�
0:42 L

1
s�2
s jzj3

�s�2

� .0:42/s�2 � Ls � .2jtj/3.s�2/ D 3:36s�2 Ls � jtj3.s�2/:

As a result,

ˇ
ˇ
ˇ

dp

dtp
‰.Qm.it//

ˇ
ˇ
ˇ � pŠ

jtjp
3:36s�2Lsjtj3.s�2/:

ut
Note that, using

P1
kDm�1 1

kŠ � 1:5
.m�1/Š , the assertion of Lemma 11.2 could be

sharpened to

1

pŠ

ˇ
ˇ
ˇ

dp

dtp
".t/

ˇ
ˇ
ˇ � 3:2 � 4s

.m C 1/Š
Lsjtj3.s�2/�p; p D 0; 1; : : :

Lemma 11.3 In the interval jtj max
˚
L

1
s�2
s ;L

1
3.s�2/
s

� � 1
8
, we have

ˇ
ˇ
ˇ

dp

dtp
eQm.it/

ˇ
ˇ
ˇ � 1:01 pŠ jtj�p; p D 1; 2; : : :

Proof By Cauchy’s contour integral formula, for any � > 0,

ˇ
ˇ
ˇ

dp

dtp
eQm.it/

ˇ
ˇ
ˇ � pŠ

�r
exp

n
max

jz�itjD�
jQm.z/j

o
:

Assume jtj > 0 and choose again � D jtj. Then on the cicrle jz � itj D � we have

jzj max
˚
L

1
s�2
s ;L

1
3.s�2/
s

� � 2jtj max
˚
L

1
s�2
s ;L

1
3.s�2/
s

� � 1

4
:

Hence, we may apply the uniform estimate of Lemma 11.1 and notice that e0:007 <
1:01. ut

12 Relations Between Pm and Qm

The basic relation between polynomials Pm and Qm is described in the following
statement.

Proposition 12.1 If Ls < 1 .s > 3/, then for jtj max
˚
L

1
s�2
s ;L

1
3.s�2/
s

� � 1
8
, we have

eQm.it/ D 1C Pm.it/C ı.t/
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with

jı.t/j � 0:2 � 4sLs max
˚jtjs; jtj3.s�2/�:

Moreover, for all p D 1; : : : ; Œs�,

1

pŠ

ˇ
ˇ
ˇ

dp

dtp
ı.t/

ˇ
ˇ
ˇ � 0:5 � 7sLs max

˚jtjs�p; jtj3.s�2/�p
�
:

Proof In view of Lemma 11.2, we may only be concerned with the remainder
term

r.t/ D
m�2X

kD1

Qm.it/k

kŠ
� Pm.it/;

which we consider in the complex plane (by replacing it with z 2 C). Using the
polynomial formula, let us represent the above sum as

m�2X

kD1

1

kŠ

� mX

lD3
�l

zl

lŠ

�k

D
m�2X

kD1

X

k1C���Ckm�2Dk

1

k1Š : : : km�2Š

��3

3Š

�k1

: : :
��m

mŠ

�km�2

z3k1C���Cmkm�2 :

Here the double sum almost defines Pm.it/ with the difference that Definition 10.1
contains the constraint k1 C 2k2 C � � � C .m � 2/km�2 � m � 2, while now we have
a weaker constraint k1 C k2 C � � � C km�2 � m � 2. Hence, all terms appearing in
Pm.it/ are present in the above double sum, so

r.t/ D
X 1

k1Š : : : km�2Š

��3

3Š

�k1
: : :

��m

mŠ

�km�2

.it/3k1C���Cmkm�2

with summation subject to

k1 C k2 C � � � C km�2 � m � 2; k1 C 2k2 C � � � C .m � 2/km�2 � m � 1:

Necessarily, all kj � m �2 and at least one kj � 1. Using j�lj � .l �1/Š L l�2
s�2
s , we get

jr.z/j �
X 1

k1Š : : : km�2Š

mY

lD3
L

kl�2
l�2
s�2

s jzjN D
X 1

k1Š : : : km�2Š
LM

s jzjN ;

where

M D M.k1; : : : ; km�2/ D 1

s � 2
.k1 C 2k2 C � � � C .m � 2/km�2/;
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N D N.k1; : : : ; km�2/ D 3k1 C � � � C mkm�2
D .k1 C 2k2 C � � � C .m � 2/km�2/

C2 .k1 C k2 C � � � C km�2/:

Note that m C 1 � N � m.m � 2/, which actually will not be used, and .s � 2/M D
N � 2k. If L

1
s�2
s jzj � 1, using the property 1 � k � s � 2, we have

LM�1
s jzjN � jzjN�.s�2/.M�1/ D jzj.s�2/C2k � max

˚jzjs; jzj3.s�2/�:

Hence

jr.z/j � Ls max
˚jzjs; jzj3.s�2/�

X mY

lD3

1

kl�2Š

�1

l

�kl�2

:

The latter sum is dominated by em�2 � es�2, so

jr.z/j � es�2Ls max
˚jzjs; jzj3.s�2/�;

which can be used to prove Proposition 12.1 in case p D 0. Indeed, by Lemma 11.2

with its function ".t/ for the interval jtj max
˚
L

1
s�2
s ;L

1
3.s�2/
s

� � 1
8
, we have

jı.t/j � j".t/j C jr.t/j � 4s�2Lsjtj3.s�2/ C es�2Ls max
˚jtjs; jtj3.s�2/�:

Here 4�2 C e�2 < 0:2, and we arrive at the first conclusion for p D 0.
In fact, one can a little sharpen the bound on jr.z/j, by noting that

X mY

lD3

1

kl�2Š

�1

l

�kl�2 � exp
n mX

lD3

1

l

o
� 1 � elog m�log 2 � 1 D m � 2

2
:

Hence

jr.z/j � s � 2

2
Ls max

˚jzjs; jzj3.s�2/�:

This bound can be used for the remaining cases 1 � p � Œs�. One may apply the
Cauchy contour integral formula to get that

jr.p/.t/j � pŠ

�p
max

jz�itjD�
jr.z/j:
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Let us choose � D 1
2

jtj and use the assumption jtj max
˚
L

1
s�2
s ;L

1
3.s�2/
s

� � 1
8
. On the

circle jz� itj D � it is necessary that jzj � 3
2

jtj and thus jzj max
˚
L

1
s�2
s ;L

1
3.s�2/
s

� � 1
4
:

Hence, we may apply the previous step with bounding r.z/ which was made under

the weaker assumption L
1

s�2
s jzj � 1. This gives

jr.p/.z/j � pŠ

j0:5 tjp

s � 2

2
Ls max

˚jzjs; jzj3.s�2/�

� pŠ

jtjp
2s s � 2

2
Ls max

˚j1:5 tjs; j1:5 tj3.s�2/�:

This yields

jr.p/.t/j � 2pŠ 6:75s�2.s � 2/ Ls max
˚jtjs�p; jtj3.s�2/�p

�
:

Again, by Lemma 11.2 with its function ".t/,

jı.t/j � j".t/j C jr.t/j
� 4�2 pŠ 4sLsjtj3.s�2/ C 2pŠ 6:75s�2 .s � 2/ Ls max

˚jtjs�p; jtj3.s�2/�p
�
:

Here 2 � 6:75s�2.s � 2/ � 2

e log 7
6:75

7s�2 < 0:413 � 7s, and then we arrive at the desired

conclusion. ut
Corollary 12.2 Let Ls < 1 .s � 3/. In the interval jtj max

˚
L

1
s�2
s ;L

1
3.s�2/
s

� � 1
8
,

we have jPm.it/j � 0:1. Moreover, for all p D 1; : : : ; Œs�,

1

pŠ

ˇ
ˇ
ˇ

dp

dtp
Pm.it/

ˇ
ˇ
ˇ � 1:4 jtj�p:

Proof First consider the case p D 0. By Lemma 11.1, jQm.it/j � 0:007, which
implies, using the second estimate of Lemma 11.1 and our assumption,

ˇ
ˇeQm.it/�1ˇˇ � e0:007 � 1

0:007
jQm.it/j � 1:004 �0:42 L

1
s�2
s jtj3 � 1:004 �0:42 � 1

83
< 0:001:

In addition, by Proposition 12.1 (the obtained bound in case p D 0),

jı.t/j � 0:2 � 4sLs max
˚jtjs; jtj3.s�2/�:

By the assumption, Lsjtjs � 1
j8tjs�2 jtjs D 1

8s�2 t2 and Lsjtjs � 1

j8tj3.s�2/ jtjs D
1

83.s�2/
t6�2s. Both estimates yield Lsjtjs � 8�s. Since also Lsjtj3.s�2/ � 8�s, we

have

Ls max
˚jtjs; jtj3.s�2/� � 8�s;
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so

jPm.it/j � ˇ
ˇeQm.it/ � 1

ˇ
ˇ C jı.t/j � 0:001C 0:2 �

�4

8

�s
< 0:1;

which proves the corollary in this particular case.
Now, let 1 � p � Œs�. Combining Lemma 11.3 and Proposition 12.1, we have,

using the previous step and the assumption s � 3:

ˇ
ˇ
ˇ

dp

dtp
Pm.it/

ˇ
ˇ
ˇ �

ˇ
ˇ
ˇ

dp

dtp
eQm.it/

ˇ
ˇ
ˇ C

ˇ
ˇ
ˇ

dp

dtp
ı.t/

ˇ
ˇ
ˇ

� 1:01 pŠ jtj�p C 0:5 pŠ 7sLs max
˚jtjs�p; jtj3.s�2/�p

�

� pŠ jtj�p
h
1:01C 0:5

�7

8

�si � pŠ jtj�p
h
1:01C 0:5

�7

8

�3i
:

ut

13 Corrected Normal Approximation on Moderate Intervals

We are now prepared to prove several assertions about the corrected normal
approximation for the characteristic function fn.t/ of the sum Sn D X1 C � � � C Xn

of independent random variables Xk. As usual, we assume that EXk D 0, EX2k D �2k
.�k � 0/ with

Pn
kD1 �2k D 1. Recall that Lyapunov’s coefficients are defined by

Ls D
nX

kD1
E jXkjs; s � 2:

As before, we write s D m C ˛, where m is integer and 0 < ˛ � 1. The range
2 < s � 3 was considered in Propositions 9.1–9.2, so our main concern will be the
case s > 3. As a preliminary step, let us prove the following statement, including
the value s D 3 (a limit case).

Lemma 13.1 Let Ls < 1. In the interval jtj max
˚
L

1
s�2
s ;L

1
3.s�2/
s

� � 1
8
, we have

fn.t/ D e�t2=2
�
1C Pm.it/C r.t/

�
(13.1)

with

ˇ
ˇ
ˇ

dp

dtp
r.t/

ˇ
ˇ
ˇ � CsLs max

˚jtjs�p; jtj3.s�2/�p
�
; p D 0; 1; : : : ; Œs�; (13.2)

where one may take Cs D 0:4 � 4s in case p D 0 and Cs D 1:8 � 7s for 1 � p � Œs�.
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Proof Combining Proposition 12.1 and Corollary 12.2 with Proposition 8.2, we
may write

fn.t/ D e�t2=2 eQm.it/ .1C ".t// D e�t2=2 .1C Pm.it/C ı.t// .1C ".t//

with

jı.t/j � 0:2 � 4sLs max
˚jtjs; jtj3.s�2/�; j".t/j � 2sLs jtjs; jPm.it/j � 0:1;

where the second inequality was derived under the assumption that L
1
s
s jtj � 1

8
. It is

fulfilled, since in general L
1
s
s � max

˚
L

1
s�2
s ;L

1
3.s�2/
s

�
. In particular, we get Lsjtjs �

8�s, so j".t/j � 4�s.
Since

r.t/ D .1C Pm.it//".t/C ı.t/.1C ".t//;

we obtain that

jr.t/j � 1:1 � 2sLsjtjs C 0:2 � 4sLs max
˚jtjs; jtj3.s�2/� � .1C 4�s/

� 4sLs max
˚jtjs; jtj3.s�2/�

h
1:1 �

�2

4

�s C 0:2C 0:2 � 4�s
i
:

The expression in square brackets does not exceed 1:1 � . 2
4
/3C0:2C0:2 �4�3 < 0:4,

which proves the assertion in case p D 0.
Now, let us turn to the derivatives of order p D 1; : : : ; Œs� and apply other bounds

given in Proposition 12.1, Corollary 12.2, and Proposition 8.2,

1

pŠ
jı.p/.t/j � 0:5 � 7sLs max

˚jtjs�p; jtj3.s�2/�p
�
;

1

pŠ
j".p/.t/j � 2 � 4

s

s
Ls jtjs�p;

1

pŠ
jP.p/m .it/j � 1:4 jtj�p

(which remain to hold in case p D 0 as well). Differentiating the product Pm.it/".t/
according to the Newton binomial formula, let us write

�
.1C Pm.it// � ".t/�.p/ D

pX

kD0

pŠ

kŠ .p � k/Š

�
1C Pm.it/

�.k/
".t/.p�k/:
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Applying the above estimates, we then get

ˇ
ˇ
�
.1C Pm.it// � ".t/�.p/ˇˇ �

pX

kD0

pŠ

kŠ .p � k/Š
kŠ 1:4 � jtj�k � .p � k/Š

2 � 4s

s
Lsjtjs�.p�k/

D 2:8
.p C 1/Š

s
4s Lsjtjs�p

� 2:8 � pŠ 4s Lsjtjs�p:

To derive a similar bound for the product ı.t/".t/, we use Lsjtj3.s�2/ � 8�3.s�2/
together with Lsjtjs � 8�s. Then, the estimate on the p-th derivative of ı implies

jı.p/.t/j � pŠ 0:5 � 7s 8�s jtj�p � 0:4 pŠ jtj�p:

Hence, again according to the binomial formula,

ˇ
ˇ
�
ı.t/".t/

�.p/ˇˇ �
pX

kD0

pŠ

kŠ .p � k/Š
0:4 kŠ jtj�k � .p � k/Š 4sLs jtjs�.p�k/

D 0:4 .p C 1/Š 4s Lsjtjs�p:

Collecting these estimates, we obtain that

jr.p/.t/j � ˇ
ˇ.Pm.it/".t//

.p/
ˇ
ˇ C ˇ

ˇ.ı.t/".t//.p/
ˇ
ˇ C ˇ

ˇ".p/.t/
ˇ
ˇ C ˇ

ˇı.p/.t/
ˇ
ˇ

� pŠ
�
2:8 � 4s C 0:4 .p C 1/ 4s C 4s C 0:5 � 7s

�
Ls max

˚jtjs�p; jtj3.s�2/�p
�
:

Here, since the function t ! te�ˇt is decreasing for t > 1=ˇ (ˇ > 0), we have

.p C 1/ 4s � 7

4
.s C 1/

�4

7

�sC1
7s � 4

�4

7

�3
7s < 0:75 � 7s:

In addition, 4s D . 4
7
/s 7s < 0:2 � 7s. So the expression in the brackets in front of Ls

is smaller than .2:8 � 0:2C 0:4 � 0:75C 0:2C 0:7/ 7s < 1:8 � 7s. ut
In the representation for fn.t/ in (13.1), one can take the term r.t/ out of the

brackets, and then we get a more convenient form (at the expense of a larger power
of t). Thus, put

gm.t/ D e�t2=2 .1C Pm.it//;

which serves as the corrected normal “characteristic” function. For the first values
of m, one may recall the formulas for Pm at the end of Section 10, which give
g2.t/ D e�t2=2,
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g3.t/ D e�t2=2
�
1C �3

.it/3

3Š

�
;

g4.t/ D e�t2=2
�
1C �3

.it/3

3Š
C �4

.it/4

4Š
C �23

.it/6

2Š 3Š2

�
;

g5.t/ D e�t2=2
�
�3
.it/3

3Š
C �4

.it/4

4Š
C �5

.it/5

5Š
C �23

.it/6

2Š 3Š2
C �33

.it/9

3Š 3Š3

�
:

Proposition 13.2 Let Ls < 1 .s � 3/. In the interval jtj max
˚
L

1
s�2
s ;L

1
3.s�2/
s

� � 1
8
,

for every p D 0; 1; : : : ; Œs�,

ˇ
ˇ
ˇ

dp

dtp

�
fn.t/ � gm.t/

�ˇˇ
ˇ � CsLs max

˚jtjs�p; jtj3.s�2/Cp
�

e�t2=2; (13.3)

where one may take Cs D 0:5 � 4s in case p D 0 and Cs D 6 � 8s for 1 � p � Œs�.

Proof Using the remainder term in (13.1), consider the function

R.t/ � fn.t/ � e�t2=2 .1C Pm.it// D e�t2=2 r.t/:

In case p D 0, (13.2) gives the bound

jr.t/j � 0:5 � 4sLs max
˚jtjs; jtj3.s�2/�:

Hence, the same uniform bound holds for R.t/ as well.
Turning to the derivatives, we use the bounds

1

pŠ
jr.p/.t/j � 1:8 � 7sLs max

˚jtjs�p; jtj3.s�2/�p
�

together with jg.p/.t/j � pŠ maxf1; jtjpg g.t/ for the Gaussian function g.t/ D e�t2=2

(cf. (1.8)). Differentiating the product according to the binomial formula,

R.p/.t/ D
pX

kD0

pŠ

kŠ .p � k/Š
g.p�k/.t/r.k/.t/;

we therefore obtain that the absolute value of the above sum is bounded by

g.t/
pX

kD0

pŠ

kŠ .p � k/Š
.p � k/Š max

˚
1; jtjp�k

� � kŠ 1:8 � 7sLs max
˚jtjs�k; jtj3.s�2/�k

�

� 1:8 � 7spŠ Lsg.t/
pX

kD0
max

˚
1; jtjp�k

�
max

˚jtjs�k; jtj3.s�2/�k
�
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� 1:8 � 7spŠ Lsg.t/ .p C 1/ max
˚jtjs�p; jtj3.s�2/Cp

�
:

Here

.p C 1/ 7s � 8

7
.s C 1/

�7

8

�sC1
8s � 8

7

1

e log 8
7

8s � 3:15 � 8s;

while 3:15 � 1:8 < 5:7. ut
Remarks In the literature one can find different variations of the inequal-

ity (13.3). For integer values s D m C 1 and for p D 0, it was proved by
Statulevičius, cf. [St1, St2] (with a similar behavior of the constants). A somewhat
more complicated formulation describing the multidimensional expansion was
given by Bikjalis [Bi2] (in the same situation).

14 Signed Measures �m Associated with gm

Once it is observed that the characteristic function fn.t/ of Sn is close on a relatively
long interval to the corrected normal “characteristic function” gm.t/ D e�t2=2 .1 C
Pm.it//; it is reasonable to believe that in some sense the distribution of Sn is close
to the signed measure �m, whose Fourier-Stieltjes transform is exactly gm.t/, that
is, with

Z 1

�1
eitx d�m.x/ D gm.t/; t 2 R:

In order to describe �m, let us recall the Chebyshev-Hermite polynomials

Hk.x/ D .�1/k .e�x2=2/.k/ ex2=2; k D 0; 1; 2; : : : .x 2 R/;

or equivalently, '.k/.x/ D .�1/k Hk.x/'.x/ in terms of the normal density '.x/ D
1p
2�

e�x2=2: Each Hk is a polynomial of degree k with leading coefficient 1. For
example,

H0.x/ D 1; H2.x/ D x2 � 1; H4.x/ D x4 � 6x2 C 3;

H1.x/ D x; H3.x/ D x3 � 3x; H5.x/ D x5 � 10x3 C 15x;

H6.x/ D x6 � 15x4 C 45x2 � 15;

and so on. These polynomials are orthogonal on the real line with weight '.x/
and form a complete orthogonal system in the Hilbert space L2.R; '.x/ dx/. By the
repeated integration by parts (with t ¤ 0),

e�t2=2 D
Z 1

�1
eitx'.x/ dx D 1

�it

Z 1

�1
eitx' 0.x/ dx D 1

.�it/k

Z 1

�1
eitx'.k/.x/ dx:
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In other words, we have the identity
R 1

�1 eitx Hk.x/'.x/ dx D .it/k e�t2=2: Equiva-
lently, using the inverse Fourier transform, one may write

Hk.x/ '.x/ D 1

2�

Z 1

�1
e�itx .it/p e�t2=2 dt;

which may be taken as another definition of Hk.
Returning to Definition 10.1, we therefore obtain:

Proposition 14.1 Let Ls < 1 for s D mC˛ with an integer m � 2 and 0 < ˛ � 1.
The measure �m with Fourier-Stieltjes transform gm.t/ D e�t2=2 .1 C Pm.it// has
density

'm.x/ D '.x/C '.x/
X 1

k1Š : : : km�2Š

��3

3Š

�k1
: : :

��m

mŠ

�km�2

Hk.x/;

where k D 3k1 C � � � C mkm�2 and where the summation runs over all collections of
non-negative integers .k1; : : : ; km�2/ that are not all zero and such that k1 C 2k2 C
� � � C .m � 2/km�2 � m � 2:

Recall that the cumulants �p of Sn are well defined for p D 1; : : : ;m and also
for p D m C 1 when s is integer. However, in this case �mC1 is not present in the
construction of 'm. By the definition, if 2 < s � 3, the above sum is empty, that is,
'2 D '.

In a more compact form, one may write 'm.x/ D '.x/.1C Rm.x//; where Rm is
a certain polynomial of degree at most 3.m � 2/, defined by

Rm.x/ D
X 1

k1Š : : : km�2Š

��3

3Š

�k1
: : :

��m

mŠ

�km�2

Hk.x/;

where k D 3k1 C � � � C mkm�2 and the summation is as before. For m D 3, we have
R3.x/ D �3

3Š
H3.x/ D �3

3Š
.x3 � 3x/; while for m D 4,

R4.x/ D �3

3Š
H3.x/C �4

4Š
H4.x/C �23

2Š 3Š2
H6.x/

D �3

3Š
.x3 � 3x/C �4

4Š
.x4 � 6x2 C 3/C �23

2Š 3Š2
.x6 � 15x4 C 45x2 � 15/:

Correspondingly, for m D 5,

R5.x/ D �3

3Š
H3.x/C �4

4Š
H4.x/C �5

5Š
H5.x/C �23

2Š 3Š2
H6.x/C �33

3Š 3Š3
H9.x/:

Let us briefly describe a few basic properties of the measures �m.
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Proposition 14.2 The moments of Sn and �m coincide up to order m, that is,

f .p/n .0/ D g.p/m .0/; p D 0; 1; : : : ;m:

In particular, �m.R/ D R 1
�1 'm.x/ dx D 1:

The latter immediately follows from the Fourier transform formula

Z 1

�1
eitx'm.x/ dx D gm.t/ D e�t2=2 .1C Pm.it//;

applied at t D 0. The more general assertion immediately follows from Proposi-
tion 13.2, which gives jf .p/n .t/ � g.p/m .t/j D O.jtjs�p/ as t ! 0.

Proposition 14.3 If Ls < 1 for s D m C ˛ with m � 2 integer and 0 < ˛ � 1,
then the measure �m has a total variation norm satisfying

ˇ
ˇk�mkTV � 1

ˇ
ˇ � m

p
.3.m � 2//Š maxfL

1
s�2
s ;L

m�2
s�2

s g: (14.1)

In addition,

Z 1

�1
jxjs j�m.dx/j � s2s maxfLs; 1g: (14.2)

Proof In the definition of Pm, the tuples .k1; : : : ; km�2/ participating in the sum
satisfy 1 � d � m � 2, where d D k1 C 2k2 C � � � C .m � 2/km�2. Thus (cf. (10.1)),

ˇ
ˇ
ˇ
��3

3Š

�k1
: : :

��m

mŠ

�km�2
ˇ
ˇ
ˇ � 1

3k1 : : :mkm�2
L

d
s�2
s

� 1

3k1 : : :mkm�2
maxfL

1
s�2
s ; L

m�2
s�2

s g � 1

3k1 : : :mkm�2
maxfLs; 1g:

Hence

ˇ
ˇk�mkTV � 1

ˇ
ˇ D

Z 1

�1
jRm.x/j '.x/ dx

� maxfL
1

s�2
s ;L

m�2
s�2

s g
X 1

k1Š : : : km�2Š
1

3k1 : : :mkm�2

Z 1

�1
jHk.x/j '.x/ dx;

where k D 3k1 C � � � C mkm�2 (which may vary from 3 to 3.m � 2/). Let Z be a
random variable with the standard normal distribution. As is well known,

Z 1

�1
Hk.x/

2 '.x/ dx D EHk.Z/
2 D kŠ
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Hence, by the Cauchy inequality,

Z 1

�1
jHk.x/j '.x/ dx D E jHk.Z/j � p

kŠ � p
.3.m � 2//Š

implying that

ˇ
ˇk�mkTV�1ˇˇ �

p
.3.m � 2//Š maxfLs;L

.m�2/=.s�2/
s g

X 1

k1Š : : : km�2Š
1

3k1 : : :mkm�2
:

The latter sum does not exceed e1=3 : : : e1=m < m, cf. (10.2), and we obtain (14.1).
Let us now turn to the second assertion. If m D 2, then 'm D ' and �m is the

standard Gaussian measure on the real line. In this case,

Z 1

�1
jxjs j�m.dx/j D E jZjs D 2s=2

p
�
	

� s C 1

2

�
� 23=2p

�
	.2/ < 1:6 < s2s:

In case m � 3, again by the Cauchy inequality, for the same value of k as before,
we have

Z 1

�1
jxjs jHk.x/j '.x/ dx D E jZjs jHk.Z/j �

p
E jZj2s

p
kŠ

�
p
E jZj2s

p
.3.m � 2//Š

Hence, applying once more the inequality (10.2) together with the last bound on the
product of the cumulants, we obtain that

Z 1

�1
jxjs j�m.dx/j �

Z 1

�1
jxjs '.x/ dx C

Z 1

�1
jxjs jRm.x/j '.x/ dx

� E jZjs C
p
E jZj2s m

p
.3.m � 2//Š maxfLs; 1g

� 2
p
E jZj2s m

p
.3.m � 2//Š maxfLs; 1g:

To simplify the right-hand side, one may use

.3.m � 2//Š � 	.3s � 5/ D 	.3s C 1/

3s .3s � 1/.3s � 2/.3s � 3/.3s � 4/.3s � 5/
:

Since 3s � 1 � 8
3

s, 3s � 2 � 7
3

s, 3s � 3 � 6, 3s � 4 � 5, 3s � 5 � 4, we have
	.3s � 5/ � 1

280 s3
	.3s C 1/ and thus

�
1

max.Ls; 1/

Z 1

�1
jxjs j�.dx/j

�2



Asymptotic Expansions for Products of Characteristic Functions Under. . . 339

� 4E jZj2s m2

280 s3
	.3s C 1/ � 1

70 s
E jZj2s 	.3s C 1/

D 1

70 s

2s

p
�
	

�
s C 1

2

�
	.3s C 1/ <

1

70 s

2s

p
�
	.s C 1/ 	.3s C 1/:

By Stirling’s formula, 	.x C 1/ � 2 . x
e /

x
p
2�x .x � 3/, which allows us to bound

the above right-hand side by

1

70 s

2s

p
�

� 2
� s

e

�sp
2�s � 2

�3s

e

�3sp
6�s D 2

p
12 �

35

�54

e4

�s
s4s < s4s:

ut
As a consequence, one can complement Proposition 14.3 with the following

statement which is of a special interest when Ls is large (since in that case the
interval of approximation in this proposition is getting small).

Corollary 14.4 Let Ls < 1 for s D m C ˛ with m � 2 integer and 0 < ˛ � 1.
Then, for all t 2 R and p D 0; 1; : : : ; Œs�,

ˇ
ˇ
ˇ

dp

dtp

�
fn.t/ � gm.t/

�ˇˇ
ˇ � 4s2s maxfLs; 1g jtjs�p

.Œs� � p/Š
:

Proof Let Pn denote the distribution of Sn. By Proposition 5.2 applied to the
signed measure � D Pn � �m, we have

ˇ
ˇ
ˇ

dp

dtp

�
fn.t/ � gm.t/

�ˇˇ
ˇ � 2Cs

jtjs�p

.m � p/Š
; where Cs D

Z 1

�1
jxjs jPn.dx/� �m.dx/j:

Here

Cs �
Z 1

�1
jxjs Pn.dx/C

Z 1

�1
jxjsj�m.dx/j D E jSnjs C

Z 1

�1
jxjsj�m.dx/j:

The last integral may be estimated with the help of the bound (14.2), while the
s-th absolute moment of Sn is estimated with the help of Rosenthal’s inequality
E jSnjs � .2s/s maxfLs; 1g; cf. (7.3). Since .2s/s � s2s, we get Cs � 2s2s. ut

PART IV. Corrected normal approximation on long intervals
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15 Upper Bounds for Characteristic Functions fn

Let X1; : : : ;Xn be independent random variables with EXk D 0, EX2k D �2k .�k � 0/,
assuming that

Pn
kD1 �2k D 1. Recall that

L3 D
nX

kD1
E jXkj3:

On long intervals of the t-axis, we are aimed to derive upper bounds on the absolute
value of the characteristic function fn.t/ D E eitSn of the sum Sn D X1 C � � � C Xn.
Assume that Xk have finite 3-rd moments, and put ˇ3;k D EjXkj3. We will need:

Lemma 15.1 Let X be a random variable with characteristic function v.t/. If EX D
0, EX2 D �2, E jXj3 D ˇ3 < 1, then for all t 2 R,

jv.t/j � e� 1
2 �

2t2C 1
3 ˇ3jtj3 :

In addition, if ˇs D E jXjs is finite for s � 3, then for all p D 1; : : : ; Œs�,

jv.p/.t/j � e1=6 ˇp� maxf1; jtjg e� 1
2 �

2t2C 1
3 ˇ3jtj3 ; p� D maxfp; 2g:

Proof Let X0 be an independent copy of X. Since X has mean zero, E jX �X0j3 �
4ˇ3, cf. [B-RR], Lemma 8.8. Hence, by Taylor’s expansion, for any t real,

jv.t/j2 D E eit.X�X0/ D 1� �2t2 C 4�

3Š
ˇ3jtj3 � exp

n
� �2t2 C 4�

3Š
ˇ3jtj3

o

with some � D �.t/ such that j� j � 1. The first inequality now easily follows.
Since jv00.t/j � �2 and v0.0/ D 0, we also have jv0.t/j � �2jtj. On the other

hand, putting x D � jtj and using ˇ � �3, we have

�1
2
�2t2 C 1

3
ˇ3jtj3 � �1

2
x2 C 1

3
x3 � �1

6
.x � 0/:

This proves the second inequality of the lemma in case p D 1. If p � 2, then we
only need to apply jv.p/.t/j � ˇp. ut

Denoting by vk the characteristic function of Xk, by the first inequality of
Lemma 15.1, jvk.t/j � expf� 1

2
�2k t2 C 1

3
ˇ3;kjtj3g. Multiplying these inequalities,

we get

jfn.t/j � exp
n

� 1

2
t2 C 1

3
L3jtj3

o
:

If jtj � 1
L3

, then L3jtj3 � t2 for jtj � 1
L3

. Hence, the above bound yields:
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Proposition 15.2 We have jfn.t/j � e�t2=6 whenever jtj � 1
L3

.

One can sharpen the statement of Proposition 15.2 by developing Taylor’s
expansion for vk.t/, rather than for jvk.t/j2. By Taylor’s integral formula,

vk.t/ D 1 � �2k t2

2
C 1

2

Z t

0

v000
k .
/.t � 
/2 d
;

so
ˇ
ˇvk.t/�.1� �2k t2

2
/
ˇ
ˇ � ˇ3;k

6
jtj3. Here the left-hand side dominates jvk.t/j�.1� �2k t2

2
/

in case �kjtj � p
2, and then we obtain that

jvk.t/j � 1 � �2k t2

2
C ˇ3;k jtj3

6
� exp

n
� �2k t2

2
C ˇ3;k jtj3

6

o
:

Multiplying these inequalities, we get:

Proposition 15.3 If maxk �kjtj � p
2, we have

jfn.t/j � exp
n

� t2

2
C L3jtj3

6

o
:

Hence, if additionally jtj � 1
L3

, then jfn.t/j � e�t2=3:

This statement has an advantage over Proposition 15.2 in case of i.i.d. summands.
Now let us consider the case of the finite Ls with 2 < s � 3 and define ˇs;k D

E jXkjs. Here is an adaptation of Lemma 15.1.

Lemma 15.4 Let X be a random variable with characteristic function v.t/. If EX D
0, EX2 D �2, E jXjs D ˇs < 1 for 2 < s � 3, then, for all t 2 R,

jv.t/j � e� 1
2 �

2t2C2ˇsjtjs :

In addition,

jv0.t/j � e1=24 �2jtj e� 1
2 �

2t2C2ˇsjtjs ; jv00.t/j � e1=24 �2e� 1
2 �

2t2C2ˇsjtjs :

Proof Let X0 be an independent copy of X. Then Var.X � X0/ D 2�2. Write

jX � X0js D .X � X0/2 jX � X0js�2

� .X � X0/2
�jXjs�2 C jX0js�2� D .X2 � 2XX0 C X0/

�jXjs�2 C jX0js�2�;

implying that

E jX � X0js � E jXjs C E jX0js C EX2 E jX0js�2 C EX02
E jXjs�2

D 2E jXjs C 2EX2 E jXjs�2:
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Here EX2 � ˇ
2=s
s and E jXjs�2 � ˇ

.s�2/=s
s , so that we obtain E jX � X0js � 4ˇs:

Now, by Proposition 5.1 with p D 0, m D 2, applied to X � X0,

jv.t/j2 D E eit.X�X0/ D 1 � �2t2 C ı.t/; jı.t/j � 4ˇsjtjs:

Hence, for any t real,

jv.t/j2 � 1 � �2t2 C 4ˇsjtjs � exp
˚ � �2t2 C 4ˇsjtjs

�
;

proving the first inequality. Since jv00.t/j � �2 and v0.0/ D 0, we also have jv0.t/j �
�2jtj, jv00.t/j � �2. On the other hand, putting x D � jtj and using ˇs � � s, we have

�1
2
�2t2 C 2ˇsjtjs � �1

2
x2 C 2xs D  .x/:

On the positive half-axis the function attains minimum at the point xs D .2s/� 1
s�2 ,

at which

 .xs/ D �1
2
.2s/�

2
s�2 C 2 .2s/�

s
s�2 D � s � 2

2s

� 1

2s

� 2
s�2 � � 1

24
:

ut
Now, returning to the random variables Xk, by the first inequality of this lemma,

we have jvk.t/j � exp
˚ � 1

2
�2k t2 C 2ˇs;kjtjs

�
: Multiplying them, we get jfn.t/j �

expf� t2

2
.1 � 4Lsjtjs�2/g, which yields:

Proposition 15.4 If 2 < s � 3, then jfn.t/j � e�t2=6 in the interval jtj � .6Ls/
� 1

s�2 .

Remarks The first inequality in Lemma 15.1 first appeared apparently in the
work by Zolotarev [Z1]. Later in [Z2] he sharpened this bound to

log jv.t/j � �1
2
�2t2 C 2�3 ˇ3jtj3; �3 D sup

x>0

cos x � 1C x2

2

x3
D 0:099 : : :

Further refinements are due to Prawitz [Pr1, Pr2]. Sharper forms of Lemma 15.4,
including s-dependent constants in front of jtjs for the values 2 < s � 3, were
studied by Ushakov and Shevtsova, cf. [U], [Sh2].

16 Bounds on the Derivatives of Characteristic Functions

Keeping notations of the previous section together with basic assumptions on the
random variables Xk’s, here we extend upper bounds on the characteristic function
fn.t/ D E eitSn to its derivatives up to order Œs�. Put p� D max.p; 2/.
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Proposition 16.1 Let Ls < 1, for some s � 3. Then, for all p D 0; : : : ; Œs�,

ˇ
ˇ
ˇ

dp

dtp
fn.t/

ˇ
ˇ
ˇ � 2:03p pŠ maxfLp� ; 1g maxf1; jtjpg e�t2=6; if jtj � 1

L3
: (16.1)

Proof The case p D 0 follows from Proposition 15.2. For p � 1, denote by vk.t/
the characteristic functions of Xk. We use the polynomial formula

f .p/n .t/ D
X �

p
q1 : : : qn

�

v
.q1/
1 .t/ : : : v.qn/

n .t/

with summation running over all integers qk � 0 such that q1 C � � � C qn D p. By
Lemma 15.1,

jvk.t/j � e� 1
2 �

2
k t2C 1

3 ˇ3;kjtj3 ;

jv.qk/
k .t/j � e1=6 ˇq�

k ;k
maxf1; jtjg e� 1

2 �
2
k t2C 1

3 ˇ3;kjtj3 ; qk � 1;

where ˇq;k D E jXkjq and q�
k D maxfqk; 2g. Applying these inequalities and noting

that the number

l D cardfk � n W qk � 1g

is smaller than or equal to p, we get

nY

kD0
jv.qk/

k .t/j � ep=6 maxf1; jtjpg e� 1
2 t2C 1

3 L3jtj3 ˇq�

1 ;1
: : : ˇq�

n ;n:

Write .q1; : : : ; qn/ D .0; : : : ; qk1 ; : : : ; qkl ; : : : ; 0/, specifying all indexes k for which
qk � 1. Put p1 D qk1 ; : : : ; pl D qkl . Thus, pj � 1, p1 C � � � C pl D p, so 1 � l � p,
and the above bound takes the form

nY

kD0
jv.qk/

k .t/j � ep=6 maxf1; jtjpg e� 1
2 t2C 1

3 L3jtj3 ˇp�

1 ;k1
: : : ˇp�

l ;kl
:

Using it in the polynomial formula and performing summation over all kj’s, we
arrive at

jf .p/n .t/j � ep=6 maxf1; jtjpg e� 1
2 t2C 1

3 L3jtj3 eLp

with

eLp D
X �

p
p1 : : : pl

�

Lp�

1
: : : Lp�

l
;
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where the sum runs over all integers l D 1; : : : ; p and p1; : : : ; pl � 1 such that
p1 C � � � C pl D p.

Clearly, eL1 D 1 and eL2 D 2. If p � 3, using the property that the function
q ! L1=.q�2/

q is not decreasing in q > 2 (Proposition 7.1), we get

Lp�

1
: : : Lp�

l
D

Y

jW pj�2
Lpj �

Y

jW pj�2
L

pj�2
p�2

p D L�p :

Here

.p � 2/� D
lX

jD1
.pj � 2/ 1fpj�2g D p � 2l C

X

jW pjD1
1 � p � 2

with the last inequality holding for l � 2. Also, when l D 1, necessarily
P

jWpjD1 1 D
0, so � � 1 in all cases. But then L�p � maxfLp; 1g, which implies

eLp � maxfLp; 1g
pX

lD1

X

p1C���CplDp

�
p

p1 : : : pl

�

� maxfLp; 1g pŠ
pY

lD1

1X

plD1

1

plŠ
� maxfLp; 1g .e � 1/p pŠ

This inequality remains to hold for p D 1 and p D 2. Thus, for all p � 1,

jf .p/n .t/j � �
.e � 1/ e1=6

�p
pŠ maxfLp� ; 1g maxf1; jtjpg e� 1

2 t2C 1
3 L3jtj3 :

Here .e � 1/e1=6 < 2:03. Also, if jtj � 1
L3

, then L3jtj3 � t2. ut
Let us now turn to the case 2 < s < 3 with finite Lyapunov coefficient Ls rather

than L3. In terms of the characteristic functions vk.t/, the first derivative of fn.t/ is
just the sum

f 0
n.t/ D

nX

kD1
v1.t/ : : : vk�1.t/ v0

k.t/ vkC1.t/ : : : vn.t/:

Here, by Lemma 15.4, the k-th term is dominated by e1=24 �2k jtj e� 1
2 t2C2Lsjtjs .

Performing summation over all k � n, we then arrive at

jf 0
n.t/j � e1=24 jtj e� 1

2 t2C2Lsjtjs :



Asymptotic Expansions for Products of Characteristic Functions Under. . . 345

Now, let us turn to the second derivative. Assuming that n � 2, first write

f 00
n .t/ D

nX

kD1
v1.t/ : : : vk�1.t/ v00

k .t/ vkC1.t/ : : : vn.t/

C 2
X

1�k<l�n

v1.t/ : : : vk�1.t/ v0
k.t/ vkC1.t/ : : : vl�1.t/ v0

l.t/ vlC1.t/ : : : vn.t/:

Again by Lemma 15.4, we get

jv1.t/ : : : vk�1.t/ v00
k .t/ vkC1.t/ : : : vn.t/j � e1=24 �2k e� 1

2 t2C2Lsjtjs

and

jv1.t/ : : : vk�1.t/ v0
k.t/ vkC1.t/ : : : vl�1.t/ v0

l.t/ vlC1.t/ : : : vn.t/j
� e1=12 �2k �

2
l t2 e� 1

2 t2C2Lsjtjs :

Performing summation in the representation for f 00
n .t/ we arrive at

jf 00
n .t/j � �

e1=24 C e1=12 t2
�

e� 1
2 t2C2Lsjtjs :

If n D 1, the estimate is simplified to jf 00
1 .t/j � e1=24 e� 1

2 t2C2Lsjtjs : One can
summarize.

Proposition 16.2 If 2 < s < 3, then in the interval jtj � .6Ls/
� 1

s�2 ,

jfn.t/j � e�t2=6; jf 0
n.t/j � e1=24 jtj e�t2=6; jf 00

n .t/j � e1=12.1C t2/ e�t2=6:

17 Upper Bounds for Approximating Functions gm.t/

Our next step is to get bounds, similar to the ones in Sections 15–16, for the
corrected normal “characteristic function”

gm.t/ D e�t2=2 .1C Pm.it//

with large values of jtj, more precisely – outside the interval of Proposition 13.2.

Proposition 17.1 Let s � 3. In the region jtj maxfL
1

s�2
s ;L

1
3.s�2/
s g � 1

8
, we have

jgm.t/j � .142 s/3s=2 Ls e�t2=8: (17.1)
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Moreover, for every p D 1; 2; : : : ; Œs�,

jg.p/m .t/j � .573 s/2s Ls e�t2=8: (17.2)

Recall that, for real values s D m C ˛, where m � 2 is integer and 0 < ˛ � 1,

Pm.it/ D
X 1

k1Š : : : km�2Š

��3

3Š

�k1
: : :

��m

mŠ

�km�2

.it/k;

where the summation runs over all collections of non-negative integers
.k1; : : : ; km�2/ that are not all zero and such that

k � 3k1 C � � � C mkm�2; d � k1 C 2k2 C � � � C .m � 2/km�2 � m � 2:

Note that all tuples that are involved satisfy 1 � d � s�2 and 1 � k � 3d � 3.s�2/.
Proof of Proposition 17.1 We use the bound (10.1), implying that, for all

complex t,

jPm.it/j �
X 1

k1Š : : : km�2Š
1

3k1 : : :mkm�2
L

d
s�2
s jtjk:

If Ls � 1, then L
d

s�2
s � Ls. In this case, using a simple inequality

xˇe�x � .ˇe�1/ˇ .x; ˇ � 0/ (17.3)

together with the property k � 3.s � 2/, we have

jtjk e�3t2=8 �
�8k

3e

�k=2 �
�8s

e

� 3
2 .s�2/

< .3s/
3
2 .s�2/:

Hence L
d

s�2
s jtjk e�t2=2 � .3s/

3
2 .s�2/ Ls e�t2=8. Using the inequality (10.2), we then

get

jgm.t/j � .1C jPm.it/j/ e�t2=2 � m.3s/
3.s�2/
2 Ls e�t2=8 � .3s/3s=2 Ls e�t2=8;

which provides the desired estimate (17.1).
In the (main) case Ls � 1, it will be sufficient to bound the products

L
d

s�2�1
s jtjk e�3t2=8 by the s-dependent constants uniformly for all admissible tuples.

Put x D L
� 1

s�2
s . Using the hypothesis jtj � 1

8
x1=3, let us rewrite every such product

and then estimate it as follows:

L
d

s�2�1
s jtjk e�3t2=8 D x.s�2/�d e�t2=4 � jtjk e�t2=8
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� x.s�2/�d e� 1
256 x2=3 � jtjk e�t2=8

D .256 y/
3
2 ..s�2/�d/ e�y � .8u/k=2 e�u;

where we changed the variables x D .256 y/3=2, t D .8u/1=2. Next, again we apply
inequality (17.3), which allows us to bound the last expression by

�
256 � 3

2e
.s � 2 � d/

� 3
2 .s�2�d/ �

�8k

2e

�k=2 �
�384 s

e

� 3
2 .s�2�d/ �

�12 s

e

�k=2

�
�384 s

e

� 1
2 .3.s�2�d/Ck/

:

Here 3.s � 2 � d/C k D 3.s � 2/ � .3d � k/ � 3.s � 2/: Hence, the last quantity

may further be estimated by
�
384 s

e

� 3.s�2/
2 < .142 s/

3.s�2/
2 , so

L
d

s�2
s jtjk e�t2=2 � .142 s/

3.s�2/
2 Ls e�t2=8:

This inequality remains to hold, when all kj D 0 as well. Thus, similarly to the
previous case,

.1C jPm.it/j/ e�t2=2 � m.142 s/
3.s�2/
2 Ls e�t2=8 � .142 s/3s=2 Ls e�t2=8;

proving the first part of the proposition, i.e. for p D 0.
To treat the case of derivatives of an arbitrary order p � 1, one may use the

property that gm is an entire function and apply Cauchy’s contour integral formula.
This would reduce our task to bounding jgmj in a strip of the complex plane. Indeed,
first consider the functions of the complex variable

Rk.z/ D zk e�z2=2; z D t C u; .t ¤ 0 real/; juj � jtj
4
.u complex/:

We have jzj � 5
4

jtj and Re.z2/ � t2 � 2 jtj juj � juj2 � 7
16

t2; implying that

jRk.z/j D jzjk e�Re.z2/=2 �
�5

4
jtj

�k
e�7t2=32:

For any � > 0, by Cauchy’s integral formula, jR.p/k .t/j � pŠ ��p maxjz�tjD� jRk.z/j:
Choosing � D jtj

4
and applying the constraints p � s C 1, k � 3.s � 2/, we get

jR.p/k .t/j � pŠ
� 4

jtj
�p �

�5

4
jtj

�k
e�7t2=32 � pŠ 4sC1

�5

4

�3.s�2/ � jtjk�p e�7t2=32:

(17.4)
Case 1. First assume that k � p.
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If Ls � 1, putting x D L
� 1

s�2
s as before and using the hypothesis jtj � 1

8
x1=3, we

have:

pŠ L
d

s�2�1
s jtjk�p e�3t2=32 D pŠ x.s�2/�d e�t2=16 � jtjk�p e�t2=32

� pŠ x.s�2/�d e� 1

82 �16
x2=3 � jtjk�p e�t2=32

D pŠ .82 � 16 y/
3
2 ..s�2/�d/ e�y � .32 u/

1
2 .k�p/ e�u:

Again using the general inequality (17.3), one can bound the last expression by

pŠ
�
82 � 16 � 3

2e
.s � 2 � d/

� 3
2 .s�2�d/ �

�
32

k � p

2e

� 1
2 .k�p/

� pŠ .566 s/
3
2 ..s�2/�d/ �

�48s

e

� 1
2 .k�p/

� sp .566 s/
1
2 .3.s�2�d/C.k�p//;

where we applied elementary relations pŠ � mp � sp for the values p � m C 1 on
the last step. Also note that

3.s � 2 � d/C .k � p/ D 3.s � 2/� .3d � k/ � p � 3.s � 2/� p:

Hence,

sp .566 s/
1
2 .3.s�2�d/C.k�p// � 566

3
2 .s�2/ s

1
2 .3.s�2/Cp/

� 1162.s�2/ s2s�2 < .116 s/2s�2;

and thus

pŠ L
d

s�2�1
s jtjk�p e�3t2=32 � .116 s/2s�2: (17.5)

If Ls � 1, the argument is similar and leads to a better constant. Since now
jtj � 1

8
x,

pŠ L
d

s�2�1
s jtjk�p e�3t2=32 D pŠ x.s�2/�d e�t2=16 � jtjk�p e�t2=32

� pŠ x.s�2/�d e� 1

82 �16
x2 � jtjk�p e�t2=32

D pŠ .82 � 16 y/
1
2 ..s�2/�d/ e�y � .32 u/

1
2 .k�p/ e�u:
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The last expression is bounded by

pŠ
�
82 � 16 � 1

2e
.s � 2 � d/

� 1
2 .s�2�d/ �

�
32

k � p

2e

� 1
2 .k�p/

� pŠ .189 s/
1
2 ..s�2/�d/ �

�48s

e

� 1
2 .k�p/

� sp .189 s/
1
2 ..s�2�d/C.k�p//:

Replacing here s �2� d with the larger value 3.s �2� d/, we return to the previous
step with constant 189 in place of 566. So, the bound (17.5) remains to hold in this
case as well.

Case 2. Assume that k < p and Ls � 1. In this case, the function jtjk�p e�3t2=32 is

decreasing in jtj. Using again jtj � 1
8

x1=3 with x D L
� 1

s�2
s , we have, by (17.3), for

any ˇ � 0,

pŠ L
d

s�2�1
s jtjk�p e�3t2=32 � pŠ x.s�2/�d

�1

8
x1=3

�k�p
e� 3

82 �32
x2=3

� pŠ 8s x.s�2/�dC 1
3 .k�p/ e� 3

82 �32
x2=3

D pŠ 8s
�82 � 32 ˇ

3e

�ˇ
x.s�2/�dC 1

3 .k�p/� 2
3 ˇ:

Here we choose ˇ such that the power of x would be zero, that is, ˇ D 3
2
.s �

2 � d/ C 1
2
.k � p/: Let us verify that this number is indeed non-negative, that is,

.3d � k/ C p � 3.s � 2/. This is obvious, when all kj D 0. From the definition, it
also follows that, when at least one kj > 0,

3d � k D 2

m�2X

jD1
.j � 1/kj D 2d � 2

m�2X

jD1
kj � 2.m � 2/� 2:

If p � m, we conclude that .3d �k/Cp � 2.m �2/�2Cm D 3.m �2/ < 3.s�2/,
which was required. If s D m C 1 is integer, and p D m C 1, we also have

.3d � k/C p � 2.m � 2/� 2C .m C 1/ D 3m � 5 < 3.s � 2/:

Thus, one may use the chosen value of ˇ. Since ˇ D 1
2
.3.s � 2/� .3d � k/� p/ �

3.s�2/�p
2

; we then get that

pŠ L
d

s�2�1
s jtjk�p e�3t2=32 � pŠ 8s

�82 � 32 ˇ
3e

�ˇ

� sp 8s
�82 � 32 s

2e

� 3.s�2/�p
2
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� 8s
�82 � 32

2e

� 3.s�2/
2 � s

3.s�2/Cp
2 < .242 s/2s�2:

Case 3. Assume that k < p and Ls � 1, jtj � 1. In this case one may just write

pŠ L
d

s�2�1
s jtjk�p e�3t2=32 � pŠ � sp � s2s�2:

Thus, in all these three cases,

pŠ L
d

s�2�1
s jtjk�p e�3t2=32 � .242 s/2s�2;

and therefore, according to (17.4),

jR.p/k .t/j � 4sC1
�5

4

�3.s�2/
e�t2=8 � pŠ jtjk�p e�3t2=32

� 4sC1
�5

4

�3.s�2/
.242 s/2s�2 L

1� d
s�2

s e�t2=8

< 5732s s2s�2 L
1� d

s�2
s e�t2=8: (17.6)

Case 4. Assume that k < p, Ls � 1 and jtj � 1.
Returning to the Cauchy integral formula, let us now choose � D 1. For z D tCu,

juj � 1 (u complex), we have jzj � 2 and Re.z2/ � t2 � 2 jtj juj � juj2 � 1
2

t2 � 3:

Hence

jRk.z/j D jzjk e�Re.z2/=2 � e�3 2k e�t2=2 � e�3 2sC1 e�t2=2

and

jR.p/k .t/j � pŠ max
jz�tjD1

jRk.z/j � pŠ e�3 2sC1 e�t2=2 � e�3 .2s/2s�2 e�t2=2:

This is better than the bound (17.6) obtained for the previous cases (note that the

above right-hand side may be multiplied by the factor L
1� d

s�2
s which is larger than 1).

As result, in all cases,

jR.p/k .t/j � 5732s s2s�2 L
1� d

s�2
s e�t2=8;

so

jg.p/m .t/j �
X 1

k1Š : : : km�2Š

ˇ
ˇ
ˇ
��3

3Š

�k1
: : :

��m

mŠ

�km�2
ˇ
ˇ
ˇ jR.p/k .t/j



Asymptotic Expansions for Products of Characteristic Functions Under. . . 351

�
X 1

k1Š : : : km�2Š
1

3k1 : : :mkm�2
L

d
s�2
s � 5732s s2s�2 L

1� d
s�2

s e�t2=8

� m � 5732s s2s�2 Ls e�t2=8:

ut

18 Approximation of fn and Its Derivatives on Long Intervals

Again, let X1; : : : ;Xn be independent random variables with EXk D 0, �2k D EX2n
.�k � 0/ such that

Pn
kD1 �2k D 1, and finite Lyapunov coefficient Ls. On a relatively

long (moderate) interval Is, Proposition 13.2 (for s � 3) and Propositions 9.1–9.2
(for 2 < s � 3) provide an approximation for the characteristic function fn.t/ of the
sum Sn D X1 C � � � C Xn by the corrected normal “characteristic function”

gm.t/ D e�t2=2 .1C Pm.it//:

This approximation also includes closeness of the derivatives of fn and gm up to
order Œs�. On the other hand, according to Propositions 15.2 and 16.1–16.2, fn.t/ and
their derivatives are very small in absolute value outside the interval Is, although still
inside jtj � 1

L3
when s � 3. Since gm.t/ is also small (section 17), one can enlarge

the interval Is and thus simplify these approximations at the expense of a constant
in the exponent appearing in the bounds.

As before, let s D m C ˛, where m � 2 is integer and 0 < ˛ � 1.

Theorem 18.1 Let Ls < 1 for s � 3. In the interval jtj � 1
L3

,

ˇ
ˇfn.t/ � gm.t/

ˇ
ˇ � .Cs/3s=2Ls min

˚
1; jtjs

�
e�t2=8: (18.1)

Moreover, for all p D 0; 1; : : : ; Œs�,

ˇ
ˇ
ˇ

dp

dtp
.fn.t/ � gm.t//

ˇ
ˇ
ˇ � .Cs/3sLs min

˚
1; jtjs�p

�
e�t2=8; (18.2)

where C is an absolute constant. One may take C D 990 in .18:1/ and C D 70 in
.18:2/.

Proof We distinguish between several cases.

Case 1a. Moderate interval Is W jtj maxfL
1

s�2
s ;L

1
3.s�2/
s g � 1

8
. By Proposition 13.2,

in this interval

jfn.t/ � gm.t/j � 4sLs max
˚jtjs; jtj3.s�2/� e�t2=2:
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If jtj � 1, the above maximum is equal to jtjs, and we are done with C D 4.
If jtj � 1, the above maximum is equal to jtj3.s�2/, and then one may use a general
inequality xˇe�x � .

ˇ

e /
ˇ .x; ˇ > 0/. For x D 3t2=8 it gives

jtj3.s�2/ e�3t2=8 D
�8x

3

� 3.s�2/
2

e�x �
�4 .s � 2/

e

� 3.s�2/
2

< .1:48 s/3s=2;

so

jtj3.s�2/ e�t2=8 D jtj3.s�2/ e�3t2=8 e�t2=8 < .1:48 s/3s=2 e�t2=8:

Since also 4s � 2:523s=2 and 2:52 � 1:48 < 4, we conclude that

jfn.t/ � gm.t/j � .4s/3s=2 Ls minf1; jtjsg e�t2=8; t 2 Is;

which is the required inequality (18.1) with C D 4.
This bound may serve as a simplified version of Proposition 13.2 in the case

p D 0. This is achieved at the expense of a worse constant in the exponent, although
it contains a much larger s-dependent factor in front of Ls.

Case 2a. Large region I0
s W jtj maxfL

1
s�2
s ;L

1
3.s�2/
s g � 1

8
with 1 � jtj � 1

L3
. In this

case, we bound both fn.t/ and gm.t/ in absolute value by appropriate quantities.
First, we involve the bound of Proposition 15.2, jfn.t/j � e�t2=6, which is valid

for jtj � 1
L3

, and derive an estimate of the form

e�t2=24 � CsLs:

If Ls � 8�3.s�2/, it holds with Cs D 83.s�2/. If Ls � 8�3.s�2/, then necessarily

jtj � 1
8

L
� 1
3.s�2/

s , and therefore one may take

Cs D 1

Ls
exp

n
� 1

24 � 82 L
� 2
3.s�2/

s

o
:

Putting L
� 2
3.s�2/

s D 1536 x, the right-hand side equals and may be bounded with the
help of (17.3) by

.1536 x/
3.s�2/
2 e�x �

�1536 � 3.s � 2/
2e

� 3.s�2/
2

< .848 s/3s=2:

As a result, we arrive at the upper bound

jfn.t/j � e�t2=24 � e�t2=8 � .848 s/3s=2 Ls minf1; jtjsg e�t2=8:
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A similar bound also holds for the approximating function gm.it/ D e�t2=2 C
Pm.it/e�t2=2. Recall that, by Proposition 17.1, whenever jtj � 1,

jgm.t/j � .142 s/3s=2 Ls e�t2=8 � .142 s/3s=2 Ls minf1; jtjsg e�t2=8;

implying

jfn.t/ � gm.t/j � �
.848 s/3s=2 C .142 s/3s=2

�
Ls minf1; jtjsg e�t2=8:

Since s > 3, the constant in front of Ls is smaller than 9903s=2.

Case 3a. Consider the region I0
s W jtj maxfL

1
s�2
s ;L

1
3.s�2/
s g � 1

8
with jtj �

minf1; 1L3 g. Necessarily Ls � 8�3.s�2/, so maxfLs; 1g � 83.s�2/Ls. Hence, by
Corollary 14.4 with p D 0,

jfn.t/ � gm.t/j � 4s2s 83.s�2/Ls
jtjs
mŠ

� 4

86
s2s

.m=e/m
83s Lsjtjs � 4

86
s2s

.s=2/s=2
es 83s Lsjtjs < 1

2
.158 s/3s=2 Lsjtjs:

This implies (18.1), since e�t2=8 � e�1=8.
The first assertion (18.1) is thus proved, and we now extend this inequality to

the case of derivatives, although with a different dependence of the constants in
s indicated in (18.2). We distinguish between several cases in analogy with the
previous steps.

Case 1b. By Proposition 13.2, in the interval Is,

jf .p/n .t/ � g.p/m .t/j � 6 � 8sLs max
˚jtjs�p; jtj3.s�2/Cp

�
e�t2=2:

If jtj � 1, the above maximum is equal to jtjs�p, and we are done.
If jtj � 1, the above maximum is equal to jtj3.s�2/Cp. Using once more (17.3) with
x D 3t2=8, we have

jtj3.s�2/Cp e�3t2=8 D
�8x

3

� 3.s�2/Cp
2

e�x �
�4 .3.s � 2/C p/

3e

� 3.s�2/Cp
2

< .2s/2s;

so

jtj3.s�2/ e�t2=8 D jtj3.s�2/ e�3t2=8 e�t2=8 < .2s/2s e�t2=8:

Since also 6 � 8s � 42s, we conclude that

jf .p/n .t/ � g.p/m .t/j � .8s/2sLs minf1; jtjs�pg e�t2=8; t 2 Is;

which implies the required inequality (18.2) with C D 8.



354 S.G. Bobkov

Case 2b. Large region I0
s with 1 � jtj � 1

L3
. Let us involve Proposition 16.1.

Using pŠ � ss and maxfLp� ; 1g � maxfLs; 1g, the bound (16.1) of this proposition
readily implies

jf .p/n .t/j � .2:03 s/s maxfLs; 1g jtjs e�t2=6; 1 � jtj � 1

L3
:

Thus, we need to derive an estimate of the form

.2:03 s/s maxfLs; 1g jtjs e�t2=24 � CsLs:

If Ls � 8�3.s�2/, the latter inequality holds with

Cs D .2:03 s/s 83.s�2/ max
t

jtjs e�t2=24 D .2:03 s/s 83.s�2/
�12s

e

�s=2
< .13s/3s:

If Ls � 8�3.s�2/, then necessarily jtj � 1
8

L
� 1
3.s�2/

s , i.e., 1
Ls

� .8t/3.s�2/. Hence,

1

Ls
.2:03 s/s jtjs e�t2=24 � .8t/3.s�2/ .2:03 s/s jtjs e�t2=24

D 8�6 .83 � 2:03 s/s .24y/2s e�y

� 8�6 .83 � 2:03 s/s
�48 s

e

�2s
< 8�6 693s:

As a result, we arrive at the upper bound

jf .p/n .t/j � .69 s/3s Ls minf1; jtjsg e�t2=8:

As we know, a better bound holds for the function gm.it/ D e�t2=2CPm.it/e�t2=2.
By Proposition 17.1, whenever jtj � 1,

jg.p/m .t/j � .573 s/2s Ls e�t2=8 � .69 s/3s Ls minf1; jtjsg e�t2=8;

implying

jf .p/n .t/ � g.p/m .t/j � .1C 8�6/ .69 s/3s Ls minf1; jtjsg e�t2=8:

Since s > 3, the constant in front of Ls is smaller than 703s.
Case 3b. The region I0

s with jtj � minf1; 1L3 g. Necessarily Ls � 8�3.s�2/, so

maxfLs; 1g � 83.s�2/Ls. Hence, by Corollary 14.4, for all p � Œs�,

jf .p/n .t/ � g.p/m .t/j � 4s2s 83.s�2/Ls jtjs�p
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� 4

86
s2s 83s Lsjtjs�p � .8s/3s Lsjtjs�p:

Clearly, this bound is better than what was obtained on the previous step. ut
Finally, let us include an analog of Theorem 18.1 for the case 2 < s < 3.

The following statement can be proved with similar arguments on the basis of
Propositions 9.1 and 16.2.

Theorem 18.2 Let Ls < 1 for 2 < s < 3. In the interval jtj � .6Ls/
� 1

s�2 , we have

ˇ
ˇ
ˇ

dp

dtp

�
fn.t/ � e�t2=2

�ˇˇ
ˇ � CLs min

˚
1; jtjs�p

�
e�t2=8; p D 0; 1; 2;

where C is an absolute constant.

Remarks In the literature, inequalities similar to (18.1)–(18.2) can be found
for integer values s D m C 1 � 3, often for identically distributed summands
Xk D �k=

p
n, only, when Ls D ˇs n�.n�2/=2, ˇs D E j�1js. In the book by Petrov

[P2], (18.2) is proved without the derivative of the maximal order p D m C 1 and
with an indefinite constant Cs (cf. Lemma 4, p. 140, which is attributed to Osipov
[O]). Bikjalis derived a more precise statement (cf. [Bi3]). In case p D 0, he proved

that, in the interval jtj � 1
10
ˇ

� 1
s�2

s
p

n,

ˇ
ˇfn.t/ � gm.t/

ˇ
ˇ � 2s�1

0:99s
ˇs n� s�2

2 jtjs e�t2=4; (18.3)

while for p D 1; : : : ; s, jtj � 1
16e ˇ

� 1
s�2

s
p

n, we have

ˇ
ˇ
ˇ

dp

dtp
.fn.t/ � gm.t//

ˇ
ˇ
ˇ � pŠ2 64sCp�2

s � 2 ˇs n� s�2
2 jtjs�p e�t2=6: (18.4)

It is interesting that the right-hand side in (18.3) provides a sharper growth of the
constant in s in comparison with (18.1). Similarly, for the critical value p D s, the
right-hand side in (18.4) may be replaced with .Cs/2s Ls minf1; jtjsg e�t2=8 which
also gives some improvement over (18.2). On the other hand, inequalities (18.1)–
(18.2) are applicable in the non-i.i.d. situation and for real values of s.

In the general non-i.i.d. case, some similar versions of (18.1) were studied in
[Bi1, Bi2]. A variant of (18.2) can be found in the book by Bhattacharya and Ranga
Rao [B-RR], who considered multidimensional summands. Their Theorem 9.9

covers the interval jtj � c L
� 1

s�2
s , although it does not specify constants as functions

of s. Note that the interval jtj � 1=L3 as in Theorem 18.1 is longest possible (up to
a universal factor), but we leave open the question on the worst growth rates of the
s-dependent constants in such inequalities.
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[St2] Statulevičius, V. A. Limit theorems for densities and the asymptotic expansions for
distributions of sums of independent random variables. (Russian) Teor. Verojatnost. i
Primenen. 10 (1965), 645–659.

[U] Ushakov N. G. Selected topics in characteristic functions. Utrecht: VSP, 1999.
[Z1] Zolotarev, V. M. On the closeness of the distributions of two sums of independent random

variables. (Russian) Teor. Verojatnost. i Primenen. 10 (1965), 519–526.
[Z2] Zolotarev, V. M. Some inequalities from probability theory and their application to a

refinement of A. M. Ljapunov’s theorem. (Russian) Dokl. Akad. Nauk SSSR 177 (1967),
501–504.


	Asymptotic Expansions for Products of Characteristic Functions Under Moment Assumptions of Non-integer Orders
	1 Generalized Chain Rule Formula
	2 Logarithm of the Characteristic Functions
	3 Moments and Cumulants
	4 Bounds on the Derivatives of the Logarithm
	5 Taylor Expansion for Fourier-Stieltjes Transforms
	6 Taylor Expansion for Logarithm of Characteristic Functions
	7 Properties of Lyapunov Coefficients
	8 Logarithm of the Product of Characteristic Functions
	9 The Case 2 < s ≤3
	10 Polynomials Pm in the Normal Approximation
	11 Cumulant Polynomials Qm
	12 Relations Between Pm and Qm
	13 Corrected Normal Approximation on Moderate Intervals
	14 Signed Measures μm Associated with gm
	15 Upper Bounds for Characteristic Functions fn
	16 Bounds on the Derivatives of Characteristic Functions
	17 Upper Bounds for Approximating Functions gm(t)
	18 Approximation of fn and Its Derivatives on Long Intervals
	References


