3anuCKU HAyTHBIX
cemuaapos [IOMU
Towm 457, 2017 r.

S. G. Bobkov, G. P. Chistyakov, F. Gotze

GAUSSIAN MIXTURES AND NORMAL
APPROXIMATION FOR V. N. SUDAKOV’S TYPICAL
DISTRIBUTIONS

ABSTRACT. We derive a general upper bound on the distance of
the standard normal law to typical distributions in V. N. Sudakov’s
theorem (in terms of the weighted total variation).

Dedicated to the memory of Vladimir Nikolayevich Sudakov

§1. INTRODUCTION

Let X = (Xy,...,X,) be a random vector in R" with finite second
moment, and let

§" ={0=(6r,....60) €R": 67 +--- 6, = 1}

denote the unit sphere which we equip with the uniform probability mea-
sure o, _1.

In general, the distribution functions Fy(z) = P{Sy < z} (x € R) of
linear forms

Syg =601 X1+ +6,X,, fesSnt

essentially depend on the parameter 6. Nevertheless, according to the cel-
ebrated result by Sudakov of 1978 [20], if n is large, and if the covariance
matrix of X has a bounded spectral radius, then Fjy’s concentrate around a,
certain typical distribution function F' (for most of 4 in the sense of 6,,—1).
The latter function may actually be defined explicitly as the mean

F(z) = / Fy(x) don_1(6). (1.1)

Sn—1
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This remarkable observation, to which Sudakov returned several times
later on (cf. e.g. [19,21]), has become a starting point for subsequent in-
vestigations by many researchers. And indeed, his theorem has a rather
universal range of applicability in contrast with the classical scheme of
summation of independent random variables. The problem of concentra-
tion of Fy has various interesting aspects, and we do not discuss it here. Let
us only mention the papers by Nagaev [17] and von Weizsécker [22] who
considered summation and averaging with coefficients over the rescaled
Gaussian measure (instead of 0,1 ). The paper [3] dealt with coefficients of
the form 6), = +1/1/n and averaging with respect to the rescaled Bernoulli
measure; some other related models were studied in [4,6,7]. For the problem
of rates of approximation, and results in the case where the distribution
of X has convexity properties, see also [1,2,5,8,9,11-14,16,18].

It was already emphasized in [20] that the typical distribution F in (1.1)
may be approximated by a mixture of centered Gaussian measures on the
line. Indeed, the rotational invariance of the measure o,,_; implies that

F(z) = P{pZn <2},
where o =
p= T - T2 (>0,
and where the random variable Z,, is independent of p and has the same
distribution as y/n#; under o,_;. Since Z,, is nearly standard normal, F’
is therefore close to the distribution of pZ with Z ~ N(0,1) independent
of p.

In particular, F' itself is approximately normal, if and only if p is almost
a constant, which means a kind of the law of large numbers for the sequence
X?. This property — that the distribution of p is concentrated around a
point (in a weak sense) is of course true in case of independent compo-
nents X;’s (under a mild moment assumption), but it continues to hold
in many other situations allowing dependence between Xj. To quantify
the assertion about the closeness of F' to the standard normal distribution
function

T
1
P(x) = N / e V/2 dy, reR,

we derive a simple general bound in terms of the variance of p. Note that
the second moment of F is equal to Ep?, so a normalization condition on
this moment is desirable.
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Theorem 1.1. Suppose that Ep? = 1. With some absolute constant ¢ > 0,
we have for alln > 1,

oo

/(1 +2?) |F — ®|(de) < ¢ (% —l—Var(p)). (1.2)

— 00

Here the positive measure |F' — ®| denotes the variation in the sense of
measure theory, and the left integral represents the weighted total variation
of F—®. In particular, we have a similar bound on the usual total variation
distance between F' and ®.

In applications, it might be more convenient to use an elementary bound
Var(p) < Var(p?), cf. (3.2) below, in order to further estimate the right-
hand side of (1.2). For example, if the random variables X} are pairwise
independent and have bounded 4-th moments EX}, then Var(p?) is of or-
der 1/n, so that (1.2) yields a L-rate of normal approximation for the total
variation and thus for the Kolmogorov distance A = sup, |F(z) — ®(x)]
as well. Another wide class of probability distributions with this property
(for X) is described by those that satisfy a Poincaré-type inequality

A Var(u(X)) < E|Vu(X)[?,

where a positive constant A\; = Ay (X)) serves for all bounded smooth func-
tions u on R™. The appearance of the weight 1 + z2 on the left of (1.2)
allows one to make a similar conclusion about the LP-distances between
the distribution functions F' and ®.

§2. MIXTURES OF CENTERED GAUSSIAN MEASURES

As a first natural step towards the proof of Theorem 1.1, let us consider
the normal approximation for general mixtures of normal distributions.
Denote by ®, the distribution function of the random variable Z(p) = pZ,
where Z ~ N(0, 1) is independent of a random variable p > 0. That is,

B,(r) = P{pZ <2} =Ed(v/p), =z €R.

We start with estimation of the weighted total variation distance between
the distributions ®, and @.

Proposition 2.1. If E p? = 1, then

o

[ a) 2, - aldn) < eVario), (2.1)

— 00
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where ¢ is an absolute constant.

Proof. When p =t is a positive constant, ®; represents the normal dis-
tribution function with mean zero and standard deviation ¢ > 0, thus with
density
1
th(x) = ; gO(:L‘/t), reR,

where ¢(z) = \/% e~/

For a fixed number z, let us expand the function u(t) = ¢ (z) according
to the Taylor formula up to the quadratic term at the point tg = 1. We
have u(to) = p(z),

u'(t) = (T — ) e(e/t),  u(t) = (¥ — 1) p(x),

is the standard normal density.

and
u”(t) = (t7 Tzt — 5t + 267 (x/t) =t (x/t),

where 1(z) = (2* — 522 + 2) ¢(z). Therefore, using the integral Taylor
formula

u(t) = u(to) +u'(to)(t —to) + (t —ty)? /u”((l —38)+st)(1—s)ds, (2.2)

we get

pi(z) —p(z) = (t = 1) (2* = 1) p()

1
-3 T
+ t*12\/ 1*5 +St ¢<m)(1*8)d8
0

We apply this representation with ¢t = £(w), where £ is a positive random
variable (on some probability space). Thus, ®¢ has density ¢ = E @¢(y)
representable as

pe(z) = p(z) = (2° = 1) p(x) E(E - 1)

20/ (1=s)+sE) 1/;((1_:W)(175)ds.

Putting
Re(z) = pe(o) — p(z) — (2* = 1) p(z) E(£ - 1),
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we then get, by Fubini’s theorem,

/|Rg<x>|dw
<E_Z 20/1 1—s)+sf) ‘¢<m)‘(l—s)dsda:
1
= > [ (11— € (1-s)d
=cE 0/ s + s s)ds

with o = [ [¢(2)| dz. In particular, if £ > %, the latter integral does not
—00

1
exceed [ (ll_%)gds =4log2— 2 < 1, so that
0 2

/ Re(2)|do < co B (€ — 1)2,

which implies that with some 0] < 1

/m Idw—lEﬁ—ll/lw 1] () de + be B (€ — 1)°.

o0
Analogously, the integral [ 22 |R¢(z)|dz may be bounded from above
by

E/(571)2 ((175)+s£)73x2‘¢<m)‘(l—s)dsda:

o—_ _

=aB(E-1)
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o
where ¢; = 1 f z? [¢p(z)| dz. In particular, now without any constraint
on ¢,
[ a*1veto) - <>|dx—|Esfl|/ ~ 1w dr + ey B (€~ 1)
— o0

The two representations can now be combined to

o

/(1+z2>|¢g<z) (@) dr = alBE— 1]+ 6bE (€ — 1),
where
a= [@ra e - tlp@ds, b= [ (1+50) 0] ds

and |0 < 1. Let us derive numerical bounds on these absolute constants. If
Z ~ N(0,1), then using (1+22) |22 1| < 1+2*, wehavea < 1+EZ* = 4.
Since furthermore |1 (z)| < (z* + 522 + 2)¢(z), we also have

1
ng(Z4+5Z2+2)+5E(ZG+5Z4+2Z2):26,

Thus,

o0

/(1+$2)|<pg(w) (@) de = 460 B — 1|+ 260, B(E—1)°  (2.3)

—0o0

with some |6;| < 1, provided that & > 1/2.

Now, consider the general case assuming without loss of generality that
p > 0. Introduce the events 4y = {p < 1/2}, A1 = {p > 1/2}, and put
ap = P(Ap), a1 = P(A1), assuming again without loss of generality that
ag > 0. Next we split the distribution @ of p into the two components
supported on (0,1/2) and [1/2,00) and denote by pg and p; some random
variables distributed respectively as the normalized restrictions of @ to
these regions, so that pg < 1/2 and p; > 1/2. We thus represent the
density of ®, as the convex mixture of two densities

Pp = QoPpy + A1Pp (2-4)
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where
1 1
©po(T) = o Ep(z/p) 1pca0) ©py (T) = o Eop(z/p) 1pca,)-

Note that, since E p? = 1, we necessarily have Ep < 1. On the other
hand,
Var(p) =1—(Ep)® = (1 -Ep)(1+Ep) >1-Ep.
Hence |E p — 1] < Var(p), and as a consequence,
E(p—1)? =2(1 - Ep) < 2Var(p). (2.5)

In particular, since p < 1/2 implies (p—1)2 > 1/4, we have, by Chebyshev’s
inequality,

apg =P{p < 1/2} < 8Var(p). (2.6)
Now, by the previous step (2.3) with & = pq,
(oo}
/(1 1+ 22) [op, (&) — p(a)| de = 400 |Ep1 — 1] + 266, E (p1 — 1), (2.7)
On the other hand,
2 5 _ 9
[+ on@dn =14E5 < 3,
—0o0
so that -
, 13
(1 +27%) |po (2) = p(2)] do < -
—0o0

From (2.4), (2.6) and (2.7), we now get that

/<1+z2)|¢p<x> — o)l dz < 26 Var(p) +4[E p; — 1|+ 26E (pr — 1)7.
(2.8)
It remains to estimate the last two expectations. First suppose that
Var(p) < 1/16, so that, by (2.6), ap < % and a; > % By definition,
1 1
Epi=—-Eplpeay =~ (Bp—Eplyean),

hence 1
Epi—1= - (B(p~1)~E(p~1)lgeay).
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By Cauchy’s inequality and applying (2.5) and (2.6),

[E(p— 1) 1peany| SElp—11{pea,

< (E(p- 12" a/* < 4Var(p). 29
Hence
Ep —1] < ai (IEp=11+E(p—1)Tjeanl) < 10Var(p). (210)
Similarly,

1 1
2 2 2
Epi = ~EBp’ Lypeay = o (1-Ep*1ea0),

so, using p < 1/2 on Ay and applying (2.9), we have
2 1 2 1
E,01 -1= Oé_lE(l_p )1{p€A0} = a_lE(l_p)(1+p)1{p€A0}

3 3
< 20, E1-pl1{pea,y < 20, 4 Var(p) < 12 Var(p).

Writing E (p1 — 1)2 = (Ep? — 1) — 2E (p; — 1) and applying (2.10), these
estimates yield

E (p1 — 1)? < 12Var(p) + 20 Var(p) = 32 Var(p).

It remains to use this bound together with (2.10) in (2.8) in order to arrive
at the desired estimate (2.1), i.e.,
[ @) oo ~ g@lde < eVax (o),
— 00
with the constant ¢ = 26 4+ 4 - 10 4 26 - 32 = 918.
Finally, in the case Var(p) > 1/16, one may just use
[a+a)len@) -~ plallde < [ (L4 )o@ da+ [ (1+)p() do

—00 —0Q0 —0Q0

=(1+E(pZ)*) + (1+EZ?) =4 < 64 Var(p).

Thus, Proposition 2.1 is proved. O
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§3. LOWER BOUND. REMARKS ON THE LP-DISTANCES

In some sense the bound of Proposition 2.1 is optimal with respect to
the variance of p. At least, this is the case when p is bounded, as the
following assertion shows (which is however not needed in the proof of
Theorem 1.1).

Proposition 3.1. If Ep? =1 and 0 < p < M a.s., then for the distribu-
tion function ®, of the random variable Z(p) = pZ, where Z ~ N(0,1) is
independent of p, we have

sup [, (z) — B(a)] > 375 Var(p), (3.1)

where ¢ > 0 is an absolute constant.

Note that the left-hand side is dominated by the total variation ||®, —
®||pv, while Var(p?) > Var(p). The latter bound follows from the assump-
tion p > O:

Var(p®) = E (p = 1)*(p +1)* > E (p — 1)* > Var(p). (3.2)

Proof. One may apply the following general lower bound on the Kol-
mogorov distance

A= sgp |Fi(z) — Fo(z)|

between the distribution functions F; and F5. Namely,
1 2/
Az —=| [ (i) — ) e at),

where f; and f> denote the characteristic functions of F; and F5 respec-
tively (cf. [10,15]). We apply it with F; = ®, and F» = ®, in which case,
by Jensen’s inequality,

f1 (t) _ E6702t2/2 > 67t2/2 — f2(t).

Thus we get
]. 7 2,2 2 2
sup |®,(z) — ®(x > Ee P t/2 o t7/2) = t°/2 g4
o (2,0 - 2@)] > 5= [ )
—o00
1 1 1
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We now expand the function u(t) = (1 + ¢)~'/? near the point t; = 1
according to the integral Taylor formula (2.2) up to the quadratic term.
Since u”(t) = 2 (14 ¢)75/2, this gives

1
) 3 . —5/2
Eu(p)fu(l)zz (p*> —1) / ((1—1s) +sp)) (1—s)ds
0
3 1 —5/2
ZVar / ((1—ys) +5M2)) (1—s)ds
0
3

= Var(p?) (1 + M?)~°/2,

where we used M > 1 in the last step. It remains to apply (3.3) to arrive
at (3.1) with ¢ = 2. O

Proposition 2.1 may be used to obtain the (apriori weaker) non-uniform
bound

sup (1+22)|®,(z) — ®(x)|| < cVar(p). (3.4)

The appearance of the weight 1 4 22 on the left is important in order
to control the LP-distances between ®, and ®. Indeed, under the same
assumptions as in Proposition 2.1, from (3.4) we immediately obtain:

Corollary 3.1. For any p > 1,

( / B (a >|pdz)1/p < eVar(p),

where ¢ s an absolute constant.

In particular,

[ @) - @) do < & (Var(p))”
— 00
In fact, here the integral on the left-hand side may easily be evaluated

explicitly in terms of p. Indeed, let p’ be an independent copy of p in order
to represent the square of the characteristic function of ®, as

|Eezth|2 |E —p2t2/2|2 Ee_(p2+p/2)t2/2.
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Hence, applying Plancherel’s theorem, we get

w 1 e EeitrZ _ —t2/2 |2
/ (®,(z) — ®(2))* do = > / ‘ N N1
s t

1 T Be(0P+0) /2 _ 9 o (0*+1) /2 +et?
_ L / = dt.

One can now apply an elementary identity

ot 4?
/%dt:m/ﬂk\/a), a>0.

—00

Indeed, the function

(o]
is smooth on (0, 0) and has derivative ¢'(a) = — [ e’ gt = —L /7.

Since furthermore (1) = 0, we get the desired assertion after integration.
Hence

/(<I>,,(a:)—<1>(a;))2dx:%ll_QE\/p2;1+E\/p2;p,2

As a result, Corollary 3.2 can be restated as follows.

Corollary 3.2. Let p > 0 be a random variable such that Ep? = 1, and
let p’ be an independent copy of p. Then

2 1 2 /2
[IQE\//}; +E\/” J;”

where ¢ s an absolute constant.

< e(Var(p)*,

It is unclear how to obtain such an estimate by a different argument
(which would not be based on Proposition 2.1).
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§4. DISTRIBUTION OF THE FIRST COORDINATE ON THE SPHERE

It remains to add the final steps in the proof of Theorem 1.1. Note that
with respect to the normalized Lebesgue measure o,,—; on the unit sphere
S"~1 (n > 2), the first coordinate 6, of a point € is a random variable with
density

n=3 rz
Cn(17x2)+237 r € R, cn:¢

VAT
where ¢, is a normalizing constant. For example, when n = 3, this is the
uniform distribution on the interval [—1,1].
Let us denote by ¢, the density of the normalized first coordinate Z,, =
\/n6; under the measure o,,_1, i.e.,

i\ "5 c r(%)
— (1 _) A RN VA
e = (1-)." 0 =5 = v
The first values of these constants are ¢}, = %\/E =0.225...,c = 21% =
0.289...,c,=2=0318...,d = 43% =0.335... Clearly, as n — oo

1 2 1
= —z7/2 S =0.399...
on(r) — () N ; 7 Jom

and one can show that ¢, < \/% for all n > 2.

We are interested in non-uniform deviation bounds for ¢, (z) from ¢(z).
First let us consider the asymptotic behaviour of the functions

2

n—3
pn(z):<1—%)2, z € R.
+

Clearly, p,(z) — p(z) = e=*"/2 for all z. These functions admit a uniform
Gaussian bound, since for |z| < v/n and n > 4,

172

n 3 2 2
—logpy(z) = ——— log (1— 7) >

n—3x T
> .
2 n 8

That is, we have:
Lemma 4.1. If n > 4, then p,(z) < e %/8 for all z € R.

We also have p3(z) = 1 in |z| < /3, while ps(z) is unbounded.
To study the rate of convergence of p,(z), let us derive:
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Lemma 4.2. In the interval |z| < %\/ﬁ, n >4,
0.3

n

2

|pn(z) — 67I2/2| < (32% + z*) e @ /2,
€

Proof. By Taylor’s expansion, with some 0 < e < 1

n—3 x>
—logpa(z) = —— log(l—g>

- RIS

_ n—3(a:_2+w_6)

=~
[|
N

2 n  n?
x? 33:2+n—3 i a:2+a:2( 3+n—3 25)
el _— — €T = - — x
2 2n 2n?2 2 2n ’
where we assume that |z| < $1/n and n > 4. That is,
2
pn(z) =p(z)e™® with § = ;— 34 3525).
n
Since
5> 3z? 3 3
L 8n = 32’
we have

le™® — 1] < |6]€*/%2 < 1.114].
On the other hand,

x? n—3 xt 322
o< (- < i<
2n 3+ v 2n 2n
which yields
32zt 0.55
1110 <11 (== + =) = == (322 +z%). O
4] ( 2n Qn) (327 +27)

Combining Lemma 4.2 with Lemma 4.1, we also get a non-uniform linear
bound (with respect to 1/n) on the whole real line, namely
c
pn(z) —e @2 < Ze @16 zeR, n>4,
n
where C' is an absolute constant. Let us integrate this inequality over x.

Since
o0

[ p@rae =7,

/
cn

e~ /2 dp = V2w,

é\g

— 00
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we get that |4 — /27| < £ with some absolute constant C. Using Lemmas
4.1-4.2, we then arrive at a similar conclusion about the densities On-
Proposition 4.1. If n > 4, then for all x € R, with some universal
constant C
C _ =

|on(2) — (@) < —e7* /e, (4.1)
Proof of Theorem 1.1. Assuming (without loss of generality) that n >
4, let ®,, and ¢, denote respectively the distribution function and density
of Z, = 014/n, where 0 is the first coordinate of a random point uniformly
distributed in the unit sphere S"~. If p> = £ |X|? is independent of Z,
(p = 0), then, by the definition of the typical distribution,

F(z) = P{pZ, <z} = E®n(z/p), reR,

so that
[ e P - adn)| = [ (14 [BOalds/p) - Bb(do/p)].

(4.2)
But, for any fixed value of p,

o0

[ @) @atdofp) ~ ads/pl(dn) = [ 1+ %) 8 (dn) - 2],

—00

so that, by (4.2), taking the expectation with respect to p and using
Jensen’s inequality, we get

[ asa) P - aydn)| < B [ (1427 8 (da/p) - B(da/p)]
= E/(1+p2x2)|<1>n(da:)f<1>(da:)|

/ (1+ 22) |, (dx) — B(dz)].

— 00
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It remains to apply (4.1), which yields

oo

(o]
C
[+ o) - a@) = [ @ +a) ule) - pla)ldo < -
with some universal constant C'. O

10.

11.

12.

13.

14.
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