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Abstract

For regularized distributions we establish stability of the characterization of the normal law in Cramer’s
theorem with respect to the total variation norm and the entropic distance. As part of the argument, Sapogov-
type theorems are refined for random variables with finite second moment.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Let X and Y be independent random variables. A theorem of Cramer [8] indicates that, if
the sum X + Y has a normal distribution, then both X and Y are normal. P. Lévy established
stability of this characterization property with respect to the Lévy distance, which is formulated
as follows. Given ε > 0 and distribution functions F,G,

L(F ∗ G,Φ) < ε ⇒ L(F,Φa1,σ1) < δε, L(G,Φa2,σ2) < δε,

∗ Corresponding author.
E-mail addresses: bobkov@math.umn.edu (S.G. Bobkov), chistyak@math.uni-bielefeld.de (G.P. Chistyakov),

goetze@math.uni-bielefeld.de (F. Götze).

http://dx.doi.org/10.1016/j.spa.2016.04.010
0304-4149/ c⃝ 2016 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.spa.2016.04.010&domain=pdf
http://www.elsevier.com/locate/spa
http://dx.doi.org/10.1016/j.spa.2016.04.010
http://www.elsevier.com/locate/spa
mailto:bobkov@math.umn.edu
mailto:chistyak@math.uni-bielefeld.de
mailto:goetze@math.uni-bielefeld.de
http://dx.doi.org/10.1016/j.spa.2016.04.010


3866 S.G. Bobkov et al. / Stochastic Processes and their Applications 126 (2016) 3865–3887

for some a1, a2 ∈ R and σ1, σ2 > 0, where δε only depends on ε, and in such a way that δε → 0
as ε → 0. Here Φa,σ stands for the distribution function of the normal law N (a, σ 2) with mean
a and standard deviation σ , i.e., with density

ϕa,σ (x) =
1

σ
√

2π
e−(x−a)2/2σ 2

, x ∈ R,

and we omit indices in the standard case a = 0, σ = 1. As usual, F ∗ G denotes the convolution
of the corresponding distributions.

The problem of quantitative versions of this stability property of the normal law has been
intensively studied in many papers, starting with results by Sapogov [18,19] and ending with
results by Chistyakov and Golinskii [7], who found the correct asymptotic of the best possible
error function ε → δε for the Lévy distance. See also [13–16,6,21–24].

As for stronger metrics, not much is known up to now. According to McKean ([17], cf. also [5]
for some related aspects of the problem), it was Kac who raised the question about the stability
in Cramer’s theorem with respect to the entropic distance to normality. Let us recall that, if a
random variable X with finite second moment has a density p(x), its entropy

h(X) = −


∞

−∞

p(x) log p(x) dx

is well-defined and is bounded from above by the entropy of the normal random variable Z ,
having the same variance σ 2

= Var(Z) = Var(X). The entropic distance to the normal is given
by the formula

D(X) = h(Z)− h(X) =


∞

−∞

p(x) log
p(x)

ϕa,σ (x)
dx,

where in the last formula it is assumed that a = EZ = EX . It represents the Kullback–Leibler
distance from the distribution F of X to the family of all normal laws on the line.

In general, 0 ≤ D(X) ≤ ∞, and an infinite value is possible. This quantity is affine invariant,
and so it does not depend on the mean and variance of X . It is stronger than the total variation
distance ∥F − Φa,σ∥TV, as may be seen from the Pinsker inequality

D(X) ≥
1
2

∥F − Φa,σ∥
2
TV.

Thus, Kac’s question is whether one can bound the entropic distance D(X + Y ) from below
in terms of D(X) and D(Y ) for independent random variables, i.e., to have an inequality

D(X + Y ) ≥ α(D(X), D(Y ))

with some non-negative function α, such that α(t, s) > 0 for t, s > 0. If so, Cramer’s theorem
would be an immediate consequence of this. Note that the reverse inequality does exist, and in
case Var(X + Y ) = 1 we have

D(X + Y ) ≤ Var(X)D(X)+ Var(Y )D(Y ),

which is due to the general entropy power inequality, cf. [9].
It turned out that Kac’s question has a negative solution. More precisely, for any ε > 0,

one can construct independent random variables X and Y with absolutely continuous symmetric
distributions F,G, and with Var(X) = Var(Y ) = 1, such that
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(a) D(X + Y ) < ε;
(b) ∥F − Φa,σ∥TV > c and ∥G − Φa,σ∥TV > c, for all a ∈ R and σ > 0,

where c > 0 is an absolute constant, see [1]. In particular, D(X) and D(Y ) are bounded away
from zero. Moreover, refined analytic tools show that the random variables may be chosen to be
identically distributed, i.e., (a)–(b) hold with F = G, see [2].

Nevertheless, Kac’s problem remains to be of interest for subclasses of probability measures
obtained by convolution with a “smooth” distribution. The main purpose of this note is to give an
affirmative solution to the problem in the (rather typical) situation, when independent Gaussian
noise is added to the given random variables. That is, for a small parameter σ > 0, we consider
the regularized random variables Xσ = X + σ Z1, Yσ = Y + σ Z2, where Z1 and Z2 denote
independent standard normal random variables, which are independent of X, Y . Note that the
functionals D(Xσ ), D(Yσ ), D(Xσ+Yσ ) are still translation invariant. As a main result, we prove:

Theorem 1.1. Let X, Y be independent random variables with Var(X + Y ) = 1. Given 0 < σ ≤

1, the regularized random variables Xσ and Yσ satisfy

D(Xσ + Yσ ) ≥ exp

−

c log7(2 + 1/D)

D2


,

where c > 0 is an absolute constant, and

D = σ 2 
Var(Xσ ) D(Xσ )+ Var(Yσ ) D(Yσ )


.

Thus, if D(Xσ + Yσ ) is small, the entropic distances D(Xσ ) and D(Yσ ) have to be small,
as well. In particular, Cramer’s theorem is a consequence of this statement. However, it is not
clear whether the above lower bound is optimal with respect to the couple (D(Xσ ), D(Yσ )),
and perhaps the logarithmic term in the exponent may be removed. As we will see, a certain
improvement of the bound can be achieved, when X and Y have equal variances.

Beyond the realm of results around P. Lévy’s theorem, recently there has been renewed interest
in other related stability problems in different areas of Analysis and Geometry. One can mention,
for example, the problems of sharpness of the Brunn–Minkowski and Sobolev-type inequalities
(cf. [10,11,20,4]).

We start with the description and refinement of Sapogov-type theorems about the normal
approximation in Kolmogorov distance (Sections 2 and 3) and then turn to analogous results for
the Lévy distance (Section 4). A version of Theorem 1.1 for the total variation distance is given
in Section 5. Sections 6 and 7 deal with the problem of bounding the tail function EX2 1{|X |≥T }

in terms of the entropic distances D(X) and D(X + Y ), which is an essential part of Kac’s
problem. A first application, namely, to a variant of Chistyakov–Golinskii’s theorem, is discussed
in Section 8. In Section 9, we develop several estimates connecting the entropic distance D(X)
and the uniform deviation of the density p from the corresponding normal density. In Section 10
an improved variant of Theorem 1.1 is derived in the case, where X and Y have equal variances.
The general case is treated in Section 11. Finally, some relations between different distances in
the space of probability distributions on the line are postponed to Appendix (without proofs), and
we refer to the extended version [3] for more details.

2. Sapogov-type theorems for Kolmogorov distance

Throughout the paper we consider the following classical metrics in the space of probability
distributions on the real line:
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(1) The Kolmogorov or L∞-distance ∥F − G∥ = supx |F(x)− G(x)|;
(2) The Lévy distance

L(F,G) = min

h ≥ 0 : G(x − h)− h ≤ F(x) ≤ G(x + h)+ h, ∀x ∈ R


;

(3) The Kantorovich or L1-distance W1(F,G) =


∞

−∞
|F(x)− G(x)| dx;

(4) The total variation distance

∥F − G∥TV = sup


|(F(xk)− G(xk))− (F(yk)− G(yk))|,

where the sup is taken over all finite collections of points y1 < x1 < · · · < yn < xn .

In these relations, F and G are arbitrary distribution functions. Note that the quantity
W1(F,G) is finite, as long as both F and G have a finite first absolute moment.

In the sequel, Φa,v or N (a, v2) denote the normal distribution (function) with parameters
(a, v2), a ∈ Rv > 0. If a = 0, we write Φv , and write Φ in the standard case a = 0, v = 1.

Now, let X and Y be independent random variables with distribution functions F and G. Then
the convolution F ∗ G represents the distribution of the sum X + Y . If both random variables
have mean zero and unit variances, Sapogov’s main stability result reads as follows:

Theorem 2.1. Let EX = EY = 0 and Var(X) = Var(Y ) = 1. If ∥F ∗ G − Φ ∗ Φ∥ ≤ ε < 1,
then with some absolute constant C

∥F − Φ∥ ≤
C
log 1

ε

and ∥G − Φ∥ ≤
C
log 1

ε

.

In the general case (that is, when there are no finite moments), the conclusion is somewhat
weaker. Namely, with ε ∈ (0, 1), we associate

a1 =

 N

−N
x d F(x), σ 2

1 =

 N

−N
x2 d F(x)− a2

1 (σ1 ≥ 0),

and similarly (a2, σ
2
2 ) for the distribution function G, where N = N (ε) = 1 +


2 log(1/ε).

In the sequel, we also use the function m(σ, ε) = min{
1

√
σ
, log log ee

ε
}, σ > 0, 0 < ε ≤ 1.

Theorem 2.2. Assume ∥F ∗ G − Φ∥ ≤ ε < 1. If F has median zero, and σ1, σ2 > 0, then with
some absolute constant C

∥F − Φa1,σ1∥ ≤
C

σ1


log 1

ε

m(σ1, ε),

and similarly for G.

Originally, Sapogov derived a weaker bound in [18] with worse behavior with respect to both
σ1 and ε. In [19] he gave an improvement, ∥F −Φa1,σ1∥ ≤

C
σ 3

1

√
log(1/ε)

with a correct asymptotic

of the right-hand side with respect to ε, cf. also [15]. The correctness of the asymptotic with
respect to ε was studied in [16], cf. also [6]. In 1976 Senatov [21], using the ridge property of
characteristic functions, improved the factor σ 3

1 to σ 3/2
1 , i.e.,

∥F − Φa1,σ1∥ ≤
C

σ
3/2
1


log 1

ε

. (2.1)



S.G. Bobkov et al. / Stochastic Processes and their Applications 126 (2016) 3865–3887 3869

He also emphasized that the presence of σ1 in the bound is essential. A further improvement of
the power of σ1 is due to Shiganov [22,23]. Moreover, at the expense of an additional ε-dependent
factor, one can replace σ 3/2

1 with σ1. As shown in [7], see Remark on p. 2861,

∥F − Φa1,σ1∥ ≤
C log log ee

ε

σ1


log 1

ε

. (2.2)

Therefore, Theorem 2.2 is just the combination of the two results, (2.1) and (2.2).
Let us emphasize that all proofs of these theorems use the methods of the Complex Analysis.

Moreover, up to now there is no “Real Analysis” proof of the Cramér theorem and of its
extensions in the form of Sapogov-type results. This, however, does not concern the case of
identically distributed summands, cf. [2].

We will discuss the bounds in the Lévy distance in the next sections.
The assumption about the median in Theorem 2.2 may be weakened to the condition that the

medians of X and Y,m(X) and m(Y ), are bounded in absolute value by a constant. For example,
if EX = EY = 0 and Var(X + Y ) = 1, and if, for definiteness, Var(X) ≤ 1/2, then, by
Chebyshev’s inequality, |m(X)| ≤ 1, while |m(Y )| will be bounded by an absolute constant,
when ε is small enough, due to the main hypothesis ∥F ∗ G − Φ∥ ≤ ε.

Moreover, if the variances of X and Y are bounded away from zero, the statement of
Theorem 2.2 holds with a1 = 0, and the factor σ1 can be replaced with the standard deviation of
X . In the next section, we recall some standard arguments in order to justify this conclusion and
give a more general version of Theorem 2.2 involving variances:

Theorem 2.3. Let EX = EY = 0,Var(X + Y ) = 1. If ∥F ∗ G − Φ∥ ≤ ε < 1, then with some
absolute constant C

∥F − Φv1∥ ≤
Cm(v1, ε)

v1


log 1

ε

and ∥G − Φv2∥ ≤
Cm(v2, ε)

v2


log 1

ε

,

where v2
1 = Var(X), v2

2 = Var(Y ) (v1, v2 > 0).

Under the stated assumptions, Theorem 2.3 is stronger than Theorem 2.2, since v1 ≥ σ1.
Another advantage of this formulation is that v1 does not depend on ε, while σ1 does.

3. Proof of Theorem 2.3

Let X and Y be independent random variables with distribution functions F and G,
respectively, with EX = EY = 0 and Var(X + Y ) = 1. We assume that ∥F ∗ G − Φ∥ ≤ ε < 1,
and keep the same notations as in Section 2. Recall that N = N (ε) = 1 +


2 log(1/ε).

The proof of Theorem 2.3 is entirely based on Theorem 2.2. We will need:

Lemma 3.1. With some absolute constant C we have 0 ≤ 1 − (σ 2
1 + σ 2

2 ) ≤ C N 2√ε.

A similar assertion, |σ 2
1 + σ 2

2 − 1| ≤ C N 2ε, is known under the assumption that F has a
median at zero (without moment assumptions). For the proof of Lemma 3.1, we use arguments
from [18,21], cf. Lemma 1. It will be convenient to divide the proof into several steps.

Lemma 3.2. Let ε ≤ ε0 =
1
4 − Φ(−1) = 0.0913 . . . Then |m(X)| ≤ 2 and |m(Y )| ≤ 2.
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Indeed, let Var(X) ≤ 1/2. Then |m(X)| ≤ 1, by Chebyshev’s inequality. Hence,

1
4

≤ P{X ≤ 1, Y ≤ m(Y )} ≤ P{X + Y ≤ m(Y )+ 1} ≤ Φ(m(Y )+ 1)+ ε,

which for ε ≤
1
4 implies that m(Y ) + 1 ≥ Φ−1( 1

4 − ε). In particular, m(Y ) ≥ −2, if ε ≤ ε0.
Similarly, m(Y ) ≤ 2. �

To continue, introduce truncated random variables at level N . Put X∗
= X in case |X | ≤

N , X∗
= 0 in case |X | > N , and similarly Y ∗ for Y . Note that EX∗

= a1,Var(X∗) =

σ 2
1 ,EY ∗

= a2,Var(Y ∗) = σ 2
2 . By the construction, σ1 ≤ v1 and σ2 ≤ v2. In particular,

σ 2
1 + σ 2

2 ≤ v2
1 + v2

2 = 1. Let F∗,G∗ denote the distribution functions of X∗, Y ∗,
respectively.

Lemma 3.3. With some absolute constant C we have ∥F∗
− F∥ ≤ C

√
ε, ∥G∗

− G∥ ≤ C
√
ε,

∥F∗
∗ G∗

− Φ∥ ≤ C
√
ε.

Proof. One may assume that N = N (ε) is a point of continuity of both F and G.
Since the Kolmogorov distance is bounded by 1, one may also assume that ε is sufficiently
small, e.g., ε < min{ε0, ε1}, where ε1 = exp{−1/(3 − 2

√
2)}. In this case (N − 2)2 >

(N − 1)2/2, so

Φ(−(N − 2)) = 1 − Φ(N − 2) ≤
1
2

e−(N−2)2/2
≤

1
2

e−(N−1)2/4
=

√
ε

2
.

By Lemma 3.2 and the basic assumption on the convolution F ∗ G,

1
2

P{Y ≤ −N } ≤ P{X ≤ 2, Y ≤ −N }

≤ P{X + Y ≤ −(N − 2)} = (F ∗ G)(−(N − 2)) ≤ Φ(−(N − 2))+ ε.

So, G(−N ) ≤ 2Φ(−(N − 2)) + 2ε ≤ 3
√
ε. Analogously, 1 − G(N ) ≤ 3

√
ε. Thus,

{|x |≥N }
dG(x) ≤ 6

√
ε as well as


{|x |≥N }

d F(x) ≤ 6
√
ε.

In particular, for x < −N , we have |F∗(x) − F(x)| = F(x) ≤ 6
√
ε, and similarly for

x > N . If −N < x < 0, then F∗(x) = F(x) − F(−N ), and if 0 < x < N , we have
F∗(x) = F(x)+(1−F(N )). In both cases, |F∗(x)−F(x)| ≤ 6

√
ε. Therefore, ∥F∗

−F∥ ≤ 6
√
ε.

Similarly, ∥G∗
− G∥ ≤ 6

√
ε. From this, by the triangle inequality,

∥F∗
∗ G∗

− F ∗ G∥ ≤ ∥F∗
∗ G∗

− F∗
∗ G∥ + ∥F∗

∗ G − F ∗ G∥

≤ ∥F∗
− F∥ + ∥G∗

− G∥ ≤ 12
√
ε.

Finally, ∥F∗
∗ G∗

− Φ∥ ≤ ∥F∗
∗ G∗

− F ∗ G∥ + ∥F ∗ G − Φ∥ ≤ 12
√
ε + ε ≤ 13

√
ε. �

Proof of Lemma 3.1. Since |X∗
+ Y ∗

| ≤ 2N and a1 + a2 = E (X∗
+ Y ∗) =


x d F∗

∗ G∗(x),
we have, integrating by parts,

a1 + a2 =

 2N

−2N
x d((F∗

∗ G∗)(x)− Φ(x))

= x ((F∗
∗ G∗)(x)− Φ(x))

x=2N

x=−2N
−

 2N

−2N
((F∗

∗ G∗)(x)− Φ(x)) dx .
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Hence, |a1 +a2| ≤ 8N ∥F∗
∗ G∗

−Φ∥, which, by Lemma 3.3, is bounded by C N
√
ε. Similarly,

E (X∗
+ Y ∗)2 − 1 =

 2N

−2N
x2 d((F∗

∗ G∗)(x)− Φ(x))−


{|x |>2N }

x2 dΦ(x)

= x2 ((F∗
∗ G∗)(x)− Φ(x))

x=2N

x=−2N

− 2
 2N

−2N
x ((F∗

∗ G∗)(x)− Φ(x)) dx −


{|x |>2N }

x2 dΦ(x).

Hence,E (X∗
+ Y ∗)2 − 1

 ≤ 24 N 2
∥F∗

∗ G∗
− Φ∥ + 2


∞

2N
x2 dΦ(x).

The last integral asymptotically behaves like 2Nϕ(2N ) < Ne−2(N−1)2
= Nε4. Therefore,E (X∗

+ Y ∗)2 − 1
 is bounded by C N 2√ε. Finally, writing σ 2

1 +σ 2
2 = E (X∗

+Y ∗)2−(a1+a2)
2,

we get thatσ 2
1 + σ 2

2 − 1
 ≤

E (X∗
+ Y ∗)2 − 1

 + (a1 + a2)
2

≤ C N 2√ε

with some absolute constant C . Lemma 3.1 follows. �

Proof of Theorem 2.3. First note that, given a > 0, σ > 0, and x ∈ R, the function ψ(x) =

Φ0,σ (x)−Φa,σ (x) = Φ
 x
σ


−Φ

 x−a
σ


is vanishing at infinity, has a unique extreme point x0 =

a
2 ,

and ψ(x0) =
 a/2σ
−a/2σ ϕ(y) dy ≤

a
σ
√

2π
. Hence, including the case a ≤ 0, as well, we get

∥Φa,σ − Φ0,σ∥ ≤
|a|

σ
√

2π
.

We apply this estimate for a = a1 and σ = σ1. Since EX = 0 and Var(X + Y ) = 1, by
Cauchy’s and Chebyshev’s inequalities,

|a1| =
E X 1{|X |≥N }

 ≤ P{|X | ≥ N }
1/2

≤
1
N
<

1
log e

ε

.

Hence, ∥Φa1,σ1 − Φ0,σ1∥ ≤
|a1|

σ1
√

2π
≤

C

σ1


log 1

ε

. A similar inequality also holds for (a2, σ2).

Now, define the non-negative numbers u1 = v1 − σ1, u2 = v2 − σ2. By Lemma 3.1,

C N 2√ε ≥ 1 − (σ 2
1 + σ 2

2 ) = 1 −


(v1 − u1)

2
+ (v2 − u2)

2


= u1 (2v1 − u1)+ u2 (2v2 − u2) ≥ u1v1 + u2v2.

Hence, u1 ≤
C N 2√ε

v1
, u2 ≤

C N 2√ε

v2
. These relations can be used to estimate ∆ = ∥Φ0,v1 −Φ0,σ1∥.

Given two parameters α > β > 0, consider the function of the form ψ(x) = Φ(αx) − Φ(βx).
In case x > 0, by the mean value theorem, for some x0 ∈ (βx, αx),

ψ(x) = (α − β) xϕ(x0) < (α − β) xϕ(βx).
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Here, the right-hand side is maximized for x =
1
β

, which gives ψ(x) < 1
√

2πe
α−β
β
. A similar

bound also holds for x < 0. Using this bound with α = 1/σ1 (σ1 > 0), β = 1/v1, we obtain

∆ ≤
1

√
2πe

v1


1
σ1

−
1
v1


=

1
√

2πe

u1

σ1
≤

C N 2√ε

σ1v1
≤

C N 2√ε

σ 2
1

.

Thus, applying Theorem 2.2, we get with some universal constant C > 1 that

∥F − Φ0,v1∥ ≤ ∥F − Φa1,σ1∥ + ∥Φa1,σ1 − Φ0,σ1∥ + ∥Φ0,σ1 − Φ0,v1∥

≤
C

σ1


log 1

ε

m(σ1, ε)+
C

σ1


log 1

ε

+
C N 2√ε

σ 2
1

≤
2C

σ1


log 1

ε

m(σ1, ε)+
C N 2√ε

σ 2
1

. (3.1)

The obtained estimate remains valid when σ1 = 0, as well. On the other hand, σ1 = v1 − u1 ≥

v1−
C N 2√ε

v1
≥

1
2 v1 where the last inequality is fulfilled for the range v1 ≥ v(ε) =

√
C N (4ε)1/4.

Hence, from (3.1) and using m(σ1, ε) ≤ 2m(v1, ε), for this range

∥F − Φ0,v1∥ ≤
8Cm(v1, ε)

v1


log 1

ε

+
4C N 2√ε

v2
1

.

Here, since m(v1, ε) ≥ 1, the first term on the right-hand side majorizes the second one, if

v1 ≥ ṽ(ε) = N 2

ε log 1

ε
. Therefore, when v1 ≥ w(ε) = max{v(ε), ṽ(ε)}, with some absolute

constant C ′ we have

∥F − Φ0,v1∥ ≤
C ′m(v1, ε)

v1


log 1

ε

.

Thus, we arrive at the desired inequality for the range v1 ≥ w(ε). But the function w

behaves almost polynomially near zero and admits, for example, a bound of the form w(ε) ≤√
C ′′ ε1/6, 0 < ε < ε0, with some universal ε0 ∈ (0, 1),C ′′ > 1. So, when v1 ≤ w(ε), 0 < ε <

ε0, we have

1

v1


log 1

ε

≥
1

w(ε)


log 1

ε

≥
1

ε1/6


C ′′ log 1
ε

.

Here, the last expression is greater than 1, as long as ε is sufficiently small, say, for all
0 < ε < ε1, where ε1 is determined by (C ′′, ε0). Hence, for all such ε, we have a better bound
∥F − Φ0,v1∥ ≤

C

v1


log 1

ε

. It remains to increase the constant C ′ in order to involve the remaining

values of ε. A similar conclusion is true for G. �

4. Stability in Cramer’s theorem for the Lévy distance

Let X and Y be independent random variables with distribution functions F and G. It turns out
that in the bound of Theorem 2.2, the parameter σ1 can be completely removed, if we consider the
stability problem for the Lévy distance. More precisely, the following theorem was established
in [7].
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Theorem 4.1. Assume that ∥F ∗G−Φ∥ ≤ ε < 1. If F has median zero, then with some absolute
constant C

L(F,Φa1,σ1) ≤ C


log log 4

ε

2


log 1

ε

.

Recall that a1 =
 N
−N x d F(x), σ 2

1 =
 N
−N x2 d F(x)− a2

1(σ1 ≥ 0), and similarly (a2, σ
2
2 ) for

G, where N = 1+


2 log(1/ε). As we have already discussed, the assumption about the median
may be relaxed to the condition that the median is bounded (by a universal constant).

The first quantitative stability result for the Lévy distance, namely,

L(F,Φa1,σ1) ≤ C log−1/8(1/ε),

was obtained in 1968 by Zolotarev [24], who applied his famous Berry–Esseen-type bound [25].
The power 1/8 was later improved to 1/4 by Senatov [21] and even more by Shiganov [22,23].
The stated asymptotic in Theorem 4.1 is unimprovable, which was also shown in [7].

Note that in the assumption of Theorem 4.1, the Kolmogorov distance can be replaced
with the Lévy distance L(F,Φ) in view of the general relations L(F,Φ) ≤ ∥F ∗ G −

Φ∥ ≤ (1 + M) L(F,Φ) with M = ∥Φ∥Lip =
1

√
2π

. However, in the conclusion
such replacement cannot be done at the expense of a universal constant, since we only
have

∥F − Φa1,σ1∥ ≤ (1 + M) L(F,Φa1,σ1), M = ∥Φa1,σ1∥Lip =
1

σ1
√

2π
.

Now, our aim is to replace in Theorem 4.1 the parameters (a1, σ1), which depend on ε, with
(0, v1) like in Theorem 2.3. That is, we have the following:

Question. Assume that EX = EY = 0,Var(X + Y ) = 1, and L(F ∗ G,Φ) ≤ ε < 1. Is it true
that

L(F,Φv1) ≤ C


log log 4

ε

2


log 1

ε

with some absolute constant C , where v2
1 = Var(X)?

In a sense, it is the question on the closeness of σ1 to v1 in the situation, where σ1 is small.
Indeed, using the triangle inequality, one can write

L(F,Φv1) ≤ L(F,Φa1,σ1)+ L(Φa1,σ1 ,Φ0,σ1)+ L(Φσ1 ,Φv1).

Here, the first term may be estimated according to Theorem 4.1. For the second one, we have a
trivial bound L(Φa1,σ1 ,Φ0,σ1) ≤ |a1|, which follows from the definition of the Lévy metric. In
turn, the parameter a1 admits the bound, which was already used in the proof of Theorem 2.3,
|a1| <

1√
log e

ε

. This bound behaves better than the one in Theorem 4.1, so we obtain:
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Lemma 4.2. If EX = EY = 0,Var(X + Y ) = 1, and L(F ∗ G,Φ) ≤ ε < 1, then

L(F,Φv1) ≤ C


log log 4

ε

2


log 1

ε

+ L(Φσ1 ,Φv1).

Thus, we are reduced to estimating the distance L(Φσ1 ,Φv1), which in fact should be done in
terms of v2

1 − σ 2
1 . The proof of the following elementary bound can be found in [3].

Lemma 4.3. If v ≥ σ ≥ 0, v2
− σ 2

≤ 1, then L(Φσ ,Φv)2 ≤ (v2
− σ 2) log 2

v2−σ 2 .

Attempts to derive bounds on the distance L(Φσ ,Φv) by virtue of standard general relations,
such as Zolotarev’s Berry–Esseen-type estimate [25], lead to worse dependences of α2

= v2
−σ 2.

In view of Lemmas 4.2 and 4.3, to proceed, one needs to bound v2
1 − σ 2

1 in terms of ε.
However, this does not seem to be possible in general without stronger hypotheses. Note that
v2

1 − σ 2
1 =


{|x |>N }

x2 d F(x) + a2
1 . Hence, we need to deal with the quadratic tail function

δX (T ) =

{|x |>T }

x2 d F(x)(T ≥ 0), whose behavior at infinity will play an important role in the
sequel.

Now, combining Lemmas 4.2 and 4.3, we obtain

L(F,Φv1) ≤ C


log log 4

ε

2


log 1

ε

+ R

δX (N )+ a2

1


,

where R(t) =


t log(2/t). This function is non-negative and concave in the interval 0 ≤ t ≤ 2,
with R(0) = 0. Hence, it is subadditive in the sense that R(ξ + η) ≤ R(ξ) + R(η), for all
ξ, η ≥ 0, ξ + η ≤ 2. Hence,

R

δX (N )+ a2

1


≤ R(δX (N ))+ R(a2

1) =


δX (N ) log

2
δX (N )

1/2
+


a2

1 log(2/a2
1).

As we have noticed, |a1| ≤ A =
1√

log e
ε

, so |a1| ≤ 1. Since t → t log(e/t) is increasing on

[0, 1],

a2
1 log

2

a2
1

≤ a2
1 log

e

a2
1

≤ A2 log
e

A2 =
1

log e
ε


1 + log log

e

ε


.

Taking the square root of the right-hand side, we obtain a function which is majorized and
absorbed by the bound of Theorem 4.1. As a result, we arrive at the following consequence
of this theorem.

Theorem 4.4. Assume independent random variables X and Y have distribution functions F
and G with mean zero and with Var(X + Y ) = 1. If L(F ∗ G,Φ) ≤ ε < 1, then with some
absolute constant C

L(F,Φv1) ≤ C


log log 4

ε

2


log 1

ε

+

δX (N ) log(2/δX (N )),

where v1 =
√

Var(X), N = 1 +


2 log(1/ε), and δX (N ) =

{|x |>N }

x2 d F(x).
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It seems that in general it is not enough to know that Var(X) ≤ 1 and L(F ∗ G,Φ) ≤ ε < 1,
in order to judge the decay of the quadratic tail function δX (T ) as T → ∞. So, some additional
properties should be involved. As we will see, the entropic distance perfectly suits this idea, so
that one can start with the entropic assumption D(X + Y ) ≤ ε.

5. Application of Sapogov-type results to Gaussian regularization

In this section we consider the stability problem in Cramer’s theorem for the regularized
distributions with respect to the total variation norm. As a basic tool, we use Theorem 2.3.

Thus, let X and Y be independent random variables with distribution functions F and G,
and with variances Var(X) = v2

1,Var(Y ) = v2
2(v1, v2 > 0, v2

1 + v2
2 = 1), so that X + Y has

variance 1. What is not important (and is assumed for simplicity of notations, only), let both X
and Y have mean zero. As we know from Theorem 2.3, the main stability result asserts that if
∥F ∗ G − Φ∥ ≤ ε < 1, then

∥F − Φv1∥ ≤
Cm(v1, ε)

v1


log 1

ε

, ∥G − Φv2∥ ≤
Cm(v2, ε)

v2


log 1

ε

for some absolute constant C . Here, as before m(v, ε) = min{
1

√
v
, log log ee

ε
}, v > 0, 0 < ε ≤ 1.

On the other hand, such a statement – even in the case of equal variances – is no longer
true for the total variation norm. So, it is natural to use the Gaussian regularizations Xσ =

X +σ Z , Yσ = Y +σ Z , where Z ∼ N (0, 1) is independent of X and Y , and where σ is a (small)
positive parameter. For definiteness, we assume that 0 < σ ≤ 1. Note that

Var(Xσ ) = v2
1 + σ 2, Var(Yσ ) = v2

2 + σ 2 and Var(Xσ + Yσ ) = 1 + 2σ 2.

Denote by Fσ and Gσ the distributions of Xσ and Yσ , respectively. Assume Xσ + Yσ is almost
normal in the sense of the total variation norm and hence in the Kolmogorov distance, namely,

∥Fσ ∗ Gσ − N (0, 1 + 2σ 2)∥ ≤
1
2

∥Fσ ∗ Gσ − N (0, 1 + 2σ 2)∥TV ≤ ε ≤ 1.

Note that Xσ +Yσ = (X +Y )+σ
√

2 Z represents the Gaussian regularization of the sum X +Y
with parameter σ

√
2. One may also write Xσ + Yσ = X + (Y + σ

√
2 Z), or equivalently,

Xσ + Yσ
√

1 + 2σ 2
= X ′

+ Y ′, where X ′
=

X
√

1 + 2σ 2
, Y ′

=
Y + σ

√
2 Z

√
1 + 2σ 2

.

Thus, we are in position to apply Theorem 2.3 to the distributions of the random variables X ′

and Y ′ with variances v′2
1 =

v2
1

1+2σ 2 and v′2
2 =

v2
2+2σ 2

1+2σ 2 . Using 1 + 2σ 2
≤ 3, it gives

∥F − Φv1∥ ≤
Cm(v′

1, ε)

v′

1


log 1

ε

≤
3Cm(v1, ε)

v1


log 1

ε

.

Now, we apply Proposition B.2(b) to the distributions F and G = Φv1 with B = v1 and getFσ − N (0, v2
1 + σ 2)


TV ≤

4v1

σ
∥F − Φv1∥

1/2
≤

4v1

σ

√
3Cm(v1, ε)

v
1/2
1


log 1

ε

1/4 .

One may simplify this bound by using v1
√

m(v1, ε) ≤
√
v1, and then we may conclude:
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Theorem 5.1. Let F and G be distribution functions with mean zero and variances v2
1, v

2
2 ,

respectively, such that v2
1 + v2

2 = 1. Let 0 < σ ≤ 1. If the regularized distributions satisfy

1
2

Fσ ∗ Gσ − N (0, 1 + 2σ 2)


TV ≤ ε ≤ 1,

then with some absolute constant CFσ − N (0, v2
1 + σ 2)


TV ≤

C

σ


1

log 1
ε

1/4

,

Gσ − N (0, v2
2 + σ 2)


TV ≤

C

σ


1

log 1
ε

1/4

.

6. Control of tails and entropic Chebyshev-type inequality

One of our further aims is to find an entropic version of the Sapogov stability theorem for
regularized distributions. As part of the problem, we need to bound the quadratic tail function
δX (T ) = EX2 1{|X |≥T } quantitatively in terms of the entropic distance D(X). Thus, assume a
random variable X has mean zero and variance Var(X) = 1, with a finite distance to the standard
normal law

D(X) = h(Z)− h(X) =


∞

−∞

p(x) log
p(x)

ϕ(x)
dx,

where p is density of X and ϕ is the density of N (0, 1). One can also write another representation,
D(X) = Entγ ( f ), where f =

p
ϕ

, with respect to the standard Gaussian measure γ on the real
line. Let us recall that the entropy functional

Entµ( f ) = Eµ f log f − Eµ f log Eµ f

is well-defined for any measurable function f ≥ 0 on an abstract probability space (Ω , µ), where
Eµ stands for the expectation (integral) with respect to µ.

We are going to involve a variational formula for this functional (cf. e.g. [12]): For all
measurable functions f ≥ 0 and g on Ω , such that Entµ( f ) and Eµ eg are finite,

Eµ f g ≤ Entµ( f )+ Eµ f log Eµ eg.

Applying it on Ω = R with µ = γ and f =
p
ϕ

, we notice that Eµ f = 1 and get that
∞

−∞

p(x) g(x) dx ≤ D(X)+ log


∞

−∞

eg(x) ϕ(x) dx .

Take g(x) =
α
2 x2 1{|x |≥T } with a parameter α ∈ (0, 1). Then,

∞

−∞

eg(x) ϕ(x) dx = γ [−T, T ] +
2

√
1 − α


1 − Φ


T

√
1 − α


.

Using γ [−T, T ] < 1 and the inequality log(1 + t) ≤ t , we obtain that

1
2
δX (T ) ≤

1
α

D(X)+
2

α
√

1 − α


1 − Φ


T

√
1 − α


.
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To further estimate the right-hand side, we apply the bound 1 − Φ(t) ≤ ϕ(t)/t , which leads to

1
2
δX (T ) ≤

1
α

D(X)+
2

√
2π

1
Tα(1 − α)

e−(1−α) T 2/2. (6.1)

Choosing just α = 1/2, we get

1
2
δX (T ) ≤ 2D(X)+

8

T
√

2π
e−T 2/4

≤ 2D(X)+ 2 e−T 2/4,

where the last bounds are fulfilled for T ≥ 4/
√

2π . For the remaining T the obtained inequality
is fulfilled automatically, since then 2e−T 2/4

≥ 2e−4/2π > 1, while 1
2 δX (T ) ≤

1
2 EX2

=
1
2 .

Thus, we have proved the following:

Proposition 6.1. If X is a random variable with EX = 0 and Var(X) = 1, having density p(x),
then for all T > 0,

{|x |≥T }

x2 p(x) dx ≤ 4D(X)+ 4 e−T 2/4.

In particular, the above integral does not exceed 8D(X) for T = 2


log+(1/D(X)).

The choice α = 2/T 2 in (6.1) leads to a better asymptotic in T , and then we also have:

Proposition 6.2. If X is a random variable with EX = 0 and Var(X) = 1, having density p(x),
then for all T ≥ 2,

{|x |≥T }

x2 p(x) dx ≤ T 2 D(X)+ 6T e−T 2/2.

In the Gaussian case X = Z this gives an asymptotically correct bound for T → ∞ (up to a
factor). Note as well that in the non-Gaussian case, from Proposition 6.1 we obtain an entropic
Chebyshev-type inequality

P

|X | ≥ 2


log(1/D(X))


≤

2D(X)

log(1/D(X))
(D(X) < 1).

Finally, let us give a more flexible variant of Proposition 6.1 with an arbitrary variance
B2

= Var(X) (B > 0), but still with mean zero. Applying the obtained statements to the random
variable X/B and replacing the variable T with T/B, we then get that

1

B2


{|x |≥T }

x2 p(x) dx ≤ 4D(X)+ 4 e−T 2/4B2
.

7. Entropic control of tails for sums of independent summands

We apply Proposition 6.1 in the following situation. Assume we have two independent random
variables X and Y with mean zero, but perhaps with different variances Var(X) and Var(Y ).
Assume they have densities. The question is: Can we bound the tail functions δX and δY in
terms of D(X + Y ), rather than in terms of D(X) and D(Y )? In case Var(X + Y ) = 1, by
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Proposition 6.1, applied to the sum X + Y ,

δX+Y (T ) = E (X + Y )2 1{|X+Y |≥T } ≤ 4 D(X + Y )+ 4 e−T 2/4. (7.1)

Hence, to answer the question, it would be sufficient to bound from below the tail functions δX+Y
in terms of δX and δY .

Assume for a while that Var(X + Y ) = 1/2. In particular, Var(Y ) ≤ 1/2, and according to the
usual Chebyshev’s inequality, P{Y ≥ −1} ≥

1
2 . Hence, for all T ≥ 0,

E (X + Y )2 1{X+Y≥T } ≥ E (X + Y )2 1{X≥T +1, Y≥−1}

≥ E (X − 1)2 1{X≥T +1, Y≥−1} ≥
1
2

E (X − 1)2 1{X≥T +1}.

If X ≥ T +1 ≥ 4, then clearly (X−1)2 ≥
1
2 X2, hence, E (X−1)2 1{X≥T +1} ≥

1
2 E X2 1{X≥T +1}.

With a similar bound for the range X ≤ −(T + 1), we get

δX+Y (T ) ≥
1
4
δX (T + 1), T ≥ 3. (7.2)

Now, change T + 1 with T (assuming that T ≥ 4) and apply (7.1) to
√

2 (X + Y ). Together with
(7.2) it gives 1

4 δ
√

2X (T ) ≤ 4 D
√

2 (X + Y )


+ 4 e−(T −1)2/4. But the entropic distance to the

normal is invariant under rescaling of coordinates, i.e., D(
√

2 (X + Y )) = D(X + Y ). Since also
δ√2X (T ) = 2 δX (T/

√
2), we obtain that

δX (T/
√

2) ≤ 8 D(X + Y )+ 8 e−(T −1)2/4,

provided that T ≥ 4. Simplifying by e−(T −1)2/4
≤ e−T 2/8 (valid for T ≥ 4), and then replacing

T with T
√

2, we arrive at

δX (T ) ≤ 8 D(X + Y )+ 8 e−T 2/4, T ≥ 4/
√

2.

Finally, to involve the values 0 ≤ T ≤ 4/
√

2, just use e2 < 8, so that the above inequality holds
automatically for this range: δX (T ) ≤ Var(X) ≤ 1 < 8 e−T 2/4. Moreover, in order to allow an
arbitrary variance Var(X + Y ) = B2 (B > 0), the above estimate should be applied to X/B

√
2

and Y/B
√

2 with T replaced by T/B
√

2. Then it takes the form

1

2B2 δX (T ) ≤ 8 D(X + Y )+ 8 e−T 2/8B2
.

We can summarize.

Proposition 7.1. Let X and Y be independent random variables with mean zero and with
Var(X + Y ) = B2 (B > 0). Assume X has a density p. Then, for all T ≥ 0,

1

B2


{|x |≥T }

x2 p(x) dx ≤ 16 D(X + Y )+ 16 e−T 2/8B2
.

8. Stability for Lévy distance under entropic hypothesis

Now we can return to the variant of the Chistyakov–Golinskii result, as in Theorem 4.4. Let
the independent random variables X and Y have mean zero, with Var(X + Y ) = 1, and denote



S.G. Bobkov et al. / Stochastic Processes and their Applications 126 (2016) 3865–3887 3879

by F and G their distribution functions. Also assume X has a density p. In order to control the
term δX (N ) in Theorem 4.4, we are going to impose the stronger condition D(X + Y ) ≤ 2ε.
Using Pinsker’s inequality, this yields bounds for the total variation and Kolmogorov distances

∥F ∗ G − Φ∥ ≤
1
2

∥F ∗ G − Φ∥TV ≤
1
2


2D(X + Y ) ≤

√
ε = ε′.

Hence, the assumption of Theorem 4.4 is fulfilled, whenever ε < 1. As for the conclusion, first
apply Proposition 7.1 with B = 1, which gives

δX (T ) =


{|x |≥T }

x2 p(x) dx ≤ 16 D(X + Y )+ 16 e−T 2/8
≤ 16 ε + 16 e−T 2/8.

In our situation, N = 1+


2 log(1/ε′) = 1+


log(1/ε), so, δX (N ) ≤ 16 ε+16 e−N 2/8
≤ Cε1/8.

Thus, we arrive at:

Proposition 8.1. Let the independent random variables X and Y have mean zero, with Var(X +

Y ) = 1, and assume that X has a density with distribution function F. If D(X + Y ) ≤ 2ε < 2,
then

L(F,Φv1) ≤ C


log log 4

ε

2


log 1

ε

,

where v1 =
√

Var(X) and C is an absolute constant.

In general, in the conclusion one cannot replace the Lévy distance L(F,Φv1) with D(X).
However, this is indeed possible for regularized distributions, as we will see in the next sections.

9. Entropic distance and uniform deviation of densities

Let X and Y be independent random variables with mean zero, finite variances, and assume X
has a bounded density p. Our next aim is to estimate the entropic distance to the normal, D(X),
in terms of D(X + Y ) and the uniform deviation of p above the normal density

∆(X) = ess supx (p(x)− ϕv(x)),

where v2
= Var(X) and ϕv stands for the density of the normal law N (0, v2).

For a while, assume that Var(X) = 1. Proposition C.2 gives the preliminary estimate

D(X) ≤ ∆(X)
√

2π + 2T + 2T log


1 + ∆(X)
√

2π eT 2/2


+
1
2
δX (T ),

involving the quadratic tail function δX (T ). In the general situation one cannot say anything
definite about the decay of this function. However, it can be bounded in terms of D(X + Y ) by
virtue of Proposition 7.1: we know that, for all T ≥ 0,

1

2B2 δX (T ) ≤ 8 D(X + Y )+ 8 e−T 2/8B2
,

where B2
= Var(X + Y ) = 1 + Var(Y ). So, combining the two estimates yields

D(X) ≤ 8B2 D(X + Y )+ 8B2 e−T 2/8B2

+∆
√

2π + 2T + 2T log

1 + ∆

√
2π eT 2/2 , where ∆ = ∆(X).
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First assume ∆ ≤ 1 and apply the above with T 2
= 8B2 log 1

∆ . Then 8B2 e−T 2/8B2
= 8B2 ∆,

and putting β = 4B2
− 1 ≥ 3, we also have

log

1 + ∆

√
2π eT 2/2

= log


1 + ∆−β
√

2π


= β log


1 + ∆−β
√

2π
1/β

< β log


1 +
(2π)1/2β

∆


< β log


1 +

2
∆


.

Collecting all the terms and using B ≥ 1, we are led to the estimate of the form

D(X) ≤ 8B2 D(X + Y )+ C B3 ∆ log3/2


2 +
1
∆


,

where C > 0 is an absolute constant. It holds also in case ∆ > 1 in view of the logarithmic
bound of Proposition C.1,

D(X) ≤ log


1 + ∆
√

2π


+
1
2
.

Therefore, the obtained bound holds true without any restriction on ∆.
Now, to relax the variance assumption, assume Var(X) = v2

1,Var(Y ) = v2
2 (v1, v2 > 0), and

without loss of generality, let Var(X + Y ) = v2
1 + v2

2 = 1. Apply the above to X ′
=

X
v1
, Y ′

=
Y
v1

.

Then, B2
= 1/v2

1 and ∆(X ′) = v1 ∆(X), so with some absolute constant c > 0,

c v2
1 D(X) ≤ D(X + Y )+ ∆(X) log3/2


2 +

1
v1∆(X)


.

As a result, we arrive at:

Proposition 9.1. Let X, Y be independent random variables with mean zero, Var(X + Y ) = 1,
and such that X has a bounded density. Then, with some absolute constant c > 0,

c Var(X) D(X) ≤ D(X + Y )+ ∆(X) log3/2


2 +
1

√
Var(X)∆(X)


.

Replacing the role of X and Y , and adding the two inequalities, we also have as corollary:

Proposition 9.2. Let X, Y be independent random variables with mean zero and positive
variances v2

1 = Var(X), v2
2 = Var(Y ), such that v2

1 +v2
2 = 1, and both with densities. Then, with

some absolute constant c > 0,

c (v2
1 D(X)+ v2

2 D(Y )) ≤ D(X + Y )+ ∆(X) log3/2


2 +
1

v1∆(X)


+∆(Y ) log3/2


2 +

1
v2∆(Y )


.

This inequality may be viewed as the inverse to the general property of the entropic distance,
which we mentioned before, namely, v2

1 D(X)+ v2
2 D(Y ) ≥ D(X + Y ), under the normalization
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assumption v2
1 + v2

2 = 1. Let us also state separately Proposition 9.1 in the particular case of
equal unit variances, keeping the explicit constant 8B2

= 16 in front of D(X + Y ).

Proposition 9.3. Let X, Y be independent random variables with mean zero and variances
Var(X) = Var(Y ) = 1, and such that X has a density. Then, with some absolute
constant C

D(X) ≤ 16 D(X + Y )+ C ∆(X) log3/2


2 +
1

∆(X)


.

One may simplify the right-hand side for small values of ∆(X) and get a slightly weaker
inequality D(X) ≤ 16 D(X + Y ) + Cα ∆(X)α , 0 < α < 1, where the constants Cα depend on
α, only. For large values of ∆(X), the above inequality holds, as well, in view of the logarithmic
bound of Proposition C.1.

10. The case of equal variances

We are prepared to derive an entropic variant of Sapogov-type stability theorem for
regularized distributions. That is, we are going to estimate D(Xσ ) and D(Yσ ) in terms of
D(Xσ + Yσ ) for two independent random variables X and Y with distribution functions F
and G, by involving a small “smoothing” parameter σ > 0. It will not be important whether
or not they have densities. Since it will not be important for the final statements, let X and
Y have mean zero. Recall that, given σ > 0, the regularized random variables are defined
by Xσ = X + σ Z , Yσ = Y + σ Z , where Z is independent of X and Y , and has a
standard normal density ϕ. The distributions of Xσ , Yσ are denoted Fσ ,Gσ , with densities
pσ , qσ .

In this section, we consider the case of equal variances, say, Var(X) = Var(Y ) = 1. Put
σ1 =

√
1 + σ 2, σ2 =

√
1 + 2σ 2. Since Var(Xσ ) = Var(Yσ ) = σ 2

1 , the corresponding entropic
distances are given by

D(Xσ ) = h(σ1 Z)− h(Xσ ) =


∞

−∞

pσ (x) log
pσ (x)

ϕσ1(x)
dx,

and similarly for Yσ , where, as before, ϕv represents the density of N (0, v2). Assume that
D(Xσ +Yσ ) is small in the sense that D(Xσ +Yσ ) ≤ 2ε < 2. According to Pinsker’s inequality,
this yields bounds for the total variation and Kolmogorov distances

∥Fσ ∗ Gσ − Φσ2∥ ≤
1
2

∥Fσ ∗ Gσ − Φσ2∥TV ≤
√
ε < 1.

In the sequel, let 0 < σ ≤ 1. This guarantees that the ratio of variances of the
components in the convolution Fσ ∗ Gσ = F ∗ (G ∗ Φ

σ
√

2 ) is bounded away from zero by
an absolute constant, so that we can apply Theorem 2.3. Namely, it gives that ∥F − Φ∥ ≤

C log−1/2( 1
ε
), and similarly for G. (Note that raising ε to any positive power does not change

the above estimate.) Applying Proposition B.1(a), when one of the distributions is normal,
we get

∆(Xσ ) = sup
x
(pσ (x)− ϕσ1(x)) ≤

1
σ

∥F − Φ∥ ≤
C

σ


log 1

ε

.
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We are in position to apply Proposition 9.3 to the random variables Xσ /σ1, Yσ /σ1. It gives

D(Xσ ) ≤ 16 D(Xσ + Yσ )+ C ∆(Xσ ) log3/2


2 +
1

∆(Xσ )



≤ 32 ε + C ′
log3/22 + σ


log 1

ε


σ


log 1

ε

,

where C ′ is an absolute constant. In the last expression the second term dominates the first one,
and at this point, the assumption on the means may be removed. We arrive at:

Proposition 10.1. Let X and Y be independent random variables with variance one. Given
0 < ε < 1 and 0 < σ ≤ 1, the regularized random variables Xσ and Yσ satisfy

D(Xσ + Yσ ) ≤ 2ε ⇒ D(Xσ )+ D(Yσ ) ≤ C
log3/22 + σ


log 1

ε


σ


log 1

ε

, (10.1)

where C is an absolute constant.

Note that all entropic distances in (10.1) do not change when adding constants to X and
Y , which allows us to remove the mean zero assumption. This statement may be formulated
equivalently by solving the above inequality with respect to ε. The function u(x) =

x
log3/2(2+x)

is increasing in x ≥ 0, and, for any a ≥ 0, u(x) ≤ a ⇒ x ≤ 8 a log3/2(2 + a). Hence, assuming
D(Xσ + Yσ ) ≤ 1, we obtain from (10.1) that

σ


log

1
ε

≤
8C

D
log3/2(2 + C/D) ≤

C ′

D
log3/2(2 + 1/D)

with some absolute constant C ′, where D = D(Xσ )+ D(Yσ ). As a result,

D(Xσ + Yσ ) ≥ exp

−

C ′2 log3(2 + 1/D)

σ 2 D2


.

Note also that this inequality is fulfilled automatically, if D(Xσ + Yσ ) ≥ 1. Thus, we get:

Proposition 10.2. Let X, Y be independent random variables with Var(X) = Var(Y ) = 1. Given
0 < σ ≤ 1, the regularized random variables Xσ and Yσ satisfy

D(Xσ + Yσ ) ≥ exp

−

C log3(2 + 1/D)

σ 2 D2


,

where D = D(Xσ )+ D(Yσ ) and C > 0 is an absolute constant.

11. Proof of Theorem 1.1

Now let us consider the case of arbitrary variances Var(X) = v2
1,Var(Y ) = v2

2(v1, v2 ≥ 0).
For normalization reasons, let v2

1 + v2
2 = 1. Then

Var(Xσ ) = v2
1 + σ 2, Var(Yσ ) = v2

2 + σ 2, Var(Xσ + Yσ ) = σ 2
2 ,

where σ2 =
√

1 + 2σ 2. As before, we assume that both X and Y have mean zero, although this
will not be important for the final conclusion.
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Again, we start with the hypothesis D(Xσ + Yσ ) ≤ 2ε < 2 and apply Pinsker’s inequality:

∥Fσ ∗ Gσ − Φσ2∥ ≤
1
2

∥Fσ ∗ Gσ − Φσ2∥TV ≤
√
ε < 1.

For 0 < σ ≤ 1, write Fσ ∗ Gσ = F ∗ (G ∗ Φ
σ
√

2 ). Now, the ratio of variances of the

components in the convolution,
v2

1
1+2σ 2 , may not be bounded away from zero, since v1 is allowed

to be small. Hence, the application of Theorem 2.3 will only give ∥F − Φv1∥ ≤
Cm(v1,ε)

v1


log 1

ε

and

similarly for G. The appearance of v1 on the right is however not desirable. So, it is better to
involve the Lévy distance, which is more appropriate in such a situation. Consider the random
variables

X ′
=

X
√

1 + 2σ 2
, Y ′

=
Y + σ

√
2Z

√
1 + 2σ 2

,

so that Var(X ′
+Y ′) = 1, and denote by F ′,G ′ their distribution functions. Since the Kolmogorov

distance does not change after rescaling of the coordinates, we still have

L(F ′
∗ G ′,Φ) ≤ ∥F ′

∗ G ′
− Φ∥ = ∥Fσ ∗ Gσ − Φσ2∥ ≤

√
ε < 1.

In this situation, we may apply Proposition 8.1 to the couple (F ′,G ′). It gives that

L(F ′,Φv′

1
) ≤ C


log log

4
ε

2 
log

1
ε

−1/2

with some absolute constant C , where v′

1 =
√

Var(X ′) =
v1√

1+2σ 2
. Since v′

1 ≤ v1 ≤

√
3v′

1, we have a similar conclusion about the original distribution functions, i.e. L(F,Φv1) ≤

C (log log 4
ε
)2 (log 1

ε
)−1/2. Now we use Proposition B.3 (applied when one of the distributions

is normal), which for σ ≤ 1 gives ∆(Xσ ) ≤
3

2σ 2 L(F,Φv1), and similarly for Y .
Hence,

∆(Xσ ) ≤ C


log log 4

ε

2

σ 2


log 1
ε

, ∆(Yσ ) ≤ C


log log 4

ε

2

σ 2


log 1
ε

. (11.1)

We are now in a position to apply Proposition 9.2 to the random variables X ′
σ =

Xσ /
√

1 + σ 2, Y ′
σ = Yσ /

√
1 + σ 2, which ensures that with some absolute constant c > 0

c (v1(σ )
2 D(Xσ )+ v2(σ )

2 D(Yσ )) ≤ D(Xσ + Yσ )+ ∆(Xσ ) log3/2


2 +
1

v1(σ )∆(Xσ )


+∆(Yσ ) log3/2


2 +

1
v2(σ )∆(Yσ )


,
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where v1(σ )
2

= Var(X ′
σ ) =

v2
1+σ 2

1+σ 2 and v2(σ )
2

= Var(Y ′
σ ) =

v2
2+σ 2

1+σ 2 (v1(σ ), v2(σ ) ≥ 0). Note

that v1(σ ) ≥ σ/
√

2. Applying the bounds in (11.1), we obtain that

c (v1(σ )
2 D(Xσ )+ v2(σ )

2 D(Yσ ))

≤ D(Xσ + Yσ )+


log log 4

ε

2

σ 2


log 1
ε

log3/2


2 +

σ


log 1

ε
log log 4

ε

2



with some other absolute constant c > 0. Here, D(Xσ + Yσ ) ≤ 2ε, which is dominated by the
last expression, and we arrive at:

Proposition 11.1. Let X, Y be independent random variables with Var(X + Y ) = 1. Given
0 < σ ≤ 1, if the regularized random variables Xσ , Yσ satisfy D(Xσ + Yσ ) ≤ 2ε < 2, then with
some absolute constant C

Var(Xσ ) D(Xσ )+ Var(Yσ ) D(Yσ ) ≤ C


log log 4

ε

2

σ 2


log 1
ε

log3/2


2 +

σ


log 1

ε
log log 4

ε

2


. (11.2)

It remains to solve this inequality with respect to ε. Denote by D′ the left-hand side of
(11.2) and let D = σ 2 D′. Assuming that D(Xσ + Yσ ) < 2 and arguing as in the proof

of Proposition 10.2, we get
σ


log 1

ε

(log log 4
ε
)2

≤
8C
σD′ log3/2(2 + C/D′), hence

log 1
ε

(log log 4
ε
)4

≤ A ≡

C ′

D2 log3(2 + 1/D) with some absolute constant C ′. The latter inequality implies with some
absolute constants

log
1
ε

≤ C ′′ A log4(2 + A) ≤
C ′′′

D2 log7(2 + 1/D),

and we arrive at the inequality of Theorem 1.1 (which holds automatically, if D(Xσ + Yσ ) ≥ 1).
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Appendix A. General bounds for distances between distribution functions

Here we collect a few elementary and basically known relations for classical metrics,
introduced at the beginning of Section 2. Let F and G be arbitrary distribution functions of some
random variables X and Y . First of all, the Lévy, Kolmogorov, and the total variation distances
are connected by the chain of the inequalities

0 ≤ L(F,G) ≤ ∥F − G∥ ≤
1
2

∥F − G∥TV ≤ 1.

As for the Kantorovich–Rubinshtein distance, there is the following well-known bound.

Proposition A.1. We have L(F,G) ≤ W1(F,G)1/2.
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We also have:

Proposition A.2. If


∞

−∞
x2 d F(x) ≤ B2 and


∞

−∞
x2 dG(x) ≤ B2 (B ≥ 0), then

(a) W1(F,G) ≤ 2L(F,G)+ 4B L(F,G)1/2;
(b) W1(F,G) ≤ 4B ∥F − G∥

1/2.

Appendix B. Relations for distances between regularized distributions

Now, let us turn to the regularized random variables Xσ = X + σ Z , Yσ = Y + σ Z , where
σ > 0 is a fixed parameter and Z ∼ N (0, 1) is a standard normal random variable independent
of X and Y . They have distribution functions Fσ and Gσ with densities

pσ (x) =


∞

−∞

ϕσ (x − y) d F(y) = −
1

σ 2


∞

−∞

F(x − y) y ϕσ (y) dy,

qσ (x) =


∞

−∞

ϕσ (x − y) dG(y) = −
1

σ 2


∞

−∞

G(x − y) y ϕσ (y) dy.

These identities easily imply:

Proposition B.1. (a) supx |pσ (x)− qσ (x)| ≤
1
σ

∥F − G∥; (b) ∥Fσ − Gσ∥TV ≤
1
σ

W1(F,G).

Thus, if F is close to G in a weak sense, then the regularized distributions will be closed
in a stronger sense, at least when σ is not very small. One may replace W1 in part (b) and the
Kolmogorov distance in part (a) with other metrics:

Proposition B.2. If


∞

−∞
x2 d F(x) ≤ B2 and


∞

−∞
x2 dG(x) ≤ B2 (B ≥ 0), then

(a) ∥Fσ − Gσ∥TV ≤
2
σ


L(F,G)+ 2B L(F,G)1/2


;

(b) ∥Fσ − Gσ∥TV ≤
4B
σ

∥F − G∥
1/2.

Proposition B.3. supx |pσ (x)− qσ (x)| ≤
L(F,G)
σ

(1 +
1

2σ ).

Appendix C. Special bounds for entropic distance to the normal

Let X be a random variable with mean zero and variance Var(X) = v2 (v > 0) and with a
bounded density p. In this section we formulate bounds for the entropic distance D(X) in terms
of the quadratic tail function δX (T ) =


{|x |≥T }

x2 p(x) dx and another quantity, which is directly
responsible for the closeness to the normal law,

∆(X) = ess supx (p(x)− ϕv(x)).

As before, ϕv stands for the density of a normal random variable Z ∼ N (0, v2), and we write
ϕ in the standard case v = 1. The functional ∆(X) is homogeneous with respect to X with
power of homogeneity −1 in the sense that ∆(λX) = ∆(X)/λ(λ > 0). Hence, the functional
√

Var(X)∆(X) is invariant under rescaling of the coordinates. To relate D(X) and ∆(X), write
p(x) ≤ ϕv(x)+ ∆ ≤

1
v
√

2π
+ ∆, so p(x) · v

√
2π ≤ 1 + ∆ v

√
2π . This gives:
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Proposition C.1. Let X be a random variable with mean zero and variance Var(X) = v2

(v > 0), having a bounded density. Then

D(X) ≤ log


1 + v∆(X)
√

2π


+
1
2
.

This estimate cannot, however, be used to see that X is almost normal. So, we need to refine
Proposition C.1 for the case, where ∆(X) is small.

Proposition C.2. Let X be a random variable with mean zero and variance Var(X) = 1, having
a bounded density. For all T ≥ 0,

D(X) ≤ ∆(X)
√

2π + 2T + 2T log

1 + ∆(X)

√
2π eT 2/2

+
1
2
δX (T ).

Hence, if ∆(X) is small and T is large, but not much, the right-hand side can be made small.
When ∆(X) ≤

1
2 , one may take T =


2 log(1/∆(X)) which leads to the estimate

D(X) ≤ C ∆(X)


log(1/∆(X))+
1
2
δX (T ),

where C is absolute constant. If X satisfies the tail condition P{|X | ≥ t} ≤ Ae−t2/2 (t > 0), we
have δX (T ) ≤ cA (1 + T 2) e−T 2/2 and then D(X) ≤ CA ∆(X) log 1

∆(X) .
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