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Abstract. A survey is given of some results on smoothing inequalities for
various probability metrics (in particular, for the Kolmogorov distance),
and some analogues of these results in the class of functions of bounded
variation are presented.
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1. Introduction

Let F denote the space of all distribution functions on the real line, that is,
non-decreasing right-continuous functions F : R → [0, 1] such that F (−∞) = 0 and
F (∞) = 1. There is a variety of popular metrics and pseudometrics d on F ,
and questions of estimating the distance d(F,G) arise occasionally in one or another
approximation problem (for example, in the theory of summation of independent
random variables). Smoothing inequalities allow one to estimate d(F,G) in terms
of the corresponding characteristic functions (Fourier–Stieltjes transforms)

f(t) =
∫ ∞

−∞
eitx dF (x), g(t) =

∫ ∞

−∞
eitx dG(x), t ∈ R, (1.1)

for which additional smoothness-type conditions on G are possibly required.
A very important example is the uniform distance (the Kolmogorov distance)

ρ(F,G) = sup
x
|F (x)−G(x)|.

Integrating (1.1) by parts, we obtain the equality

f(t)− g(t)
−it

=
∫ ∞

−∞
eitx(F (x)−G(x)) dx, t ̸= 0,

where the integral must in general be understood as the principal value. If the
function (f(t) − g(t))/t is integrable, then the function F − G must be uniformly
continuous, and we can apply the inverse Fourier transform:

F (x)−G(x) =
1
2π

∫ ∞

−∞
e−itx f(t)− g(t)

−it
dt. (1.2)

This gives us the elementary estimate

ρ(F,G) 6
1
2π

∫ ∞

−∞

∣∣∣∣f(t)− g(t)
t

∣∣∣∣ dt, (1.3)

which is valid without any smoothness assumptions.
However, in many problems the integral on the right-hand side diverges, so

that this estimate turns out to be useless. Nevertheless, under certain smoothness
conditions and at the expense of a small error, the integral in (1.3) can be replaced
by the integral over a finite interval [−T, T ], on which we know or can show that f
and g are sufficiently close. This is achieved by smoothing the distributions F
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and G with the help of a suitable (specially chosen) distribution H that depends
on the parameter T . Namely, we consider convolutions

(F ∗H)(x) =
∫ ∞

−∞
F (x− y) dH(y)

and obtain relations (smoothing inequalities) of the form

ρ(F,G) 6 cρ(F ∗H,G ∗H) + ε,

where c is usually an absolute constant and ε can depend on T and some other
parameters determined by F and/or G.

Similar relations are also studied for other metrics d. Finally, estimates for
d(F,G) are derived in terms of the proximity of f to g; such estimates are also
called smoothing inequalities (see, for example, [1]–[3]). In this survey we look at
some results on this topic, and we discuss standard approaches to them and pos-
sible refinements or generalizations, but we certainly do not claim completeness
of our exposition. We also present several new inequalities for distances such as
the quadratic Kantorovich distance, the distance in the L1-metric, and the Kol-
mogorov distance (under additional smoothness conditions and also with a polyno-
mial weight). A number of results on the rate of convergence in the central limit
theorem for weak metrics (that is, metrics responsible for convergence of probability
distributions in the weak topology) is presented at the end of the survey.

2. Kolmogorov distance

The first result on proximity of distributions in terms of the corresponding
Fourier–Stieltjes transforms was obtained by Esseen in his classical work [4], where
the following important theorem was proved.

Theorem 2.1. If a distribution function G is differentiable and |G′(x)| 6 L for all
x ∈ R, then for any T > 0 and all b > 1/(2π)

ρ(F,G) 6 b

∫ T

−T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣ dt+ c(b)
L

T
, (2.1)

where the constant c(b) depends only on b.

The main ideas for proving this theorem appeared in the earlier paper [5] by
Berry, who considered the particular case of the standard normal distribution func-
tion G = Φ. Hence the inequality (2.1) is called the Berry–Esseen inequality, as
is the estimate of the convergence rate in the central limit theorem that is derived
from it (Theorem 20.1). The inequality (2.1) also remains valid for a broader class
of functions: F can be an arbitrary bounded non-decreasing function, while G can
be a function of bounded variation, with F (−∞) = G(−∞) = 0 and |G′(x)| 6 L
(the monotonicity condition for G is dropped [2]–[4]). The definition of the uniform
distance remains the same:

ρ(F,G) = sup
x
|F (x)−G(x)|.
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Such a generalization allows us to work with Edgeworth expansions for distributions
of sums of independent random variables.

The estimate (2.1) (or a similar relation) can be derived on the basis of the
smoothing inequality

ρ(F,G) 6
1

1− 2γ
ρ(F ∗HT , G ∗HT ) + 2l

1− γ

1− 2γ
L

T
, (2.2)

where HT (x) = H(Tx) and H is the probability distribution with density

ψ(x) =
1
2π

(
sin(x/2)
x/2

)2

=
1− cosx
πx2

, (2.3)

where the parameter l > 0 can be any number satisfying the condition 1 − γ =
H[−l, l] ≡ H(l)−H(−l) < 1/2 (see the proof of Lemma 16.1).

The distribution function H with the density (2.3) and convolution powers of
it are most popular in smoothing inequalities. It has the triangular characteristic
function h(t) = (1− |t|)+, so the characteristic function of the distribution HT has
the compact support [−T, T ]. Applying (1.3) to the smoothed distributions, we
arrive at the estimate

ρ(F ∗HT , G ∗HT ) 6
1
2π

∫ T

−T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣(1− |t|
T

)
dt,

which, together with (2.2), implies the Esseen theorem.
The condition on the derivative in Theorem 2.1 can be weakened to the Lipschitz

condition ∥G∥Lip 6 L. However, in some problems (where the function G is not
necessarily continuous), it is desirable to replace it by the condition of ‘average’
smoothness. A generalization of this kind was proposed by Fainleib [6] in connec-
tion with problems in probabilistic number theory. We present it in the following
formulation (see [3], Chap. V, § 1, Theorem 1).

Theorem 2.2. Let F be a non-decreasing bounded function and let G be a function
of bounded variation such that F (−∞) = G(−∞) = 0. Then for any T > 0 and all
b > 1/(2π)

ρ(F,G) 6 b

∫ T

−T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣ dt+ bT sup
x

∫
|u|6r(b)/T

|G(x+ u)−G(x)| du, (2.4)

where the constant r(b) depends only on b.

We can simplify this inequality by formulating it in terms of the modulus of
continuity

QG(h) = sup
x∈R, |u|6h

|G(x+ u)−G(x)|, h > 0. (2.5)

If G is a distribution function, then QG is called the concentration function, and in
this case it can be estimated from above with the help of the well-known inequality

QG(h) 6

(
96
95

)2

h

∫ 1/h

−1/h

|g(t)| dt, h > 0

(see [3], Chap. III, § 1, Lemma 6). Therefore, Theorem 2.2 implies the following
statement.
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Corollary 2.3. Under the assumptions of Theorem 2.2, for any T > 0

cρ(F,G) 6
∫ T

−T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣ dt+QG

(
1
T

)
, (2.6)

where c is an absolute positive constant. Moreover, if G is non-decreasing, then

cρ(F,G) 6
∫ T

−T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣ dt+
1
T

∫ T

−T

|g(t)| dt. (2.7)

An advantage of (2.7) over (2.1) is that its right-hand side does not contain
a constant value bounding |G′|, but is a functional depending directly on the char-
acteristic function g. In this connection, we note another inequality:

ρ(F,G) 6
1
2π

∫ T

−T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣ dt+
1
T

∫ T

−T

(|f(t)|+ |g(t)|) dt, (2.8)

which is valid for arbitrary distribution functions F and G with characteristic func-
tions f and g (up to an absolute multiplicative constant, it is weaker than (2.7)).
The inequality (2.8) was obtained by Bentkus and Götze [7] as a corollary to
a smoothing inequality of Prawitz (see (18.7)); it has been successfully used in prob-
lems on the number of integer points inside multidimensional ellipsoids, as well as
in investigations of the asymptotic behaviour of the distribution of quadratic forms
in sums of independent random vectors.

3. Lévy distance

The Lévy distance between distribution functions F and G is defined by

L(F,G) = inf
{
h > 0: G(x− h)− h 6 F (x) 6 G(x+ h) + h ∀x ∈ R

}
.

It is straightforward to see that L(F,G) is the side length of the largest square
lying between the graphs of F and G (with the sides of the square parallel to the
coordinate axes).

The Lévy distance turns F into a metric space with the topology of weak con-
vergence. Namely, L(Fn, F ) → 0 as n→∞ if and only if limn→∞ Fn(x) = F (x) at
all points of continuity of F . And therefore this metric is finding more and more
applications in problems where one needs to estimate the proximity of distributions
in the sense of the weak topology.

The Kolmogorov distance is obviously related to the Lévy distance by the inequal-
ities

0 6 L(F,G) 6 ρ(F,G) 6 1,

and hence the former induces a stronger topology in F . On the other hand, if
it is known that |G′(x)| 6 L (as in Esseen’s theorem), then we have the reverse
inequality

ρ(F,G) 6 (1 + L)L(F,G).

In this case, smoothing inequalities for these distances are equivalent. However, it
is generally natural to expect that estimates for the proximity of F and G in the
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Lévy metric in terms of the proximity of their characteristic functions should hold
under less restrictive smoothness-type conditions or even under none of these at all.
Results of this kind were first obtained by Bohman [8], who proved the following
statement.

Theorem 3.1. Let F and G be distribution functions with characteristic func-
tions f and g , respectively. If |f(t)− g(t)| 6 λ|t| for all t ∈ R, then for any x ∈ R
and h > 0

G(x− h)− 2λ
h

6 F (x) 6 G(x+ h) +
2λ
h
. (3.1)

In particular,
1
2
L2(F,G) 6 sup

t

∣∣∣∣f(t)− g(t)
t

∣∣∣∣. (3.2)

Proof. We give a simple argument to prove this theorem. Without loss of generality
we assume that the function (f(t)− g(t))/t is integrable on the whole real line, so
that the function

Â(t) = e−itx f(t)− g(t)
−it

is the Fourier transform of A(u) = F (x+ u)−G(x+ u) (for fixed x). Since∫ ∞

−∞
eitu(1− |u|)+ du = 2

1− cos t
t2

,

the function p̂(t) = 2(1 − cos t)/t2 is the characteristic function for the (proba-
bility) triangular density p(u) = (1 − |u|)+. It follows that p̂h(t) = p̂(ht) is the
characteristic function for the density ph(u) = p(u/h)/h.

By Parseval’s identity,

I ≡
∫ ∞

−∞
ph(u)A(u) du =

1
2π

∫ ∞

−∞
p̂h(t)Â(t) dt.

The condition |f(t)− g(t)| 6 λ|t| implies the estimate |Â(t)| 6 λ, and we get that

|I| 6 λ

2π

∫ ∞

−∞
p̂h(t) dt =

λ

2πh

∫ ∞

−∞
p̂(t) dt =

λ

2πh
· (2π)p(0) =

λ

h
.

On the other hand, using the monotonicity of F and G along with the fact that ph

has the support [−h, h], we obtain the lower estimate

I =
∫ h

−h

ph(u)
(
F (x+ u)−G(x+ u)

)
du > F (x− h)−G(x+ h).

The last two estimates yield the inequality F (x − h) 6 G(x + h) + λ/h, which is
equivalent to the right-hand inequality in (3.1). Similarly, we obtain the estimate
−I > G(x− h)− F (x+ h), which implies the left-hand inequality in (3.1). �

Further generalizations and improvements of Bohman’s results were obtained by
Zolotarev. In particular, he derived the family of estimates

L(F,G) 6 Cγ

(
sup
t>0

|f(t)− g(t)|
tγ

)1/(1+γ)

, γ > 0,
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where we can put Cγ = (2/γ)(1 + γ)2π−1/(1+γ) (see [9] and [10]). However, most
popular is the following inequality, proved in [11].

Theorem 3.2. Let F and G be distribution functions with characteristic functions
f and g , respectively. Then for any T > 1.3

L(F,G) 6
1
2π

∫ T

−T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣ dt+ 2e
log T
T

. (3.3)

It was later shown by Zaitsev [12] that the logarithmic factor in (3.3) is essential.
The derivation of (3.3) in [11] was based on the smoothing inequality

L(F,G) 6 L(F ∗H,G ∗H) + max{2ε, 1−H(ε) +H(−ε)},

where H can be an arbitrary distribution function and ε > 0 is also arbitrary. This
smoothing inequality was applied to convolution powers of the triangular density,
and the scale was changed in such a way that H, regarded as a measure, was
concentrated on the interval [−1, 1].

We give another proof of (a variant of) (3.3) that is based on the smoothing of
F and G with the help of a normal distribution function

Φσ(x) =
1

σ
√

2π

∫ x

−∞
e−y2/(2σ2) dy, x ∈ R,

where the parameter σ > 0 is chosen depending on T .
We need to estimate from above the expression

L (x, h) = max{F (x− h)−G(x+ h), G(x− h)− F (x+ h)}, x ∈ R, h > 0,

which is related to the Lévy distance through the implication

sup
x

L (x, h) 6 b+ 2h =⇒ L(F,G) 6 b+ 2h, b > 0, h > 0. (3.4)

For the convolutions Fσ = F ∗ Φσ and Gσ = G ∗ Φσ we consider the deviation

I ≡ Fσ(x)−Gσ(x) =
∫ ∞

−∞

(
F (x− σy)−G(x− σy)

)
dΦ(y),

where Φ = Φ1 is the standard normal distribution function. Using the Kolmogorov
distance and the inequality (1.3) for the pair (Fσ, Gσ), we get the uniform estimate

|I| 6 ρ(Fσ, Gσ) 6
1
2π

∫ ∞

−∞

∣∣∣∣f(t)− g(t)
t

∣∣∣∣e−σ2t2/2 dt. (3.5)

Let us now estimate the integral I from below by splitting it into two parts I =
I0 + I1, where

I0 =
∫
|y|6l

(
F (x− σy)−G(x− σy)

)
dΦ(y),

I1 =
∫
|y|>l

(
F (x− σy)−G(x− σy)

)
dΦ(y)
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with a parameter l > 0. Like I, the second integral can be estimated from above as

|I1| 6 2(1− Φ(l)) ≡ γ. (3.6)

At the same time, using the monotonicity of F and G, we obtain for the first integral
the lower estimate

I0 >
(
F (x− σl)−G(x+ σl)

)
(1− γ).

Similarly,
−I0 >

(
G(x− σl)− F (x+ σl)

)
(1− γ),

so that |I0| > (1−γ)L (x, σl). Since |I0| 6 |I|+ |I1|, the inequalities (3.5) and (3.6)
imply that

sup
x

L (x, σl) 6
1

1− γ
ρ(Fσ, Gσ) +

γ

1− γ
. (3.7)

Now we estimate the integral in (3.5) by using the elementary inequality∫ ∞

T

1
t
e−σ2t2/2 dt <

1
σ2T 2

e−σ2T 2/2.

Since |f(t)− g(t)| 6 2, we have∫ ∞

T

|f(t)− g(t)|
t

e−σ2t2/2 dt 6
2

σ2T 2
e−σ2T 2/2,

and hence the right-hand side in (3.5) does not exceed

1
2π

∫ T

−T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣ dt+
2

πσ2T 2
e−σ2T 2/2.

Returning to (3.7), we see that

sup
x

L (x, σl) 6
1

2π(1− γ)

∫ T

−T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣ dt+
2

π(1− γ)σ2T 2
e−σ2T 2/2 +

γ

1− γ
.

Thus, according to (3.4) with h = σl, if we show that

2
π(1− γ)σ2T 2

e−σ2T 2/2 +
γ

1− γ
6 2σl, (3.8)

then we arrive at the estimate

L(F,G) 6
1

2π(1− γ)

∫ T

−T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣ dt+ 2σl. (3.9)

We put σ =
1
T

√
2 log(1 + T ) and l =

√
2 log(1 + T ) . For this choice we have

γ = 2(1− Φ(l)) < e−l2/2 =
1

1 + T
,

γ

1− γ
6

1
T
.
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For example, if T > 1, then

l >
√

log 4 > 1.17, γ < 2(1− Φ(1.17)) < 0.26, (π(1− γ))−1 < 0.44,

and thus

2
π(1− γ)σ2T 2

e−σ2T 2/2 +
γ

1− γ
=

1
π(1− γ)(1 + T ) log(1 + T )

+
γ

1− γ

<
0.44

(1 + T ) log(1 + T )
+

2
1 + T

<
4 log(1 + T )

1 + T
<

4 log(1 + T )
T

= 2σl

(here the next-to-last inequality has to be verified only for T = 1).
Then (3.8) is satisfied, and we have the estimate (3.9): for all T > 1

L(F,G) 6
1
π

∫ T

−T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣ dt+
4 log(1 + T )

T
.

For 0 < T < 1 the last term on the right-hand side is greater than 1, and hence
this inequality is valid for all T > 0.

We give a direct corollary of this inequality.

Corollary 3.3. If the characteristic functions f and g coincide on the interval
[0, T ], then

L(F,G) 6
4 log(1 + T )

T
.

If we use the property |f(t) − g(t)| 6 2, then (3.2) implies the asymptotically
weaker estimate L(F,G) 6 2/

√
T .

4. Distance in variation

When studying other, stronger metrics on F , we commonly estimate the prox-
imity of smoothed distributions in terms of the total variation (which is one of the
strongest metrics). This is completely justified, for as a rule, smoothed distribu-
tions have smooth densities, and the distances between them in different metrics
are often of the same order. Thus, we concentrate on one standard estimate of the
distance in variation in terms of the characteristic functions.

Theorem 4.1. For any distribution functions F and G with continuously differ-
entiable characteristic functions f and g ,

∥F −G∥4TV 6
∫ ∞

−∞
|f(t)− g(t)|2 dt

∫ ∞

−∞
|f ′(t)− g′(t)|2 dt. (4.1)

The estimate (4.1) is sometimes written in the formally weaker form (see, for
example, [13])

∥F −G∥2TV 6
1
2

∫ ∞

−∞
|f(t)− g(t)|2 dt+

1
2

∫ ∞

−∞
|f ′(t)− g′(t)|2 dt. (4.2)
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But we arrive at (4.1) by changing the scale, or, to be precise, applying (4.2)
to Fr(x) = F (x/r), Gr(x) = G(x/r) and optimizing the right-hand side of the
resulting inequality over r > 0.

The inequality (4.1) remains valid for arbitrary functions F and G of bounded
variation. The finiteness of the integrals in (4.1) provides the absolute continuity
of the function A = F −G. Consequently, if G has a density q, then F should have
a density p, and so (4.1) turns into(∫ ∞

−∞
|p(x)− q(x)| dx

)4

6
∫ ∞

−∞
|f(t)− g(t)|2 dt

∫ ∞

−∞
|f ′(t)− g′(t)|2 dt.

Therefore, Theorem 4.1 has a more general statement, in which, moreover, the
condition of continuous differentiability of the Fourier transforms can be weakened
to absolute continuity.

First we recall that the total variation ∥A∥TV of a complex-valued function A
on the real line is defined as the least upper bound of the sums

n∑
k=1

|A(xk)−A(xk−1)|

over all finite collections x0 < x1 < · · · < xn, and the boundedness of variation
means that ∥A∥TV < ∞. In this case the limits A(−∞) = limx→−∞A(x) and
A(∞) = limx→∞A(x) are finite, and, without loss of generality, one can always
assume that A is right-continuous and A(−∞) = 0. If A is (locally) absolutely
continuous, then

∥A∥TV =
∫ ∞

−∞
|A′(x)| dx,

where A′ is the Radon–Nikodym derivative. It is often convenient to identify A
with a Borel (complex-valued) measure on R that is determined by the equality
A((x, y]) = A(y) − A(x), x < y. Then A′ is the Radon–Nikodym derivative of the
measure A with respect to the linear Lebesgue measure. The uniqueness of A′ is
understood to within its values on a zero-measure set (that is, in the space L1(R)).

Theorem 4.2. Any (locally) absolutely continuous function a : R → C such that∫
|a(t)|2 dt < ∞ and

∫
|a′(t)|2 dt < ∞ is the Fourier transform of an integrable

function b : R → C (which is unique in L1), that is,

a(t) =
∫ ∞

−∞
eitxb(x) dx, t ∈ R. (4.3)

Furthermore, in this case(∫ ∞

−∞
|b(x)| dx

)4

6
∫ ∞

−∞
|a(t)|2 dt

∫ ∞

−∞
|a′(t)|2 dt. (4.4)

Proof. We prove the theorem using standard arguments. First we assume that a
and a′ belong to L1(R) ∩ L2(R) and we introduce the function

b(x) =
1
2π

∫ ∞

−∞
e−itxa(t) dt. (4.5)
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Let us show that it is integrable on the whole real line.
The assumption a ∈ L1(R)∩L2(R) guarantees that b ∈ L2(R), and Plancherel’s

formula holds: ∫ ∞

−∞
|b(x)|2 dx =

1
2π

∫ ∞

−∞
|a(t)|2 dt. (4.6)

The conditions a ∈ L1(R) and a′ ∈ L1(R) let us deduce from (4.5) the equality

(ix)b(x) =
1
2π

∫ ∞

−∞
e−itxa′(t) dt. (4.7)

Indeed, we note that since a′ is integrable, the function a has bounded variation,
and thus the limits a(−∞) and a(∞) exist and are finite. Moreover, a(−∞) =
a(∞) = 0 because a is integrable. Consequently, choosing an arbitrary N > 0, we
can integrate by parts:∫ N

−N

e−itxa(t) dt = a(t)
e−itx

−ix

∣∣∣∣t=N

t=−N

+
1
ix

∫ N

−N

e−itxa′(t) dt, x ̸= 0.

Letting N go to ∞, we arrive at (4.7).
The condition a′ ∈ L1(R)∩L2(R) allows us to apply Plancherel’s formula on the

basis of (4.7), and we obtain∫ ∞

−∞
x2|b(x)|2 dt =

1
2π

∫ ∞

−∞
|a′(t)|2 dt.

Combining this with (4.6), we derive the equality∫ ∞

−∞
|1 + ix|2|b(x)|2 dx =

1
2π

(∫ ∞

−∞
|a(t)|2 dt+

∫ ∞

−∞
|a′(t)|2 dt

)
.

Then by the Cauchy–Schwarz inequality, we have(∫ ∞

−∞
|b(x)| dx

)2

=
(∫ ∞

−∞
|1 + ix| |b(x)| 1

|1 + ix|
dx

)2

6
∫ ∞

−∞
|1 + ix|2|b(x)|2 dx

∫ ∞

−∞

1
|1 + ix|2

dx

6
1
2

∫ ∞

−∞
|a(t)|2 dt+

1
2

∫ ∞

−∞
|a′(t)|2 dt.

Applying this to ar(x) = a(rx) and optimizing over r, we obtain (4.4). Therefore,
b is indeed integrable, and hence the inverse Fourier transform can be used on the
basis of (4.5), yielding (4.3). Thus, the theorem is proved under the additional
assumptions.

Let us now consider the general case, and first reformulate the theorem in opera-
tor language. We denote the usual Lp-norm of functions (with respect to Lebesgue
measure) by ∥ · ∥p. The basic function space in Theorem 4.2 is the Sobolev space
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W 2
1 = W 2

1 (R) of all absolutely continuous complex-valued functions a(t) on the real
line with finite norm

∥a∥W 2
1

=
(

1
2
∥a∥22 +

1
2
∥a′∥22

)1/2

.

We need the following assertion.

Lemma 4.3. The linear subspace H = {a ∈W 2
1 : a ∈ L1(R), a′ ∈ L1(R)} is dense

in W 2
1 .

To see this, we note that every function a ∈ H can be approximated in the norm
of W 2

1 by functions
aσ(t) = a(t) e−σ2t2/2, σ > 0.

Obviously, aσ ∈ L1(R) ∩ L2(R). Since |aσ(t)| 6 |a(t)|, by the Lebesgue dominated
convergence theorem we have∫ ∞

−∞
|aσ(t)− a(t)|2 dt→ 0, σ → 0.

Moreover, since a′σ(t) = a′(t)e−σ2t2/2−a(t)σ2te−σ2t2/2 (where the equality is under-
stood in the Radon–Nikodym sense), we have

|a′σ(t)− a′(t)| 6 |a′(t)|(1− e−σ2t2/2) + |a(t)|σ2|t|e−σ2t2/2.

Hence, using the estimate xe−x2/2 6 1/
√
e (x > 0), we find that

|a′σ(t)− a′(t)|2 6 2|a′(t)|2(e−σ2t2/2 − 1)2 + σ2|a(t)|2,

and again by the Lebesgue theorem,∫ ∞

−∞
|a′σ(t)− a′(t)|2 dt→ 0, σ → 0.

Therefore, ∥aσ − a∥W 2
1
→ 0 as σ → 0, and hence H is dense in W 2

1 .
Continuing the proof of Theorem 4.2, we denote by Pb = b̂ the Fourier transform

acting on functions b ∈ L1(R). For functions a in H, we considered in the first
step the functions b = G a determined by (4.5), for which we have the identity (4.6)
and the inequality (4.4). Consequently,

∥G a∥1 6 ∥a∥W 2
1

and ∥G a∥2 6
1√
2π
∥a∥2 6 ∥a∥W 2

1
. (4.8)

Moreover, PG a = a. In particular, G : H → L1(R) ∩ L2(R) is a continuous linear
operator with respect to the norm ∥b∥ = ∥b∥1 + ∥b∥2 in L1(R) ∩ L2(R). But H is
dense in W 2

1 , and thus G can be extended by continuity to the entire space W 2
1 ,

with the inequalities in (4.8) remaining valid. Since the operator P is continuous
in the norm of L2, the identity PG a = a also remains true. Then for all a ∈W 2

1

∥b∥1 6

(
1
2
∥a∥22 +

1
2
∥a′∥22

)1/2

, Pb = a, b = G a.
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It remains to make this inequality homogeneous over the space variable, in the
same way as this was briefly described in the first step. The proof of Theorem 4.2
is complete. �

Remark 4.4. It is not necessary to use the derivatives in (4.1) if it is known that
the distributions F and G have compact support. Indeed, we recall the notation in
Theorem 4.2. If b in (4.3) is concentrated on an interval [−R,R] with R > 0, then
by applying (4.6) we obtain(∫ ∞

−∞
|b(x)| dx

)2

=
(∫ R

−R

|b(x)| dx
)2

6 2R
∫ R

−R

|b(x)|2 dx =
R

π

∫ ∞

−∞
|a(t)|2 dt. (4.9)

In the case a = f −g, a ∈ L2, the function A = F −G is absolutely continuous and,
as a measure, has density b = A′, so that ∥A∥TV =

∫∞
−∞ |b(x)| dx. Consequently,

applying (4.9) to b, we arrive at the following inequality, which is simpler that (4.1).

Theorem 4.5. For any distribution functions F and G that are concentrated on
an interval [−R,R] and have characteristic functions f and g ,

∥F −G∥2TV 6
R

π

∫ ∞

−∞
|f(t)− g(t)|2 dt.

If the integral on the right-hand side is finite, then the function A = F − G is
absolutely continuous. As a measure, it has the density b = A′, and thus ∥A∥TV =∫∞
−∞ |b(x)| dx.

5. Kullback–Leibler divergence

The Kullback–Leibler divergence, also called the relative entropy or the infor-
mation divergence, is an even stronger distance than the total variation of the
difference of distributions. For absolutely continuous probability distributions F
and G on the real line with densities p and q, this distance is defined by

D(F ||G) =
∫ ∞

−∞
p(x) log

p(x)
q(x)

dx

under the assumption that q(x) = 0 ⇒ p(x) = 0 for almost all x (that is, the distri-
bution F regarded as a measure is absolutely continuous with respect to the mea-
sure G). In all the other cases one sets D(F ||G) = ∞.

In the general case we have 0 6 D(F ||G) 6 ∞, and D(F ||G) = 0 if and only if
F = G. However, this functional is not symmetric with respect to (F,G) and thus is
not a metric in the space F . Nevertheless, in many problems the quantity D(F ||G)
serves as a convenient measure of the proximity of F to G. It is related to the
distance in variation by the well-known Pinsker(-type) inequality

D(F ||G) >
1
2
∥F −G∥2TV =

1
2

(∫ ∞

−∞
|p(x)− q(x)| dx

)2

.
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We also note the relation to the classical entropy

h(X) = −
∫ ∞

−∞
p(x) log p(x) dx,

where X is a random variable with density p. Namely, if Z is a Gaussian random
variable with distribution G, and X and Z have equal expectations and variances,
then

D(F ||G) = h(Z)− h(X).

The problem of estimating the proximity of F andG in the sense of the Kullback–
Leibler divergence in terms of the characteristic functions has been little studied.
We present a result for the important case when G = Φ is the standard normal
distribution, that is, has the characteristic function g(t) = e−t2/2. Let

gα(t) = e−t2/2

(
1 + α

(it)3

3!

)
, t, α ∈ R.

The function gα is the Fourier transform of the density

ϕα(x) =
1√
2π
e−x2/2

(
1 + α

x3 − 3x
3!

)
of a ‘corrected’ Gaussian distribution (note that this density can assume negative
values).

As before, ∥u∥2 denotes the L2-norm of a function u:

∥u∥2 =
(∫ ∞

−∞
|u(t)|2 dt

)1/2

.

Theorem 5.1. Let F be a probability distribution on the real line with the charac-
teristic function f , and let

∫∞
−∞ |x|

3 dF (x) <∞. Then for any α ∈ R

D(F ||Φ) 6 α2 + 4
(
∥f − gα∥2 + ∥f ′′′ − g′′′α ∥2

)
. (5.1)

The condition of finiteness of the third absolute moment of F guarantees that
the characteristic function f has three continuous derivatives.

The inequality (5.1) was proved in [14] in the study of the entropy variant of the
central limit theorem. For α = 0 it is simpler:

D(F ||Φ) 6 4
(
∥f − g∥2 + ∥f ′′′ − g′′′∥2

)
and can be regarded as a complete analogue of Theorem 4.1. However, taking other
values of α leads to more accurate estimates for D(F ||Φ).

6. Lévy–Prokhorov distance

Now we return to weak probability metrics (that is, metrics giving weak conver-
gence of probability measures).

A natural modification of the Lévy distance for Borel probability measures F
and G on an arbitrary metric space (M,d) is the Levy–Prokhorov distance π(F,G),
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which was introduced in [15] for metrization of weak convergence. It is defined as
the greatest lower bound of values h > 0 such that

F (A) 6 G(Ah) + h (6.1)

for all Borel sets A ⊂ M . Here Ah denotes the open h-neighbourhood of A in the
metric d, that is,

Ah = {x ∈M : ∃ y ∈M, d(x, y) < h}.
Though this definition is formally not symmetric, the dual inequality G(A) 6
F (Ah) + h easily follows from (6.1).

In the case M = R, if we restricted ourselves in (6.1) only to half-axes A, we
would return to the Lévy distance. Thus, the Lévy–Prokhorov distance is stronger:
L(F,G) 6 π(F,G) (in the case of the real line we identify probability measures F
with the associated distribution functions x 7→ F (−∞, x]). Nevertheless, these
metrics generate the same topology of weak convergence in F . In the case of the
Euclidean space M = Rk, another generalization of the Lev́y metric is the distance
defined by (6.1) for the class of all half-spaces; it is sometimes called the Tsirelson
distance.

Yurinskii [16] proposed a variant of estimation of the proximity of probability
distributions on Rk in the Lévy–Prokhorov metric in terms of the proximity of the
corresponding characteristic functions under the additional moment conditions∫

Rk

∥x∥[k/2]+1 dF (x) <∞ and
∫

Rk

∥x∥[k/2]+1 dG(x) <∞ (6.2)

and under the assumption that G has a density q such that∫
Rk

|q(x+ h)− q(x)| dx 6 λ∥h∥ (6.3)

(a smoothness-type condition by analogy with Theorem 2.1). Under these condi-
tions, he obtained the smoothing inequality

π(F,G) 6 c1π(F ∗H,G ∗H) + c2(1 + λ)
∫

Rk

∥x∥ dH(x),

valid for any probability measure H on Rk, with constants c1 and c2 depending only
on the dimension k. The Lévy–Prokhorov distance between smoothed distributions
can be estimated in variation (Theorem 4.1 with k = 1), which finally yields the
following result [16]. We formulate it in the one-dimensional case, taking into
account a remark of Abramov on a possible weakening of the conditions (6.2) in
terms of pseudomoments.

Theorem 6.1. Let F and G be distribution functions with characteristic func-
tions f and g , respectively, and let∫ ∞

−∞
|x| |F −G|(dx) <∞. (6.4)

If (6.3) is satisfied, then for any T > 0 and some absolute constant c > 0

cπ(F,G) 6

(∫ T

−T

(
|f(t)− g(t)|2 + |(f(t)− g(t))′|2

)
dt

)1/2

+
1 + λ

T
. (6.5)
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Here |F −G| is the variation of the function F −G, regarded as a finite positive
measure on the real line. We note that the continuous differentiability of f − g is
guaranteed by the moment condition (6.4).

Although the first term on the right-hand side of (6.5) is in general much larger
than the analogous integral term in Esseen’s inequality, the main feature of (6.5) is
the decrease of the second term (which holds due to (6.3)). Thus, in applications
related to the convergence rate in the central limit theorem (when G = Φ), Yurin-
skii’s inequality implies the correct asymptotic behaviour and thereby essentially
strengthens the assertion about normal approximation for sums of independent
variables (compared to the statement about normal approximation in the sense of
the Kolmogorov distance).

In the general case, that is, without additional smoothness-type assumptions,
estimates of the proximity π(F,G) in terms of the characteristic functions were
studied by Abramov [17] and Zaitsev [18], [12] (see also [19]). We give a result
obtained in [18] and [12].

Theorem 6.2. Let F and G be distribution functions satisfying (6.2) with k = 1,
and let f and g be their characteristic functions. Then for any T > e

cπ(F,G) 6 I(F,G) +
log T
T

, (6.6)

where c > 0 is an absolute constant and

I(F,G) =
(∫ T

−T

|f(t)− g(t)|2 dt
∫ T

−T

(
log T
T 2

|f(t)− g(t)|2 + |f ′(t)− g′(t)|2
)
dt

)1/4

.

The presence of the term (log T )/T on the right-hand side of (6.6) makes this
inequality closer to the Zolotarev inequality for the Lévy distance, whereas the
functional I(F,G) reminds us of the estimate (4.1) for the total variation (though
with the essential difference that the integrals are now taken over the finite inter-
val [−T, T ]). The strengthening of the Zolotarev inequality implies, for example,
the following statement, which is an improvement of Corollary 3.3 in terms of the
Lévy–Prokhorov distance.

Corollary 6.3. If the characteristic functions f and g coincide on an interval [0, T ]
with T > e, then

π(F,G) 6 c
log T
T

,

where c is an absolute constant.

7. Distance in the Lp-metric

Another important distance in the space F is the distance in the metric of the
space Lp(R):

∥F −G∥p =
(∫ ∞

−∞
|F (x)−G(x)|p dx

)1/p

, 1 6 p <∞.

Unlike the Lévy distance and the Lévy–Prokhorov distance, it is homogeneous of
order 1/p with respect to the space variable: if random variables X and Y have
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distribution functions F and G, then for the distribution functions Fr(x) = F (x/r)
and Gr(x) = G(x/r) of the random variables rX and rY (r > 0) we have

∥Fr −Gr∥p = r1/p∥F −G∥p.

The function p 7→ ∥F − G∥p
p is non-increasing, so ∥F − G∥p 6 ∥F − G∥1/p

1 .
Thus, for finiteness of the Lp-distance, it is sufficient to assume that the absolute
moments E|X| and E|Y | are finite. Moreover, if E|X|ε < ∞ and E|Y |ε < ∞ for
some ε > 0, then, as is easily verified,

lim
p→∞

∥F −G∥p = ∥F −G∥∞ = ρ(F,G).

We note another elementary relation:

L(F,G) 6 ∥F −G∥p/(p+1)
p . (7.1)

Indeed, if L(F,G) > h > 0, then from the definition of the Lévy distance it follows
immediately that there exists a point x0 ∈ R such that G(x0 − h) − h > F (x0) or
F (x0) > G(x0 + h) + h. For definiteness let the second inequality hold. Then by
the monotonicity of F and G,

∥F −G∥p
p >

∫ x0+h

x0

|F (x)−G(x)|p dx > (F (x0)−G(x0 + h))ph > hp+1.

This proves (7.1).
It follows that the topology generated by the Lp-distance is stronger than the

topology of weak convergence in F . Nevertheless, convergence in the Lp-metric on
any subspace of probability distributions with bounded absolute moments of order
α > 1, that is, under the condition

∫∞
−∞ |x|

α dF (x) 6 M with a fixed parameter M ,
is equivalent to weak convergence.

For p > 2, one can estimate the distance ∥F −G∥p in terms of the corresponding
characteristic functions by using the classical Hausdorff–Young inequality

∥â∥p 6 ∥a∥q, q =
p

p− 1
, (7.2)

which is valid for any integrable complex-valued function a on the real line. Here

â(x) =
∫ ∞

−∞
e2πitxa(t) dt, x ∈ R,

is the Fourier transform of the function a with a modified scale.
According to (1.2), the difference F −G is the Fourier transform of the function

a(t) =
1
2π

f(t)− g(t)
−it

in the standard sense when a(t) is integrable. Hence it is

possible to apply (7.2), and then we obtain the following estimate (in which the
assumption of integrability can easily be dropped).

Theorem 7.1. For any distribution functions F and G with characteristic func-
tions f and g , respectively,

∥F −G∥p 6

(
1
2π

∫ ∞

−∞

∣∣∣∣f(t)− g(t)
t

∣∣∣∣q dt)1/q

, q =
p

p− 1
, (7.3)

for p > 2.
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This inequality remains true for arbitrary functions F andG of bounded variation
such that F (−∞) = G(−∞) and F (∞) = G(∞) (in this case we can integrate by
parts in (1.1) to obtain (1.2)). If we take the limit in (7.3) as p → ∞, then we
return to the estimate (1.3) for the Kolmogorov distance.

For 2 < p < ∞ the constant 1/(2π) in (7.3) can be made better if we use the
improved Hausdorff–Young inequality (see [20]). On the other hand, for p = 2 this
inequality turns into the following equality in view of Plancherel’s theorem:

∥F −G∥22 =
1
2π

∫ ∞

−∞

∣∣∣∣f(t)− g(t)
t

∣∣∣∣2 dt. (7.4)

Using this equality in (7.1), we obtain another well-known estimate for the Lévy
distance:

L(F,G) 6

(
1
2π

∫ ∞

−∞

∣∣∣∣f(t)− g(t)
t

∣∣∣∣2 dt)1/3

.

However, this estimate can hardly compete with Zolotarev’s inequality.
Since |f(t)− g(t)| 6 2, the proximity of the characteristic functions f and g on

a large interval suffices for the proximity of F and G in the Lp-metric. Indeed,∫
|t|>T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣q dt 6 2q+1

∫ ∞

T

1
tq
dt =

2q+1

q − 1
1

T q−1
.

Using the relations(
2q+1

(q − 1)T q−1

)1/q

= 21+1/q(p− 1)(p−1)/p 1
T 1/p

6
4(p− 1)
T 1/p

and
(

1
2π

)1/q

<
1
2
,

we obtain the following statement from (7.3).

Corollary 7.2. Let F and G be distribution functions with characteristic func-
tions f and g . For p > 2 and for any T > 0

∥F −G∥p 6
1
2

(∫ T

−T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣q dt)1/q

+
4(p− 1)
T 1/p

. (7.5)

In particular, if f and g coincide on an interval [0, T ], then

∥F −G∥p 6
4(p− 1)
T 1/p

.

8. Distance in the L1-metric

For 1 6 p < 2 the inequality (7.3) no longer holds, and other approaches are
needed for estimating the proximity of distributions in the Lp-metric in terms of
the characteristic functions. Let us consider the most interesting case p = 1, when
we deal with the mean distance in the space F . In view of the relation between
the distance in the L1-metric and the Kantorovich distance and other transport
metrics, we use another standard notation:

W1(F,G) = ∥F −G∥1 =
∫ ∞

−∞
|F (x)−G(x)| dx, F,G ∈ F .

Recall that, according to (7.1) with p = 1, the relation L2(F,G) 6 W1(F,G) holds.
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Let f and g be the characteristic functions for distribution functions F and G.
If the quantity W1(F,G) is finite, then f − g is continuously differentiable, and
a(t) = (f(t)− g(t))/(−it) is the Fourier transform of b = F −G. Thus, we can use
Theorem 4.2, which yields the estimate

W 2
1 (F,G) 6

1
2

∫ ∞

−∞

∣∣∣∣f(t)− g(t)
t

∣∣∣∣2 dt+
1
2

∫ ∞

−∞

∣∣∣∣ ddt f(t)− g(t)
t

∣∣∣∣2 dt.
Just as done before Corollary 7.2, here we can narrow the integration interval to
[−T, T ], and then in the best case we obtain an estimate of type

W1(F,G) 6

(∫ T

−T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣2 dt)1/2

+
(∫ T

−T

∣∣∣∣ ddt f(t)− g(t)
t

∣∣∣∣2 dt)1/2

+
c√
T
(8.1)

by analogy with the inequality (7.5) for p = 2 (and with an additional integral
containing the derivatives of the characteristic functions).

To replace the last term c/
√
T by c/T (which would agree with the power of T

in (7.5) for p = 1), Esseen proposed the use of smoothing by means of a special finite
signed measure HT with parameter T > 0 on the real line with Fourier–Stieltjes
transform

hT (t) =


1, |t| 6 T

2
,

0, |t| > T,

2(T − |t|)
T

,
T

2
6 |t| 6 T.

Note that 0 6 hT (t) 6 1 and |h′T (t)| 6 2/T (|t| ≠ T, T/2). In terms of the
characteristic functions vT (t) = (1 − |t|/T )+, we can write hT = 2vT − vT/2. It
follows immediately that ∥HT ∥TV 6 3.

From this point on, we mainly follow the exposition of the monograph [13],
though with some modifications. We denote the class of all complex-valued func-
tions A = A(x) with bounded variation on the real line by V , and the class of their
Fourier–Stieltjes transforms a = a(t) by Ṽ . Let ∥a∥tv = ∥A∥TV.

The class V is closed under convolution, and hence Ṽ is closed under multipli-
cation and is an algebra, in which this norm has the properties

∥a+ b∥tv 6 ∥a∥tv + ∥b∥tv and ∥ab∥tv 6 ∥a∥tv∥b∥tv

for all a, b ∈ Ṽ . The variation norm does not change if we change the scale, and
thus for ar(t) = a(rt) we also have ∥ar∥tv = ∥a∥tv.

Any characteristic function has norm ∥a∥tv = 1, and in particular, ∥1∥tv = 1.
In the general case, when the function a is absolutely continuous, the conditions∫
|a(t)|2 dt <∞ and

∫
|a′(t)|2 dt <∞ guarantee that a ∈ Ṽ , and by Theorem 4.2

∥a∥tv 6

(∫ ∞

−∞
|a(t)|2 dt

∫ ∞

−∞
|a′(t)|2 dt

)1/4

. (8.2)
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Example 8.1. Let us consider the function

uT (t) =


4t

−iT 2
, |t| 6 T

2
,

1
−it

, |t| > T

2
.

To estimate its norm we can use the identity uT (t) = (2/T )u2(2t/T ), which reduces
the problem to the case T = 2. Applying (8.2), we immediately obtain the estimate
∥u2∥tv 6

√
8/3 , and thus

∥uT ∥tv 6
c

T
, c = 2

√
8
3
. (8.3)

It should be noted that the problem of minimizing ∥u∥tv in the class of all
functions u ∈ Ṽ such that u(t) = 1/(−it) for |t| > 1 was studied by Beurling
(see [4]). It turned out that the minimum value is π/2 = 1.57 . . . (the example of
u2 gives the value

√
8/3 = 1.63 . . ., which is slightly worse).

Now let A be a given function of bounded variation with Fourier–Stieltjes trans-
form

a(t) =
∫ ∞

−∞
eitx dA(x).

If A is integrable, then A(−∞) = A(∞) = 0 and the function a is absolutely
continuous (locally). Moreover, we can integrate by parts:

b(t) ≡ a(t)
−it

=
∫ ∞

−∞
eitxA(x) dx =

∫ ∞

−∞
eitx dB(x), B(x) =

∫ x

−∞
A(y) dy.

Hence, b belongs to Ṽ and has the norm

∥b∥tv = ∥B∥TV =
∫ ∞

−∞
|A(x)| dx.

On the other hand, if we use the representation b = bhT + b · (1− hT ), then we
get by the triangle inequality that

∥b∥tv 6 ∥bhT ∥tv + ∥b · (1− hT )∥tv. (8.4)

Since 1− hT (t) = 0 for |t| 6 T/2, the equality

b(t)(1− hT (t)) = a(t)u(t)(1− hT (t))

holds for any function u ∈ Ṽ such that u(t) = 1/(−it) for |t| > T/2. Moreover, in
this case

∥b · (1− hT )∥tv 6 ∥a∥tv∥u∥tv∥1− hT ∥tv.

Here ∥a∥tv = ∥A∥TV and ∥1− hT ∥tv 6 1 + ∥hT ∥tv 6 4, and hence

∥b · (1− hT )∥tv 6 4∥A∥TV∥u∥tv.
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Taking the function uT in Example 8.1 as u, we get from (8.4) the smoothing-type
inequality ∫ ∞

−∞
|A(x)| dx 6 ∥bhT ∥tv +

4c∥A∥TV

T
, c = 2

√
8
3
. (8.5)

Let us consider the first term on the right-hand side of this inequality. Apply-
ing (8.2) and using the fact that hT = 0 outside the interval (−T, T ), we arrive at
the inequality

∥bhT ∥2tv 6
1
2

∫ T

−T

|b(t)hT (t)|2 dt+
1
2

∫ T

−T

|(b(t)hT (t))′|2 dt. (8.6)

Here the first integral does not exceed ε =
∫ T

−T
|b(t)|2 dt. In addition, the identity

(bhT )′ = b′hT + bh′T (in the sense of Radon–Nikodym) for |t| < T implies the
inequality

|(b(t)hT (t))′|2 6 2|b′(t)|2 +
8|b(t)|2

T 2
,

which holds almost everywhere. Consequently, putting δ =
∫ T

−T
|b′(t)|2 dt, we can

estimate the second integral in (8.6) by the quantity 2δ+(8/T 2)ε and finally obtain

∥bhT ∥2tv 6

(
1
2

+
4
T 2

)
ε+ δ.

The last inequality together with (8.5) yields the following theorem of Esseen [21].

Theorem 8.2. Let A be a complex-valued integrable function of bounded variation
with Fourier–Stieltjes transform a. Then for all T > 0∫ ∞

−∞
|A(x)| dx 6 cT

(∫ T

−T

∣∣∣∣a(t)t
∣∣∣∣2 dt)1/2

+
(∫ T

−T

∣∣∣∣ ddt a(t)t
∣∣∣∣2 dt)1/2

+c
∥A∥TV

T
, (8.7)

where cT = (1/2 + 4/T 2)1/2 and c is a constant. In particular, (8.7) holds with
c = 16

√
2/3 < 13.07.

If A = F −G, where F and G are distribution functions, then ∥A∥TV 6 2, and
we obtain the following improvement of (8.1).

Corollary 8.3. Let F and G be distribution functions with characteristic func-
tions f and g . If W1(F,G) <∞, then for all T > 3

W1(F,G) 6

(∫ T

−T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣2 dt)1/2

+
(∫ T

−T

∣∣∣∣ ddt f(t)− g(t)
t

∣∣∣∣2 dt)1/2

+
c

T
, (8.8)

where c is a constant. In particular, if f and g coincide on [0, T ], then W1(F,G) 6
c/T .
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By (8.7), we can take c = 32
√

2/3 in the last inequality. This constant can be
improved on the basis of the indicated result of Beurling. Esseen [4] showed that
W1(F,G) 6 π/T in the case when the characteristic functions f and g coincide on
the interval [0, T ].

Finally, to draw attention to the relationship between Theorems 8.2 and 4.2, we
reformulate (8.7) and observe that a(t)/(−it) is the Fourier transform of A. Upon
changing the notation, we obtain the following assertion.

Corollary 8.4. For any integrable function b : R → C of bounded variation, its
Fourier transform b̂ is a (locally) absolutely continuous function, and for all T > 0∫ ∞

−∞
|b(x)| dx 6

(
1
2

+
4
T 2

)1/2(∫ T

−T

|̂b(t)|2 dt
)1/2

+
(∫ T

−T

∣∣∣∣ ddt b̂(t)
∣∣∣∣2 dt)1/2

+
14
T
∥b∥TV.

Letting T tend to infinity, we derive an inequality that is equivalent to (4.4) up
to an absolute multiplicative constant.

9. Ideal Zolotarev metrics

In the mid-1970s, in connection with problems on the rate of convergence in
the central limit theorem, Zolotarev introduced the so-called ideal metrics in the
space of probability distributions on Rk. Among these metrics the following are
the most important (see, for example, [22], [23]). For simplicity we consider only the
one-dimensional case.

Fix an integer s > 0. For probability distributions F and G on the real line that
have finite absolute moments of order s, we put

ζs(F,G) = sup
∣∣∣∣∫ ∞

−∞
u dF −

∫ ∞

−∞
u dG

∣∣∣∣, (9.1)

where the supremum is taken over all functions u : R → R having a derivative of
order s− 1 satisfying the Lipschitz condition:

|u(s−1)(x)− u(s−1)(y)| 6 |x− y|, x, y ∈ R

(it is sufficient to consider s times differentiable functions u such that |u(s)| 6 1).
In the case s = 0 we obtain the distance in variation ζ0(F,G) = ∥F −G∥TV.
In the case s = 1 it is easy to see that we return to the metric in L1:

ζ1(F,G) = sup
∥u∥Lip61

∣∣∣∣∫ ∞

−∞
u dF −

∫ ∞

−∞
u dG

∣∣∣∣ =
∫ ∞

−∞
|F (x)−G(x)| dx.

In the case s = 2 a similar formula holds:

ζ2(F,G) =
∫ ∞

−∞

∣∣∣∣∫ x

−∞
(F (y)−G(y)) dy

∣∣∣∣ dx.
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In the general case we let b1 = F −G and obtain the recurrence relation

ζs(F,G) =
∫ ∞

−∞
|bs(x)| dx, bs(x) =

∫ x

−∞
bs−1(y) dy, (9.2)

which yields the representation

ζs(F,G) =
1

(s− 2)!

∫ ∞

−∞

∣∣∣∣∫ x

−∞
(F (y)−G(y)) (x− y)s−2 dy

∣∣∣∣ dx, s > 2.

Note that for the finiteness of ζs(F,G) it suffices that F and G have coinciding
moments of orders up to s− 1 inclusive:∫ ∞

−∞
xp dF (x) =

∫ ∞

−∞
xp dG(x), p = 1, . . . , s− 1, (9.3)

and also have finite absolute moments
∫∞
−∞ |x|

s dF (x) and
∫∞
−∞ |x|

s dG(x) (which
was assumed from the beginning).

The distance ζs is homogeneous of order s with respect to the space variable: if
random variables X and Y have distribution functions F and G, then the distribu-
tion functions Fr and Gr of the random variables rX and rY (r > 0) satisfy

ζs(Fr, Gr) = rsζs(F,G).

These metrics are related; in particular,

ζ1 6 Csζ
1/(1+s)
1+s , ζ

1/2
2 6 C ′sζ

1/(2+s)
2+s ,

where the constants depend only on s (see [9], Theorem 3). For example, ζ2
1 6 8ζ2

(see [23]).
Using ζ2, we can estimate the Lévy–Prokhorov distance by

π3(F,G) 6 cζ2(F,G), F,G ∈ F ,

with some constant c (see [24]).
The Zolotarev metrics can be defined similarly also for non-integers s = m + α

(m an integer, 0 < α < 1). In this case the supremum in (9.1) is taken over
all m times differentiable functions u having derivatives of order m that satisfy the
Lipschitz condition with exponent α:

|u(m)(x)− u(m)(y)| 6 |x− y|α, x, y ∈ R.

By (9.1), the definition of ζs(F,G) can be extended to any functions F and G of
bounded variation. For finiteness of ζ1(F,G), it should be assumed that the integral∫∞
−∞ |F (x)−G(x)| dx is finite, which, in turn, is guaranteed by the condition∫ ∞

−∞
|x|

∣∣d(F (x)−G(x)
)∣∣ <∞,

and then we necessarily have F (−∞) = G(−∞) and F (∞) = G(∞).
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In this more general case, we pass to the problem of estimating the Zolotarev
distance in terms of the Fourier–Stieltjes transforms

f(t) =
∫ ∞

−∞
eitx dF (x) and g(t) =

∫ ∞

−∞
eitx dG(x), t ∈ R.

To estimate ζ1(F,G) one can use Theorem 8.2 or Corollary 8.4: the inequality

ζ1(F,G) 6

(∫ T

−T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣2 dt)1/2

+
(∫ T

−T

∣∣∣∣ ddt f(t)− g(t)
t

∣∣∣∣2 dt)1/2

+
14
T
∥F −G∥TV

holds for all T > 3.
If the function b2(x) =

∫ x

−∞(F (y)−G(y)) dy is integrable, then we can integrate
by parts on the right-hand side of the equality

f(t)− g(t)
−it

=
∫ ∞

−∞
eitx(F (x)−G(x)) dx =

∫ ∞

−∞
eitx db2(x),

which implies that
f(t)− g(t)

(−it)2
=

∫ ∞

−∞
eitxb2(x) dx.

Applying Corollary 8.4 to b = b2 and taking the equality ∥b2∥TV = ζ1(F,G) into
account, we now get that

ζ2(F,G) 6

(∫ T

−T

∣∣∣∣f(t)− g(t)
t2

∣∣∣∣2 dt)1/2

+
(∫ T

−T

∣∣∣∣ ddt f(t)− g(t)
t2

∣∣∣∣2 dt)1/2

+
14
T
ζ1(F,G).

Note that the integrability of b2 is guaranteed by the conditions∫ ∞

−∞
x dF (x) =

∫ ∞

−∞
x dG(x),

∫ ∞

−∞
|x|2 |d(F (x)−G(x))| <∞,

where, as usual, |d(F (x)−G(x))| denotes the variation of F −G (which is a finite
positive measure on the real line).

Proceeding on the basis of the recurrence formula (9.2), we arrive at similar
estimates for arbitrary integers s > 1.

Theorem 9.1. Let F and G be functions of bounded variation that have identical
moments of all orders up to s− 1 inclusive (the condition (9.3)) and are such that∫ ∞

−∞
|x|s

∣∣d(F (x)−G(x)
)∣∣ <∞.

Then for all T > 3

ζs(F,G) 6

(∫ T

−T

∣∣∣∣f(t)− g(t)
ts

∣∣∣∣2 dt)1/2

+
(∫ T

−T

∣∣∣∣ ddt f(t)− g(t)
ts

∣∣∣∣2 dt)1/2

+
c

T
ζs−1(F,G)

with some absolute constant c > 0 (one can take c = 14).

In the class of distribution functions, this inequality was proved by Zolotarev [25]
(up to an absolute constant); it is also given (without proof) in [23], p. 80.
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10. Transport metrics

Let (M,d) be a complete separable metric space, and denote by Fp(M) the
space of all (Borel) probability measures F on M that have a finite moment of
order p > 1, that is, satisfy the condition∫ (

d(x, x0)
)p
dF (x) <∞

for some (and hence for all) x0 ∈M . We put

Wp(F,G) = inf
( ∫∫ (

d(x, y)
)p
dµ(x, y)

)1/p

,

where the infinum is taken over all probability measures µ on M×M with marginal
distributions F and G, that is, over measures such that

µ(A×M) = F (A), µ(M ×A) = G(A)

for all Borel sets A ⊂M . The functional Wp turns Fp(M) into a metric space.
According to Vershik’s historical study [26], the distance W1 was introduced by

Kantorovich in the late 1930s. The latter also considered more general functionals
of the form

W = inf
∫∫

c(x, y) dµ(x, y),

with the following interpretation: if the cost of transporting a ‘particle’ from point
x to point y is c(x, y), then the cost of optimal transportation of a ‘mass’ F to G is
equal to W (see [27] and [28]). Therefore, the distances Wp are also called transport
distances or minimal distances. A detailed discussion of many important properties
and applications of these metrics can be found in [29]–[32]. Here we mention some
of them.

As follows directly from the definition, the function p 7→ Wp(F,G) is non-
decreasing, and hence the metric Wp becomes stronger with growing p. The Kan-
torovich distance is related to the Lévy–Prokhorov distance by the inequality

π(F,G) 6
(
Wp(F,G)

)p/(p+1)
. (10.1)

This is an analogue of the relation (7.1) between the Lévy metric and the metric
in the space Lp. We give a similar proof. Assume that F (A) > G(Ah)+h for some
h > 0 and some Borel set A in M . Then for any probability measure µ on M ×M
with marginal distributions F and G we have∫

M

∫
M

(d(x, y))p dµ(x, y) >
∫

A

∫
M\Ah

(
d(x, y)

)p
dµ(x, y)

> hpµ
(
A×M ∩M × (M \Ah)

)
> hp

(
F (A)−G(Ah)

)
> hp+1.

Consequently, W p
p (F,G) > hp+1, which proves (10.1).
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From (10.1) it follows that the topology generated by Wp on Fp(M) is stronger
than the topology of weak convergence. In fact, there is the following characteri-
zation (see [30]): Wp(Fn, F ) → 0 as n → ∞ if and only if π(Fn, F ) → 0, and for
some (equivalently, all) x0 ∈M∫ (

d(x, x0)
)p
dFn(x) →

∫ (
d(x, x0)

)p
dF (x).

Thus, convergence in the metric Wp is equivalent to weak convergence on many
subspaces of the space Fp(M).

For p = 1 the famous Kantorovich–Rubinstein theorem provides a dual descri-
ption of the metric W1 (see [33] and [34]): for all F,G ∈ F1(M)

W1(F,G) = sup
∣∣∣∣∫ u dF −

∫
u dG

∣∣∣∣,
where the supremum is taken over all functions u : M → R satisfying the Lipschitz
condition |u(x)− u(y)| 6 d(x, y), x, y ∈M .

Therefore, in the case of the real lineM = R with the canonical distance d(x, y) =
|x− y|, we return to the metric in the space L1:

W1(F,G) = ζ1(F,G) = ∥F −G∥1 =
∫ ∞

−∞
|F (x)−G(x)| dx. (10.2)

Here F and G on the right-hand side are distribution functions associated with the
corresponding probability measures. However, Wp with p > 1 does not reduce to
the distance in the space Lp, and there is a similar description

Wp(F,G) =
(∫ 1

0

|F−1(t)−G−1(t)|p dt
)1/p

in terms of generalized inverse functions F−1(t) = inf{x ∈ R : F (x) > t}.
The identity (10.2) suggests that there is possibly a close connection between

the Kantorovich and Zolotarev distances. Interesting results in this direction were
recently obtained by Rio [35]. In particular, he showed in [35] that for any proba-
bility distributions F and G on the real line the estimate

Wp(F,G) 6 cp ζp(F,G)1/p, p > 1, (10.3)

holds with c an absolute constant.

11. Quadratic Kantorovich distance

In the hierarchy of the metrics Wp with p > 1, the particular case p = 2 is
most popular. The distance W2 is often regarded as an analogue of the Euclidean
distance in the space F2(M). Hence, questions connected with estimation of this
distance have been the subject of many investigations. The problem of estimating
the proximity of F and G in the metric W2 in terms of the Fourier–Stieltjes trans-
forms is yet to be studied. This observation also applies to other values p > 1, with
the exception of the case p = 1 and M = R (in view of the relation (10.2)).
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We cite an important result of Talagrand [36] that connects the quadratic Kan-
torovich distance and the Kullback–Leibler divergence (see also [37]): for all F ∈
F2(Rk)

W 2
2 (F,Φ) 6 2D(F ||Φ), (11.1)

where Φ is the Gaussian measure on Rk with density

ϕ(x) =
1

(2π)k/2
e−∥x∥

2/2.

In the case when the distribution F has density p(x) =
dF (x)
dx

with respect to
Lebesgue measure, the estimate (11.1) can be made more concrete:

W 2
2 (F,Φ) 6 2

∫
Rk

p(x) log
p(x)
ϕ(x)

dx.

The inequality (11.1) is called the transport-entropy inequality. We refer the reader
to [38], where other interesting relations are also given for W2.

Applying (11.1) to smoothed distributions and using the estimate (5.1) for
the Kullback–Leibler divergence (Theorem 5.1), one can estimate W2(F,Φ) in
terms of the characteristic function f of the distribution F . Let us consider
the one-dimensional case. We obtain the following theorem, which involves the
Fourier–Stieltjes transform

gα(t) = e−t2/2

(
1 + α

(it)3

3!

)
of a ‘corrected’ Gaussian distribution.

Theorem 11.1. Let F be a probability distribution on the real line with character-
istic function f , and let

∫∞
−∞ |x|

3 dF (x) <∞. Then for any T > 1 and α ∈ R

W2(F,Φ) 6 4
(∫ T

−T

|f(t)− gα(t)|2 dt
)1/4

+ 4
(∫ T

−T

|f ′′′(t)− g′′′α (t)|2 dt
)1/4

+ c

(
1 +Q

1/4
T

T
+ |α|

)
,

where c > 0 is an absolute constant and

QT =
∫ T

−T

(
|f ′′(t)|+ |f ′(t)|+ |f(t)|

)2 (1 + t4) dt.

In applications it is natural to choose T so that the integral QT remains bounded,
and the quantity α should be chosen to be small of order 1/T but not necessarily
equal to zero; this can significantly decrease the values of the first two integrals.

In proving the theorem we use the notation W2(X,Y ) instead of W2(F,G)
and D(X||Y ) instead of D(F ||G), where the random variables X and Y have the
distributions F and G, respectively.
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We put Xσ = X + σY with σ = 1/T , and we assume that the random vari-
able Y does not depend on X and has a symmetric distribution with character-
istic function h such that h(t) = 0 for |t| > 1, with E|Y |3 6 C3 (C > 1). We
can take a normalized convolution power of the triangular characteristic function
h0(t) = (1− |t|)+, for example

h(t) =
h∗60 (6t)
h∗60 (0)

.

By convoluting h0 with itself sufficiently many times, we obtain a positive-definite
function that is differentiable the necessary number of times. Consequently, after
normalization we are dealing with the characteristic function of a random variable
that has finite absolute moments of the necessary order, and we can also control
the support of the characteristic function.

By the definition of the quadratic Kantorovich distance,

W 2
2 (Xσ, X) 6 E(Xσ −X)2 = σ2EY 2 6

C2

T 2
. (11.2)

The triangle inequality for the metric W2 implies that

W2(X,Z) 6 W2(Xσ, Z) +W2(Xσ, X),

where it is assumed that the random variable Z has the standard normal distribu-
tion Φ. Hence

W 2
2 (X,Z) 6 2W 2

2 (Xσ, Z) + 2W 2
2 (Xσ, X),

and from the inequalities (11.1) and (11.2) we derive the smoothing-type inequality

W 2
2 (X,Z) 6 4D(Xσ||Z) +

2C2

T 2
.

To estimate the entropy term in this inequality, we apply (5.1) to the distribution
of the random variable Xσ. It has the characteristic function fσ(t) = f(t)h(σt),
and thus

D(Xσ||Z) 6 4
(
∥fσ − gα∥2 + ∥f ′′′σ − g′′′α ∥2

)
+ α2,

so that we have

W 2
2 (X,Z) 6 16

(
∥fσ − gα∥2 + ∥f ′′′σ − g′′′α ∥2

)
+

2C2

T 2
+ 4α2. (11.3)

For |t| > T the equality fσ(t) = 0 holds, and we obtain

∥fσ − gα∥22 =
∫ T

−T

|fσ(t)− gα(t)|2 dt+
∫
|t|>T

|gα(t)|2 dt,

where the last integral decreases exponentially with respect to T (and even at
a higher rate). The same is valid for the derivatives, and hence∫

|t|>T

|gα(t)|2 dt 6
C1(1 + |α|)2

T 4
and

∫
|t|>T

|g′′′α (t)|2 dt 6
C1(1 + |α|)2

T 4



Proximity of probability distributions 1049

with some constant C1 > 1. Using the temporary notation

∥u∥T =
(∫ T

−T

|u(t)|2 dt
)1/2

,

we get from (11.3) that

W 2
2 (X,Z) 6 16∥fσ − gα∥T + 16∥f ′′′σ − g′′′α ∥T +

C2(1 + |α|)
T 2

+ 4α2

6 16∥fσ − gα∥T + 16∥f ′′′σ − g′′′α ∥T +
C3

T 2
+ C4α

2

with some constants Cj . Moreover, we can approximate fσ on the interval [−T, T ]
with the help of f in the sense of the L2-norm, and by the triangle inequality for
the L2-norm,

W 2
2 (X,Z) 6 16∥f − gα∥T + 16∥f ′′′ − g′′′α ∥T +

C3

T 2
+ C4α

2

+ 16∥fσ − f∥T + 16∥f ′′′σ − f ′′′∥T . (11.4)

It remains to estimate the last two norms. In view of the symmetry of the
distribution of the random variable Y , we have h′(0) = iEY = 0. Moreover,
|h′′(s)| 6 EY 2 6 C2. Consequently, by Taylor’s formula |h(s) − 1| 6 C2s2/2 for
all s. It follows that

|fσ(t)− f(t)| 6 |f(t)| |h(σt)− 1| 6 C2σ2

2
t2|f(t)|

and

∥fσ − f∥T 6
C2σ2

2

(∫ T

−T

t4|f(t)|2 dt
)1/2

6
C2

2T 2

√
QT . (11.5)

Using the inequalities |h′(s)| 6 C|s| and |h(r)(s)| 6 E|Y |r 6 Cr (r = 2, 3) and
differentiating fσ(t) three times, we obtain the similar pointwise estimate

|f ′′′σ (t)− f ′′′(t)| = |3σf ′′(t)h′(σt) + 3σ2f ′(t)h′′(σt) + σ3f(t)h′′′(σt)|
6 3C3σ2

(
|tf ′′(t)|+ |f ′(t)|+ |f(t)|

)
,

which implies that

∥f ′′′σ − f ′′′∥T 6 3C3σ2

(∫ T

−T

(
|tf ′′(t)|+ |f ′(t)|+ |f(t)|

)2
dt

)1/2

6
3C3

T 2

√
QT .

Taking this inequality into account along with (11.5), we deduce from (11.4) the
required estimate

W 2
2 (X,Z) 6 16 ∥f − gα∥T + 16∥f ′′′ − g′′′α ∥T +

C3 + 4C3
√
QT

T 2
+ C4α

2.
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12. Smoothing measures with compact support

In the preceding inequalities where smoothing measures were used, the Fourier–
Stieltjes transforms of these measures had compact supports. But in some problems
it is desirable that the smoothing measures themselves have compact supports. In
this case, the corresponding Fourier–Stieltjes transforms can be rapidly decreasing
(at infinity), but cannot be concentrated on a finite interval. The problem of
the possible rate of decrease was considered by Ingham, who proved the following
theorem ([39]; see also [40]). We state it in a slightly different form.

Theorem 12.1. Let u : [1,∞) → [0,∞) be a non-decreasing function such that

I =
∫ ∞

1

u(t)
t

dt <∞.

Then for any c > 1 there exists a symmetric probability measure H concentrated on
the interval [−cI, cI] and with characteristic function f satisfying the inequality

|f(t)| 6 e−tu(t) log c, t > 4.

For example, letting u(t) = α/(etα) with a parameter α with 0 < α < 1, and
taking c = e, we can choose a measure H on [−1, 1] with characteristic function f
such that

|f(t)| 6 exp
{
−α
e
t1−α

}
, t > 4.

Another example u(t) = κ/ log2(1+ t) with a suitable value κ > 0 gives the even
more rapid (almost exponential) decrease

|f(t)| 6 exp
{
− log 2

2e
t

log2(1 + t)

}
, t > 4,

and H is again concentrated on [−1, 1].
However, it is known that under the assumption of a compact support it is

impossible to obtain an inequality of the form |f(t)| 6 Ce−ct, t > t0 (with some
positive constants c and C). Nevertheless, such an exponential estimate is possible
in the integral sense in view of the following elementary theorem.

Theorem 12.2. For any T > 0 there exists a symmetric probability measure H
concentrated on the interval [−1, 1] and with characteristic function f satisfying
the inequality ∫

|t|>T

|f(t)| dt 6 2πe2e−T/e. (12.1)

For T > 1 ∫
|t|>T

|f(t)| dt
|t|

6 3 e−T/e. (12.2)

As proposed by Ingham, one can take the measure H in Theorem 12.1 to be the
distribution of a convergent random series

S = c

∞∑
n=2

u(n)
n

Xn,
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where the random variables Xn are independent and uniformly distributed on
(−1, 1).

To prove Theorem 12.2, it suffices to take the finite sum

Sn =
1
n

n∑
k=1

Xk, n > 2,

with n = [T/e] and T > 2e. In this case 2 6 n 6 T/e, and Sn has the characteristic

function f(t) = EeitSn =
(

sin(t/n)
t/n

)n

. Hence,

∫ ∞

T

|f(t)| dt 6
∫ ∞

T

(
n

t

)n

dt =
T

n− 1
e−n log(T/n)

6
T

[T/e]− 1
e−[T/e] 6

Te

[T/e]− 1
e−T/e 6 2e2e−T/e.

In the case 0 6 T 6 2e, one can take n = 2 and apply the inverse Fourier transform

to f(t) =
(

sin(t/2)
t/2

)2

. Since S2 has the triangular density p(x) = (1 − |x|)+, we

find that
∫∞
0
f(t) dt = πp(0) = π. Consequently,∫ ∞

0

f(t) dt = π 6 πe2e−T/e.

Combining the two cases, we arrive at (12.1).
Similarly, for T > 2e∫ ∞

T

|f(t)| dt
t

6
∫ ∞

T

(
n

t

)n
dt

t
=

1
n
e−n log(T/n) 6

1
2
e−[T/e] 6

e

2

−T/e
.

In the case 1 6 T 6 2e one can take n = 1, which gives∫ ∞

T

|f(t)| dt
t

6
∫ ∞

T

1
t2
d =

1
T

6
3
2
e−T/e

(here we use the fact that e1/e < 1.5).
Combining both cases, we obtain (12.2).
The distributions H in Theorem 12.2 were used by Zolotarev to prove an inequal-

ity for the Lévy distance (Theorem 3.2).

13. Signed smoothing measures

Let us pass to smoothing measures with additional properties, without keeping
the property of positiveness.

Theorem 13.1. Let s > 1 be an integer. For any T > 1 there exists a symmetric
signed measure R on [−1, 1] with total variation ∥R∥TV 6 cs such that

R([−1, 1]) = 1,
∫ 1

−1

xp dR(x) = 0 (p = 1, . . . , s− 1) (13.1)
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and with Fourier–Stieltjes transform f satisfying the inequality∫
|t|>T

|f(t)| dt
|t|

6 3cse−T/e. (13.2)

One can set c1 = c2 = 1, c3 = 3, and cs = s
(

2s
s−1

)
for s > 4.

In the cases s = 1 and s = 2 the condition (13.1) is automatically satisfied for
the probability measure R = H in Theorem 12.2 (by the symmetry of H; hence
c1 = c2 = 1). For s = 3 this condition is satisfied for p = 1 but not for p = 2. For it
to hold it is necessary to drop the property of positiveness of R as a measure, that
is, to drop the monotonicity of the associated function R(x) = R((−∞, x]), and to
take, for example,

R(x) = 2H(x
√

2 )−H(x).

In this case ∥R∥TV 6 3, and thus we can put c3 = 3.
In the general case, we let

R(x) = w1H

(
x

b1

)
+ · · ·+ wsH

(
x

bs

)
,

where H is the distribution function in Theorem 12.2 (which we identify with the
measure H), and bi ̸= bj (i ̸= j). If all the quantities bi belong to (0, 1], then R as
a measure is concentrated on [−1, 1], and its total variation can be estimated as

∥R∥TV 6
s∑

i=1

|wi|. (13.3)

The Fourier–Stieltjes transform f of the measure R can be expressed in terms of the
characteristic function h of H in the following way: f(t) =

∑s
i=1 wih(bit). Hence

by Theorem 12.2,∫
|t|>T

|f(t)| dt
|t|

=
s∑

i=1

|wi|
∫
|t|>T/bi

|h(t)| dt
|t|

6 3
s∑

i=1

|wi|e−T/e. (13.4)

Now we pass to the condition (13.1). It reduces to a linear system in s unknowns
w = (w1, . . . , ws), which can be written in matrix form as V w = e, where V is the
Vandermonde matrix

V =


1 1 . . . 1
b1 b2 . . . bs
...

...
. . .

...
bs−1
1 bs−1

2 . . . bs−1
s


and e is the column (1, 0, . . . , 0). It follows that w = V −1e, and we can estimate
the right-hand side of (13.3) in terms of the bi. With this aim in view, we use the
following result from [41] on the norm of the inverse of a Vandermonde matrix: if
the norm of the s× s matrix A = (aij) is defined by

∥A∥ = max
16i6s

s∑
j=1

|aij |,
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then for A = V −1 we have

∥V −1∥ 6 max
16i6s

∏
j ̸=i

1 + |bj |
|bi − bj |

. (13.5)

For example, choosing bi = i/s, we obtain the upper estimate

∥V −1∥ 6
s∏

j=2

1 + j/s

j/s− 1/s
=

(
2s
s− 1

)
.

Since wi = (Ae)i = ai1,

s∑
i=1

|wi| =
s∑

i=1

|ai1| 6
s∑

i=1

s∑
j=1

|aij | 6 s∥A∥ 6 s

(
2s
s− 1

)
.

Taking (13.3) and (13.4) into account, we get (13.2) together with the inequality
∥R∥TV 6 s

(
2s

s−1

)
, which proves the theorem.

14. Analogue of Esseen’s inequality for the L1-metric

In this section we give an example of the use of Theorem 12.2. In particular,
we are interested in a variant of Theorem 8.2 in which the L2-norm of the function
a(t)/t on the interval [−T, T ] is replaced by the L1-norm, and the integral containing
the derivative is removed.

Let us prove the following theorem. Let A : R → R be a function of bounded
variation with Fourier–Stieltjes transform

a(t) =
∫ ∞

−∞
eitx dA(x), t ∈ R,

and let A(−∞) = 0.

Theorem 14.1. If 1 6 β − α 6 T log T (T > 1), then∫ β

α

|A(x)| dx 6
β − α

2π

∫ T

−T

∣∣∣∣a(t)t
∣∣∣∣ dt+ c∥A∥TV

log T
T

, (14.1)

where c is an absolute positive constant.

In a somewhat weaker form when A = F −G is the difference of two distribution
functions, such an estimate can be obtained with the help of the Zolotarev inequality
for the Lévy distance (Theorem 3.2). Indeed, if h > L(F,G), then for all x

F (x)−G(x) 6 (G(x+ h)−G(x)) + h,

G(x)− F (x) 6 (F (x+ h)− F (x)) + h,

and it follows that

|F (x)−G(x)| 6 (F (x+ h)− F (x)) + (G(x+ h)−G(x)) + h.
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Integrating this inequality over the interval [α, β] and then letting h tend to L(F,G),
we find that ∫ β

α

|F (x)−G(x)| dx 6 (1 + (β − α))L(F,G).

Thus, for all T > 1.3 the inequality (3.3) implies that∫ β

α

|F (x)−G(x)| dx 6
1 + (β − α)

2π

∫ T

−T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣ dt+ 2e
(
1 + (β − α)

) log T
T

,

where f and g are the characteristic functions of the distributions F and G. Hence,
an advantage of the estimate (14.1) is the absence of the coefficient β − α on the
right-hand side.

To prove Theorem 14.1 we need an auxiliary inequality, which is of independent
interest.

Lemma 14.2. Let A : [α, β] → R be a function of bounded variation. Then for any
integer N > 1 ∫ β

α

|A(x)| dx 6
N∑

k=1

∣∣∣∣∫ xk

xk−1

A(x) dx
∣∣∣∣ +

β − α

N
∥A∥TV, (14.2)

where xk = α+ (β − α)k/N .

This inequality was proved in [42] for the difference of distribution functions
(with ∥A∥TV replaced by 2). The general case is similar; let I denote the collection
of indices k = 1, . . . , N such that the function A(x) does not change sign in the
kth interval ∆k = (xk−1, xk). The other indices form the complementary subset
J ⊂ {1, . . . , N}. Then for all k ∈ I∫

∆k

|A(x)| dx =
∣∣∣∣∫

∆k

A(x) dx
∣∣∣∣.

But if k ∈ J , then obviously

sup
x∈∆k

|A(x)| 6 sup
x,y∈∆k

|A(x)−A(y)| 6 |A|(∆k),

where |A| is the variation of the function A, regarded as a positive measure on
[α, β]. In this case we obtain∫

∆k

|A(x)| dx 6 |A|(∆k)|∆k|, |∆k| =
β − α

N
.

Combining both estimates, we conclude that the integral
∫ β

α
|A(x)| dx does not

exceed the quantity

∑
k∈I

∣∣∣∣∫
∆k

A(x) dx
∣∣∣∣ +

∑
k∈J

|A|(∆k)|∆k| 6
N∑

k=1

∣∣∣∣∫
∆k

A(x) dx
∣∣∣∣ +

β − α

N

N∑
k=1

|A|(∆k).
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In view of the fact that the measure |A| is additive, the last sum does not exceed
∥A∥TV. The proof of the lemma is complete. �

Passing to the proof of (14.1), we need to estimate the integral on the right-hand

side of (14.2). It can be assumed that
∫ T

−T

∣∣∣∣a(t)t
∣∣∣∣ dt <∞. We consider a function

of the form

U(x) =
1
2h

∫ x+h

x−h

A(y) dy, x ∈ R, h > 0,

which is the convolution of the measure A with the uniform distribution on an
interval (−h, h) (the parameter h will be chosen later). It has the Fourier–Stieltjes

transform
sin(th)
th

a(t).
Fixing another parameter σ > 0, which will be chosen depending on T , we

consider the convolution

Uσ(x) =
∫ ∞

−∞
U(x− σy) dH(y),

where H is the probability measure in Theorem 12.2. Since this measure is concen-
trated on [−1, 1], we immediately obtain

|Uσ(x)− U(x)| 6 sup
|z|6σ

|U(x− z)− U(x)| 6 σ

2h
|A|(x− h− σ, x+ h+ σ), (14.3)

where the last factor on the right-hand side denotes the variation of A on (x−h−σ,
x+ h+ σ).

On the other hand, Uσ has the Fourier–Stieltjes transform

g(t) = f(σt)
sin(th)
th

a(t),

where f is the characteristic function of the measure H, and Uσ(−∞) = 0. The
function g is integrable, and hence the inverse Fourier–Stieltjes transform can be
applied: for all x

Uσ(x) =
1
2π

∫ ∞

−∞
e−itx g(t)

−it
dt.

Using the inequality supt |a(t)| 6 ∥A∥TV outside the interval [−T, T ], we obtain

|Uσ(x)| 6 1
2π

∫ T

−T

∣∣∣∣a(t)t
∣∣∣∣ dt+

1
2π
∥A∥TV

∫
|t|>σT

∣∣∣∣f(t)
t

∣∣∣∣ dt.
Here we put σ = (2e log T )/T and use (12.2) with 2e log T instead of T to estimate
the last integral. Then we arrive at the estimate

|Uσ(x)| 6 1
2π

∫ T

−T

∣∣∣∣a(t)t
∣∣∣∣ dt+

3
2π

∥A∥TV

T 2

and from (14.3) we get that

|U(x)| 6 1
2π

∫ T

−T

∣∣∣∣a(t)t
∣∣∣∣ dt+

3
2π

∥A∥TV

T 2
+

σ

2h
|A|(x− σ − h, x+ σ + h).
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Therefore, by the definition of the function U and the choice of σ, we find that
for all x ∈ R, h > 0, and T > 1∣∣∣∣∫ x+h

x−h

A(y) dy
∣∣∣∣ 6

h

π

∫ T

−T

∣∣∣∣a(t)t
∣∣∣∣ dt+

3
π

h

T 2
∥A∥TV +

2e log T
T

ε

(
x, h+

2e log T
T

)
,

(14.4)
where

ε(x, r) = |A|(x− r, x+ r).

We now return to Lemma 14.2 and use the same partition of [α, β] into intervals
∆k = (xk−1, xk) with endpoints xk = α + (β − α)k/N . If we apply (14.4) to the
points zk = (xk−1 + xk)/2 and h = (β − α)/(2N) and sum over all k = 1, . . . , N ,
then (14.2) implies that∫ β

α

|A(x)| dx 6
β − α

2π

∫ T

−T

∣∣∣∣a(t)t
∣∣∣∣ dt+

3
2π

β − α

T 2
∥A∥TV

+
β − α

N
∥A∥TV +

2e log T
T

N∑
k=1

ε

(
zk, h+

2e log T
T

)
. (14.5)

Note that
∑N

k=1 ε(zk, lh) 6 l∥A∥TV for any integer l > 1. Thus, the sum in (14.5)
does not exceed the quantity (

2e log T
Th

+ 2
)
∥A∥TV.

Consequently, taking the inequality β − α 6 T log T into account, we arrive at the
estimate∫ β

α

|A(x)| dx 6
β − α

2π

∫ T

−T

∣∣∣∣a(t)t
∣∣∣∣ dt

+ ∥A∥TV

[
3
2π

log T
T

+
β − α

N
+

2e log T
T

(
2e log T
Th

+ 2
)]
.

(14.6)

LettingN = [(β−α)T/ log T ]+1, we obtain (β−α)/N 6 (log T )/T , and if β−α > 1,
then

Th = T
β − α

2N
> T

β − α

2(β − α)T/ log T + 2
>

1
3

log T.

Thus, up to the factor (log T )/T the expression in square brackets on the right-hand
side of (14.6) does not exceed 3/(2π) + 1 + 2e(6e+ 2) < 102, and we obtain (14.1)
with c = 102. Theorem 14.1 is proved. �

15. Variants of the Berry–Esseen inequality

Again let A : R → R be a function of bounded variation, with A(−∞) = 0. We
return to estimations of the L∞-norm

∥A∥ = sup
x
|A(x)|
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in terms of the Fourier–Stieltjes transform

a(t) =
∫ ∞

−∞
eitx dA(x).

It we let F = 0 and G = A, then, under the assumption that |A′(x)| 6 L1 for all x,
the Berry–Esseen inequality (Theorem 2.1) gives the estimate

∥A∥ 6 c

∫ T

−T

∣∣∣∣a(t)t
∣∣∣∣ dt+ c′

L1

T
, T > 0, (15.1)

with absolute constants c, c′ > 0. Interestingly, if we strengthen the property of
smoothness in terms of higher-order derivatives of the function A, then (15.1) can
be improved significantly. In particular, the following statement holds.

Theorem 15.1. If a function A is twice differentiable and supx |A′′(x)| 6 L2 , then
for all T > 0

∥A∥ 6 c

∫ T

−T

∣∣∣∣a(t)t
∣∣∣∣ dt+ c′

L2

T 2
, (15.2)

where c and c′ are absolute positive constants.

It is also of interest to find out whether this estimate can be made local, when
smoothness properties of the function A are known only in a neighbourhood of
a given point x. It turns out that a similar statement can be obtained in this case.

Theorem 15.2. Assume that a function A is differentiable s times in a neighbour-
hood ∆: |z − x| < se(log T )/T of a given point x (where T > 1 and s > 1 is an
integer) and that

sup
z∈∆

|A(s)(z)| 6 Ls(x, T ). (15.3)

Then

|A(x)| 6 1
2π

∫ T

−T

∣∣∣∣a(t)t
∣∣∣∣ dt+ cs∥A∥TV

1
T s

+ csLs(x, T )
(

log T
T

)s

, (15.4)

where cs is a constant depending only on s.

We stress that such estimates are hardly of value in problems concerning, for
example, the rate of convergence in the central limit theorem when one is consid-
ering functions A = F − G with smooth G but generally discontinuous F . Nev-
ertheless, ‘discrete’ analogues of the inequalities (15.2) and (15.4) can be derived
for such purposes, and the condition (15.3) should be stated in terms of difference
operators of order s. Following this line of investigation, one can study, for exam-
ple, Edgeworth expansions for binomial distributions. For lack of space we do not
touch upon such generalizations here.

We start with a proof of Theorem 15.2, assuming that
∫ T

−T

∣∣∣∣a(t)t
∣∣∣∣ dt <∞. The

inequality (15.4) is based on the smoothing of A by the signed measure R in The-
orem 13.1: we consider the convolution

Aσ(x) =
∫ ∞

−∞
A(x− σy) dR(y) (15.5)
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with the parameter σ = (se log T )/T . Since R is concentrated on the interval [−1, 1]
and R([−1, 1]) = 1, we have

Aσ(x)−A(x) =
∫ 1

−1

(A(x− σy)−A(x)) dR(y).

Expanding A(x − σy) by Taylor’s formula in powers of y and using (13.1), we get
that

|Aσ(x)−A(x)| 6 σs

s!
sup
z∈∆

|A(s)(z)| 6 σs

s!
Ls(x, T ). (15.6)

On the other hand, Aσ has the Fourier–Stieltjes transform g(t) = f(σt)a(t),
where f is the Fourier–Stieltjes transform of the measure R, and Aσ(−∞) = 0.
Hence we can apply the inverse Fourier–Stieltjes transform:

Aσ(x) =
1
2π

∫ ∞

−∞
e−itx g(t)

−it
dt. (15.7)

Using the inequality supt |a(t)| 6 ∥A∥TV outside [−T, T ] and then applying (13.2),
we find that

|Aσ(x)| 6 1
2π

∫ T

−T

∣∣∣∣a(t)t
∣∣∣∣ dt+

∥A∥TV

2π

∫
|t|>σT

∣∣∣∣f(t)
t

∣∣∣∣ dt
6

1
2π

∫ T

−T

∣∣∣∣a(t)t
∣∣∣∣ dt+

∥A∥TV

2π
cs
T s

with the constant cs from Theorem 13.1.
It remains to combine this inequality with (15.6):

|A(x)| 6 1
2π

∫ T

−T

∣∣∣∣a(t)t
∣∣∣∣ dt+

∥A∥TV

2π
cs
T s

+
(se)s

s!
Ls(x, T )

(
log T
T

)s

.

Since c1 = c2 = 1, we get, in particular, that

|A(x)| 6 1
2π

∫ T

−T

∣∣∣∣a(t)t
∣∣∣∣ dt+

∥A∥TV

2π
1
T

+ eL1(x, T )
log T
T

,

|A(x)| 6 1
2π

∫ T

−T

∣∣∣∣a(t)t
∣∣∣∣ dt+

∥A∥TV

2π
1
T 2

+ 2e2L2(x, T )
(

log T
T

)2

.

In the general case cs 6 s
(

2s
s−1

)
, and we arrive at the required inequality (15.4)

with cs = cs, where c is an absolute constant.
It is somewhat simpler to prove (15.2); we can follow the standard reasoning

used in deriving the Berry–Esseen inequality. As a smoothing measure in (15.5),
we take the probability measure R with the triangular characteristic function f(t) =
(1− |t|)+, that is, with the density

ψ(x) =
1
2π

(
sin(x/2)
x/2

)2

,
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and we let σ = 1/T . Then we again have (15.7), and it follows immediately that

∥Aσ∥ 6
1
2π

∫ ∞

−∞

∣∣∣∣a(t)t
∣∣∣∣ f(σt) dt 6

1
2π

∫ T

−T

∣∣∣∣a(t)t
∣∣∣∣ dt. (15.8)

On the other hand, starting from (15.5), for fixed l > 0 we write

Aσ(x)−A(x) =
∫ l

−l

(A(x− σy)−A(x)) dR(y) +
∫
|y|>l

(A(x− σy)−A(x)) dR(y).

Expanding A(x− σy) up to the quadratic term by Taylor’s formula and using the
symmetry of the measure R, we easily see that the first integral can be estimated
as follows:∣∣∣∣∫ l

−l

(A(x− σy)−A(x)) dR(y)
∣∣∣∣ 6

∫ l

−l

(σy)2

2
L2 dR(y) =

l3

3
L2

T 2
.

We estimate the modulus of the second integral simply by 2γ∥A∥, where γ =
1−R[−l, l]. Using (15.8), we obtain the inequality

∥A∥ 6
1
2π

∫ T

−T

∣∣∣∣a(t)t
∣∣∣∣ dt+

l3

3
L2

T 2
+ 2γ∥A∥,

which in the case γ < 1/2 gives the required estimate

∥A∥ 6
1

2π(1− 2γ)

∫ T

−T

∣∣∣∣a(t)t
∣∣∣∣ dt+

l3

3(1− 2γ)
L2

T 2
.

To fix the numerical values of the constants, we put l = 3π/2, for example. In
this case

2γ = 4
∫ ∞

3π/2

ψ(x) dx =
4
π

∫ ∞

3π/2

1− cosx
x2

dx

6
4
π

∫ 5π/2

3π/2

1
x2

dx+
4
π

∫ ∞

5π/2

2
x2

dx =
64

15π2
= 0.4323 . . . .

Consequently, the inequality (15.2) holds with the constants

c =
1

2π(1− 2γ)
= 0.2804 . . . and c′ =

l3

3(1− 2γ)
=

9π3

8(1− 2γ)
= 61.44 . . . .

16. Smoothing with a polynomial weight

We now return to functions of bounded variation of the form A = F − G with
a non-decreasing function F and with smoothness-type conditions on G. We will
be interested in a generalization of Theorem 2.1 for the Kolmogorov distance with
a polynomial weight, namely, for

ρs(F,G) = sup
x

(1 + |x|s)|F (x)−G(x)|,
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where s > 0 is a given integer (so that ρ0 = ρ).
The need to study such distances comes from the importance of non-uniform

estimates
|F (x)−G(x)| 6 c

1 + |x|s
, x ∈ R, (16.1)

where we can put c = ρs(F,G). For example, the particular case s = 2 lets us
estimate the distance in the L1-metric: integrating (16.1) over the whole real line,
we obtain the relation

W1(F,G) 6 πρ2(F,G).

It also remains valid for the distance in the Lp-metric for all p > 1. Note that for
p > 1 we can use (16.1) also with s = 1, and then we get that

∥F −G∥p 6

(
2

p− 1

)1/p

ρ1(F,G).

Before estimating ρs in terms of the corresponding Fourier–Stieltjes transforms
of the functions F and G, we fix in this section a general relation of the type (2.2)
between the distance ρs(F,G) and the L∞-norm of the smoothed function

As(x) = xs(F (x)−G(x)).

For this purpose, it is natural to require that F and G have finite absolute moments
of order s, that is,∫ ∞

−∞
|x|s dF (x) <∞,

∫ ∞

−∞
|x|s |dG(x)| <∞,

where |G| denotes the variation of G as a positive measure on the real line. In this
case, As is a function of bounded variation, and As(−∞) = As(∞) = 0.

Let us fix a distribution function H, put HT (x) = H(Tx) for T > 0, and choose
an l > 0 such that the condition 1−H([−l, l]) 6 1/4 is satisfied.

Lemma 16.1. Assume that a distribution function F and a function G of bounded
variation have finite absolute moments of integer order s > 1 and that G(−∞) = 0
and G(∞) = 1. If G is differentiable and its derivative satisfies the inequality

sup
x

(1 + |x|s) |G′(x)
∣∣ 6 L, (16.2)

then for any T > 1

∥A0∥+ ∥As∥ 6 c

(
∥A0 ∗HT ∥+ ∥As ∗HT ∥+

L

T

)
, (16.3)

where the constant c = c(s, l) depends only on s and l.

Proof. We prove the lemma by standard but routine arguments (see [3], Chap. VI,
Lemma 8). First we consider the non-polynomial case s = 0 and derive the inequal-
ity (2.2). Letting σ = 1/T , we consider the convolution

I(x) ≡ (A ∗HT )(x) =
∫ ∞

−∞
A(x− σy) dH(y) = I0(x) + I1(x),
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where A = A0 = F −G and

I0(x) =
∫
|y|6l

A(x− σy) dH(y), I1(x) =
∫
|y|>l

A(x− σy) dH(y).

We have |I1(x)| 6 γ∥A∥ with the coefficient γ = 1 − H([−l, l]). For an estimate
of the first integral, the monotonicity of F and the Lipschitz property of G let us
use the inequalities

A(x− σy) > A(x− σl)− 2σlL and −A(x− σy) > −A(x+ σl)− 2σlL,

which imply the estimate

|I0(x)| > (1− γ) max{A(x− σl),−A(x+ σl)} − 2(1− γ)σlL.

Since |I(x)| > |I0(x)| − |I1(x)|, we obtain

∥I∥ > (1− γ) max{A(x− σl),−A(x+ σl)} − 2(1− γ)σlL− γ∥A∥.

Taking the supremum over all x, we arrive at the estimate ∥I∥ > (1 − 2γ)∥A∥ −
2(1− γ)σlL, that is,

∥A∥ 6
1

1− 2γ
∥A ∗HT ∥+ 2l

1− γ

1− 2γ
L

T
,

which coincides exactly with (2.2). In particular, if γ 6 1/4, then this estimate
yields

∥A∥ 6 2∥A ∗HT ∥+ 3l
L

T
. (16.4)

Now let s > 1. Fixing an arbitrary value ε ∈ (0, 1/2], we choose a point x0 such
that

|As(x0)| > (1− ε)∥As∥ >
1
2
∥As∥. (16.5)

Without loss of generality we can make the two assumptions

|x0| > 4sl and |As(x0)| > 2s+3σlL. (16.6)

Indeed, if the first condition fails, then by (16.4) and (16.5) we have

∥As∥ 6 2|As(x0)| 6 2(4sl)s|A(x0)|

6 2(4sl)s∥A∥ 6 4(4sl)s∥A ∗HT ∥+ 6l(4sl)sL

T
,

which automatically implies (16.3), namely,

∥A∥+ ∥As∥ 6
(
2 + 4(4sl)s

)
∥A ∗HT ∥+

(
3l + 6l(4sl)s

)L
T
. (16.7)

If the second condition fails, then ∥As∥ 6 2|As(x0)| 6 2s+4lL/T , which gives us
the similar estimate

∥A∥+ ∥As∥ 6 2∥A ∗HT ∥+ (3 + 2s+4)l
L

T
. (16.8)



1062 S.G. Bobkov

We consider a convolution analogous to the one at the beginning of the proof:

I(x) ≡ (As ∗HT )(x) =
∫ ∞

−∞
As(x− σy) dH(y) = I0(x) + I1(x),

where

I0(x) =
∫
|y|6l

As(x− σy) dH(y), I1(x) =
∫
|y|>l

As(x− σy) dH(y).

Again, |I1(x)| 6 γ∥As∥, with γ = 1−H([−l, l]), so for all x

∥I∥ > |I(x)| > |I0(x)| − γ ∥As∥. (16.9)

Next we estimate |I0(x)| from below either at the point x = x0−σl or at x = x0+σl,
depending on the sign of A(x0). For definiteness we assume that A(x0) < 0.

For all z ∈ [x0 − 2σl, x0] there exists a point z0 in the same interval such that
G(z) = G(x0) + (z − x0)G′(z0). We have |z0| > |x0| if x0 < 0, and z0 > x0/2 if
x0 > 0. Indeed, in the latter case the worst variant is attained for z0 = x0 − 2σl.
But x0 > 4σl and σ 6 1, which implies that z0 > x0/2. Therefore, by the condi-
tion (16.2),

|G(z)−G(x0)| = |z − x0| |G′(z0)| 6 2σl
L

|z0|s
6 2s+1σl

L

|x0|s
.

Using the monotonicity of F , we get that

A(z) = F (z)−G(z) 6 F (x0)−G(x0) + 2s+1σl
L

|x0|s

= A(x0) + 2s+1σl
L

|x0|s
<

3
4
A(x0),

where we have used the second condition in (16.6) in the last step. Furthermore,
the inequality |z|s > |x0|s holds in the case x0 < 0, while in the case x0 > 0 the
first condition in (16.6) and the assumption σ 6 1 give us that

zs > (x0 − 2σl)s > (x0 − 2l)s >

(
1− 1

2s

)s

xs
0 >

1√
e
xs

0.

In both cases |z|s > |x0|s/
√
e , and hence As(z) = zsA(z) does not change sign in

the interval x0 − 2σl 6 z 6 x0 and satisfies there the inequality

|As(z)| >
3

4
√
e
|As(x0)|.

It follows that

|I0(x)| =
∫
|y|6l

|As(x− σy)| dH(y) > (1− γ)
3

4
√
e
|As(x0)| >

1− γ

1− ε

3
4
√
e
∥As∥,

where we used the estimate (16.5) in the last step.
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Arguing similarly, we can show that these inequalities hold also in the case
A(x0) > 0 for the point x = x0 + σl and the interval x0 6 z 6 x0 + 2σl. Therefore,
letting ε tend to zero, we arrive in both cases at the same estimate

|I0(x)| >
3

4
√
e
(1− γ)∥As∥.

Using it in (16.9), we obtain

∥I∥ >

(
3

4
√
e
(1− γ)− γ

)
∥As∥ > 0.091∥As∥,

where in the last inequality we assume that γ 6 1/4. Consequently, in this case
∥As∥ 6 11∥I∥ = 11∥As ∗HT ∥, and in view of (16.4) we have

∥A∥+ ∥As∥ 6 2∥A ∗HT ∥+ 11∥As ∗HT ∥+ 3l
L

T
.

By (16.7) and (16.8), we obtain (16.3), and Lemma 16.1 is proved. �

17. General non-uniform estimates

The right-hand side of the inequality (16.3) in Lemma 16.1 can be estimated
further in terms of the Fourier–Stieltjes transforms of the functions F and G. In
this step we can consider broader classes of functions.

Let A be a function of bounded variation with finite absolute moment of integer
order s > 1 (for the variation |A|, regarded as a measure on the line), and with
A(−∞) = A(∞) = 0. In this case, the corresponding Fourier–Stieltjes transform

a(t) =
∫ ∞

−∞
eitx dA(x) = −it

∫ ∞

−∞
eitxA(x) dx

has s continuous derivatives, and the function

As(x) = xsA(x)

also has bounded variation, with As(−∞) = As(∞) = 0.

Theorem 17.1. For each distribution function H with characteristic function h,

∥As ∗H∥ 6
2
π

sup
x∈R, κ>1

∣∣∣∣∫ ∞

−∞
e−itx a

(s)(t)
t

h(κt) dt
∣∣∣∣. (17.1)

In particular, in the absence of any smoothing (or when H is a unit weight at
zero, with h(t) = 1), we have

∥As∥ 6
2
π

sup
x

∣∣∣∣∫ ∞

−∞
e−itx a

(s)(t)
t

dt

∣∣∣∣. (17.2)

However, as in the ordinary Berry–Esseen inequality, smoothing reduces the prob-
lem of estimating ∥As∥ to the problem of estimating a(s)(t) on an interval |t| 6 T
with an error of order 1/T .
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The integrals in (17.1) and (17.2) are always finite, but they are understood
in the sense of their principal values, as limits of the integrals over the set ε <
|t| < T as ε ↓ 0 and T ↑ ∞. Here we can use the following variant of inversion
for Fourier–Stieltjes transforms: if B is a function of bounded variation with the
Fourier–Stieltjes transform b, then for all x

1
π

lim
ε↓0, T↑∞

∫
ε<|t|<T

e−itx

−it
b(t) dt =

∫ ∞

−∞

(
1{y<x} − 1{y>x}

)
dB(y). (17.3)

If B is right-continuous and B(−∞) = 0 (which is always assumed), then the inte-
grals on the right-hand side of (17.3) are connected with the L∞-norm of the func-
tion B as follows:

∥B∥ 6 sup
x

∣∣∣∣∫ ∞

−∞

(
1{y<x} − 1{y>x}

)
dB(y)

∣∣∣∣ 6 3∥B∥. (17.4)

Indeed, we denote these integrals by I(x) and let M = supx |I(x)|. Letting x tend
to infinity, we arrive at the estimate M > |B(∞)|. Since 2B(x) = B(∞) + I(x) at
each point x at which B is continuous, we immediately obtain |B(x)| 6 M , that
is, the left-hand inequality in (17.4). Moreover, |I(x)| 6 2|B(x)|+ |B(∞)| 6 3∥B∥,
which yields the right-hand inequality.

To prove the theorem we need two elementary equalities.

Lemma 17.2. For s > 1 the function As has the Fourier–Stieltjes transform

as(t) = i−st

(
a(t)
t

)(s)

= i−s

∫ 1

0

(
a(s)(t)− a(s)(ηt)

)
dηs, t ̸= 0. (17.5)

Proof. The first relation (which is also true for s = 0) can be obtained if we differ-

entiate the equality
a(t)
it

= −
∫ ∞

−∞
eitxA(x) dx s times with respect to t and then

integrate by parts:(
a(t)
it

)(s)

= −is
∫ ∞

−∞
eitxAs(x) dx =

is

it

∫ ∞

−∞
eitx dAs(x) =

is

it
as(t).

However, this argument is not quite rigorous, because As is not necessarily Lebesgue
integrable. But the function As−1 is integrable, therefore(

a(t)
it

)(s−1)

= −is−1

∫ ∞

−∞
eitxAs−1(x) dx, t ̸= 0. (17.6)

Since dAs(x) = xs dA(x) + sAs−1(x) dx, we have another identity:∫ ∞

−∞
eitx dAs(x) =

∫ ∞

−∞
eitxxs dA(x) + s

∫ ∞

−∞
eitxAs−1(x) dx,

that is, by (17.6),

as(t) = i−s

[
a(s)(t)− s

(
a(t)
t

)(s−1)]
.
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Thus, it remains to establish the equality a(s)(t)− s(a(t)/t)(s−1) = t(a(t)/t)(s), or,
what is the same in terms of v(t) = a(t)/t, the equality

(tv(t))(s) = tv(s)(t) + sv(s−1)(t),

which is obvious.
The second relation in (17.5) follows from the identity(

a(t)
t

)(s)

=
1
t

∫ 1

0

(
a(s)(t)− a(s)(ηt)

)
dηs, t ̸= 0, (17.7)

which is valid for any function a that is continuously differentiable s times and
satisfies a(0) = 0. Without loss of generality we can assume here that a has s + 1
continuous derivatives. Then (17.7) is obtained if we differentiate the equality
a(t)
t

=
∫ 1

0

a′(ηt) dη s times and then integrate by parts. �

Let us now pass to the proof of Theorem 17.1. Applying (17.3)–(17.5) to the
function As ∗H with Fourier–Stieltjes transform as(t)h(t), we see that

∥As ∗H∥ 6
1
π

sup
x

∣∣∣∣∫ ∞

−∞
e−itxh(t)

[∫ 1

0

a(s)(t)− a(s)(ηt)
t

dηs

]
dt

∣∣∣∣. (17.8)

We verify that we can change the order of integration on the right-hand side; this
would follow from the fact that

δ0(ε, ε′) ≡
∫

ε′<|t|<ε

e−itxh(t)
[∫ 1

0

a(s)(ηt)
t

dηs

]
dt→ 0, 0 < ε′ < ε, ε→ 0,

and

δ1(T, T ′) ≡
∫

T<|t|<T ′
e−itxh(t)

[∫ 1

0

a(s)(ηt)
t

dηs

]
dt→ 0, T < T ′, T →∞.

For any η ∈ (0, 1) the function t 7→ a(s)(ηt)h(t) is, up to the factor is, the
Fourier–Stieltjes transform of the convolution Vη(x) = B(x/η) ∗ H(x), where

B(x) =
∫ x

−∞
ys dA(y). Hence, introducing the function ψ(t) =

∫ t

0

sinu
u

du and

letting V = V1, we obtain

δ1(T, T ′) =
∫ 1

0

[∫
T<|t|<T ′

e−itxh(t)
a(s)(ηt)

t
dt

]
dηs

=
∫ 1

0

[∫ ∞

−∞

∫
T<|t|<T ′

eit(y−x)

t
dt dVη(y)

]
dηs

= 2i
∫ 1

0

∫ ∞

−∞

(
ψ(T ′(y − x))− ψ(T (y − x))

)
dVη(y) dηs

= 2i
∫ 1

0

∫ ∞

−∞
u(y, η) dV (y) dηs,
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where
u(y, η) = ψ

(
T ′(ηy − x)

)
− ψ

(
T (ηy − x)

)
.

Since |ψ| 6 C, ψ(t) → π/2 as t → ∞, and ψ(t) → −π/2 as t → −∞, the
modulus of the function u is bounded by the absolute constant 2C uniformly over
all T ′ > T > 0, and u(y, η) → 0 as T → ∞ for any y and η. Consequently, by
the Lebesgue dominated convergence theorem we have δ1(T, T ′) → 0. A similar
argument proves that also δ0(ε, ε′) → 0 as ε→ 0.

Finally, changing the order of integration, we can conclude that the expression
under the supremum sign on the right-hand side of (17.8) does not exceed the
quantity ∣∣∣∣∫ ∞

−∞
e−itxh(t)

a(s)(t)
t

dt

∣∣∣∣ + sup
0<η<1

∣∣∣∣∫ ∞

−∞
e−itxh(t)

a(s)(ηt)
t

dt

∣∣∣∣,
which implies the required inequality (17.1). Theorem 17.1 is proved. �

Remark 17.3. For s = 0 Theorem 17.1 remains valid, and without the condition
A(∞) = 0. Furthermore, the inequality (17.1) can be improved. Indeed, apply-
ing (17.3) and then the left-hand inequality in (17.4) with B = A ∗H and b = ah,
we obtain

∥A ∗H∥ 6
1
π

sup
x

∣∣∣∣∫ ∞

−∞
e−itx a(t)

t
h(t) dt

∣∣∣∣. (17.9)

If A(∞) = 0, then the factor 1/π can be replaced by 1/(2π). In this case B(∞) = 0,
and thus (17.3) implies the identity

1
π

sup
x

∣∣∣∣∫ ∞

−∞

e−itx

t
b(t) dt

∣∣∣∣ = 2∥B∥.

Returning to the ‘non-smoothed’ variant (17.2), we make another remark. Since
up to the factor is the derivative a(s) is the Fourier–Stieltjes transform of the
function B(x) =

∫ x

−∞ ys dA(y), the modulus of the integral on the right-hand side
of (17.2) coincides by (17.3) with

π

∣∣∣∣∫ ∞

−∞

(
1{y<x} − 1{y>x}

)
ys dA(y)

∣∣∣∣.
Therefore, in view of the right-hand inequality in (17.4), (17.2) implies the estimate

sup
x
|xsA(x)| 6 6 sup

x

∣∣∣∣∫ x

−∞
ys dA(y)

∣∣∣∣,
which does not involve Fourier–Stieltjes transforms. By (17.4), this estimate is
equivalent to (17.2) up to an absolute multiplicative constant.

18. Non-uniform estimates for distribution functions

Now we return to Lemma 16.1 and apply Theorem 17.1 and the inequality (17.9)
with A = F − G and the smoothing distribution function H(Tx) (instead of H).
Then we arrive at a non-uniform estimate, that is, an estimate for the distance

ρs(F,G) = sup
x

(1 + |x|s)|F (x)−G(x)|
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in terms of the Fourier–Stieltjes transforms

f(t) =
∫ ∞

−∞
eitx dF (x) and g(t) =

∫ ∞

−∞
eitx dG(x), t ∈ R.

We assume that the distribution function F and the functionG of bounded variation
have finite absolute moments of integer order s > 1 and that G(−∞) = 0 and
G(∞) = 1.

Theorem 18.1. If G is differentiable and satisfies the inequality

sup
x

(1 + |x|s)|G′(x)| 6 L,

then for any characteristic function h and all T > 1

csρs(F,G) 6 sup
x∈R

∣∣∣∣∫ ∞

−∞
e−itx f(t)− g(t)

t
h

(
t

T

)
dt

∣∣∣∣
+ sup

x∈R, κ>1

∣∣∣∣∫ ∞

−∞
e−itx f

(s)(t)− g(s)(t)
t

h

(
κt

T

)
dt

∣∣∣∣ +
L

T
(18.1)

with some constant cs > 0 depending on s and h.

In particular, using the canonical kernel h(t) = (1−|t|)+ and taking into account
that κ > 1 under the second supremum sign in (18.1), we get that

csρs(F,G) 6
∫ T

−T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣ dt+
∫ T

−T

∣∣∣∣f (s)(t)− g(s)(t)
t

∣∣∣∣ dt+
L

T
. (18.2)

Without using the second identity in Lemma 17.2, we would arrive at a similar
estimate

csρs(F,G) 6
∫ T

−T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣ dt+
∫ T

−T

∣∣∣∣ ds

dts
f(t)− g(t)

t

∣∣∣∣ dt+
L

T
, (18.3)

which the reader can find, for example, in Petrov’s book [3].
It makes sense to use (18.2) and (18.3) in the case when F and G have finite

absolute moments of order s+ 1, and∫ ∞

−∞
xp dF (x) =

∫ ∞

−∞
xp dG(x), p = 1, . . . , s.

In this case |f (s)(t) − g(s)(t)| = O(|t|) as t → 0, so that the integrals on the
right-hand sides of these inequalities are finite. But if only the moments of F
and G of orders 6 s − 1 are equal, then we need additional arguments, which,
furthermore, can also be based on the smoothing inequality (18.1).

We assume, for example, that for the derivatives of f and g of order s there is
a decomposition of the form

f (s)(t)− g(s)(t) = u(t) + v(t), (18.4)
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where v is the Fourier–Stieltjes transform of a function V of bounded variation such
that V (−∞) = 0 but not necessarily V (∞) = 0. If it is known that the norm ∥V ∥
is small (preferably of order 1/T ) and u(t) = tw(t)O(1/T ) on the interval [−T, T ]
for some integrable function w, then the following application of Theorem 18.1 can
be useful.

Corollary 18.2. Let the conditions of Theorem 18.1 hold, and assume (18.4).
Then

csρs(F,G) 6
∫ T

−T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣ dt+
∫ T

−T

∣∣∣∣u(t)t
∣∣∣∣ dt+ ∥V ∥+

L

T
(18.5)

for all T > 1, where cs > 0 is a constant depending only on s.

To derive this inequality on the basis of (18.1), we only need to estimate the
integrals

I =
∫ ∞

−∞
e−itx v(t)

t
h

(
κt

T

)
dt, where h(t) = (1− |t|)+,

uniformly over all x and κ. Let us denote the corresponding distribution function
by H and put Hq(x) = H(qx). Then by (17.3) and the upper estimate in (17.4) we
have

|I| = π

∣∣∣∣∫ ∞

−∞

(
1{y<x} − 1{y>x}

)
d(V ∗HT/κ)(y)

∣∣∣∣ 6 3π∥V ∗HT/κ∥ 6 3π∥V ∥

(the last inequality in this chain holds because the convolution with any distribution
function does not increase the L∞-norm of a given function of bounded variation).
As a result, we obtain (18.5).

To illustrate the decomposition (18.4), we assume that F is a convolution of
probability distributions Fk (1 6 k 6 n) with characteristic functions fk such that
the Fk have zero means, variances σ2

k with
∑n

k=1 σ
2
k = 1, and finite moments βs,k

of order s > 3. Then F has the characteristic function f(t) = f1(t) · · · fn(t). As G
we can take the standard normal distribution function Φ or, better, the ‘corrected’
normal function from the Edgeworth expansion of order s (which is not necessarily
monotone). Then we can let

v(t) =
n∑

k=1

f1(t) · · · fk−1(t) f
(s)
k (t) fk+1(t) · · · fn(t).

Obviously, the corresponding function V of bounded variation has norm

∥V ∥ 6
n∑

k=1

sup
x

∣∣∣∣∫ x

−∞
ys dFk(y)

∣∣∣∣ 6
n∑

k=1

βs,k ≡ Ls,

that is, this norm can be estimated by the Lyapunov fraction Ls of order s. It
can be shown that for s = 3 the second component u(t) = f (3)(t) − g(3)(t) − v(t)
of the decomposition (18.4) can be estimated by a similar fraction with coefficient
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O(|t|e−t2/6) on the interval |t| 6 T , where T = 1/L3. Thus, in this case the use
of (18.5) yields a well-known estimate of the form

ρ3(F,Φ) 6 cL3 (18.6)

with an absolute constant c. (Under additional assumptions about the behaviour
of fk(t) for large t, similar estimates ρs(F,G) 6 csLs are valid for s > 4.)

For non-uniform estimates in the central limit theorem, Pinelis [43] (see also [44])
recently called attention to the possibility of such an approach connected with the
selection of the ‘bad’ component v(t) in the decomposition (18.4). He proposed
a new proof of (18.6) for convolution powers (distributions of sums of independent
identically distributed random variables), based on Bohman–Prawitz–Vaaler-type
smoothing inequalities

F (x) 6
1
2

+
1
2π

∫ ∞

−∞

e−itx

−it
f(t)h

(
t

T

)
dt,

F (x−) >
1
2

+
1
2π

∫ ∞

−∞

e−itx

−it
f(t)h

(
− t

T

)
dt

(x ∈ R, T > 0), (18.7)

which are valid in the class of all distribution functions F with characteristic func-
tions f . In such inequalities the functions h (the so-called smoothing kernels), which
are Fourier–Stieltjes transforms of signed measures, must have a special structure.
In applications, they are chosen to have support in the interval [−1, 1], so that the
integrals in (18.7) are taken over the interval [−T, T ]. For example, the Prawitz
kernel is given by the formula

h(t) = (1− |t|)πt cot(πt) + |t| − i(1− |t|)πt, |t| < 1

(see [45]). Following Bohman [46], Pinelis described a broad class of functions h
satisfying (18.7). If F has a finite absolute moment of some order s and h has s
continuous derivatives, then it was shown in [43] that for all x > 0

xs(1− F (x)) 6
(−i)s

2π

∫ ∞

−∞
e−itx d

s

dts
f(t)h(−t/T )− 1

it
dt,

xs(1− F (x−)) >
(−i)s

2π

∫ ∞

−∞
e−itx d

s

dts
f(t)h(t/T )− 1

it
dt,

which can be regarded as an analogue of Theorem 18.1. Other interesting applica-
tions of inequalities like (18.7) and related extremum problems in Fourier analysis
were discussed by Vaaler in [47].

We note that the use of inequalities like (18.7) enables one to avoid the problem
of comparing the distances between the initial and the smoothed probability distri-
butions and can lead to the improvement of a number of results (for example, on the
choice of absolute constants). On the other hand, the scope of application of (18.7)
is limited to the class of monotone functions G playing the role of approximations
of F , in contrast to more general inequalities like (18.1) and (18.5).
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19. Lower estimates for the Kolmogorov distance

In conclusion, we consider the opposite problem, that is, estimating the Kol-
mogorov distance between distribution functions from below in terms of the cor-
responding characteristic functions. Since approximations of a given distribution
function by functions which are not necessarily monotone are of interest in some
problems, it makes sense to consider a wider class of functions A of bounded varia-
tion and to estimate the L∞-norm ∥A∥ from below in terms of the Fourier–Stieltjes
transforms

a(t) =
∫ ∞

−∞
eitx dA(x).

We assume that A(−∞) = A(∞) = 0.
First we present one popular estimate (see [13], [48], [3]).

Theorem 19.1.

∥A∥ >
1

2
√

2π

∣∣∣∣∫ ∞

−∞
a(t)e−t2/2 dt

∣∣∣∣. (19.1)

If the behavior of the function a(t) is known only in a neighbourhood of zero, then
the following theorem (which has apparently not been mentioned in the literature)
may be preferable.

Theorem 19.2. For any T > 0

∥A∥ >
1

3T

∣∣∣∣∫ T

0

a(t)
(

1− t

T

)
dt

∣∣∣∣. (19.2)

A standard approach to estimates of this kind is based on Plancherel’s theorem,
that is, on the identity∫ ∞

−∞
v(t)w(t) dt =

1
2π

∫ ∞

−∞
Pv(x)Pw(x) dx, v, w ∈ L2(R), (19.3)

where Pv = v̂ denotes the Fourier transform of the function v. If the function
a(t)/t is integrable, then by the inversion formula

A(x) = − 1
2π

∫ ∞

−∞
e−itx a(t)

it
dt.

In other words A(−x) is the Fourier transform of the function v(t) = − 1
2πi

u(t)
t

.

If also v ∈ L2, then (19.3) assumes the form∫ ∞

−∞

a(t)
t
w(t) dt = −i

∫ ∞

−∞
A(−x)Pw(x) dx = −i

∫ ∞

−∞
A(x)Pw(x) dx.

This immediately implies the general estimate∣∣∣∣∫ ∞

−∞

a(t)
t
w(t) dt

∣∣∣∣ 6 ∥A∥
∫ ∞

−∞
|Pw(x)| dx. (19.4)
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For example, the particular case w(t) = te−t2/2 yields (19.1). Additional assump-
tions about a(t) in this inequality, as well as in (19.2), can easily be dropped. To
derive (19.2), we apply (19.4) to w(t) = (t/T )(1 − t/T )+1(0,∞)(t). We first put
T = 1. Then for all x ̸= 0 we have

Pw(x) =
∫ 1

0

eitxt(1− t) dt =
−eix − 1

x2
+

2(eix − 1)
ix3

=
q(x)
x3

,

where q(x) = −xeix− 2i eix− x+ 2i. This implies the inequalities |q(x)| 6 2|x|+ 4
and |Pw(x)| 6 (2|x|+ 4)/|x|3. On the other hand,

|Pw(x)| 6
∫ 1

0

t(1− t) dt =
1
6

and hence ∫ ∞

−∞
|Pw(x)| dx = 2

∫ 4

0

|Pw(x)| dx+ 2
∫ ∞

4

|Pw(x)| dx

6
4
3

+ 2
∫ ∞

4

2x+ 4
x3

dx =
17
6
< 3.

In the general case, PwT (x) = T · (Pw)(Tx) for wT (x) = w(t/T ), so that∫ ∞

−∞
|PwT (x)| dx =

∫ ∞

−∞
|Pw(x)| dx < 3.

Thus, the use of w = wT in (19.4) proves (19.2).
We also note that, applying (19.4) to the different function

w(t) =
t

T

(
1− |t|

T

)
+

,

we would obtain the analogous inequality

∥A∥ >
1

3.5T

∣∣∣∣∫ T

−T

a(t)
(

1− |t|
T

)
dt

∣∣∣∣.
20. Estimates in the central limit theorem

Let Fn(x) = P{Zn 6 x} be the distribution function of the normalized sum

Zn =
1√
n

(X1 + · · ·+Xn)

of independent identically distributed random variables X1, . . . , Xn such that
EX1 = 0 and EX2

1 = 1. According to the central limit theorem, as n increases,
Fn(x) converges to the standard normal distribution function

Φ(x) =
1√
2π

∫ x

−∞
e−y2/2 dy.
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How close Fn is to Φ in a given metric d depends on the initial distribution of the
sample, that is, on the distribution of X1. Nevertheless, for the classical metrics
giving weak convergence the rate of convergence of the distance d(Fn,Φ) to zero is
at least c/

√
n under sufficiently broad assumptions.

To establish results of this kind, it suffices to compare the characteristic functions

fn(t) =
∫ ∞

−∞
eitx dFn(x) = f1

(
t√
n

)n

and g(t) =
∫ ∞

−∞
eitx dΦ(x) = e−t2/2

and use the corresponding smoothing inequalities. If the third absolute moment
β3 = E|X1|3 is finite, then it is not difficult to expand f1(t) by Taylor’s formula in
a neighbourhood of zero (up to the cubic term) and, as a consequence, to obtain
an estimate of the form

|fn(t)− g(t)| 6 c
β3√
n
|t|3e−t2/4, |t| 6

√
n

β3
, (20.1)

with some absolute constant c > 0. A similar relation also holds for the first three
derivatives. More precisely, in the same interval

|f (s)
n (t)− g(s)(t)| 6 c

β3√
n
|t|3−se−t2/4, s = 0, 1, 2, 3. (20.2)

20.1. Kolmogorov and Lévy distances in the Lp-metric. Use of the esti-
mate (20.1) in Theorem 2.1 with T =

√
n/β3 yields the classical Berry–Esseen

theorem for the Kolmogorov distance.

Theorem 20.1. The inequality

ρ(Fn,Φ) 6 c
β3√
n

(20.3)

holds with some absolute constant c > 0.

The value of the best constant c in this inequality is unknown. It is known only
that 0.4097 < c < 0.4690 (see [49]). A similar statement also holds for the Lévy
distance, since L(F,Φ) 6 ρ(F,Φ) 6 (1 + 1/

√
2π)L(F,Φ) in the general case.

But if the third absolute moment β3 is infinite, then the rate of convergence to
the normal law can be arbitrarily slow. As Matskyavichyus [48] showed using the
lower estimate (19.1), for any numerical sequence εn → 0 (as n → ∞) one can
choose a common distribution of random variables X1, X2, . . . with zero mean and
unit variance such that for all sufficiently large n

ρ(Fn,Φ) > εn.

On the other hand, (20.3) can be strengthened in terms of the Kolmogorov
distance with a polynomial weight. If in the Berry–Esseen-type inequality (18.2)
we use (20.2) with s = 2 and the same parameter T =

√
n/β3, then an estimate

due to Meshalkin and Rogozin [50] is obtained:

|Fn(x)− Φ(x)| 6 c
β3

(1 + x2)
√
n
. (20.4)

In fact, there is an even stronger statement, proved by Nagaev using exponential
estimates and additional constructions like truncation (see [51], [52], [2]).
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Theorem 20.2. For all x ∈ R the inequality

|Fn(x)− Φ(x)| 6 c
β3

(1 + |x|3)
√
n

(20.5)

holds with some absolute constant c > 0.

Nagaev’s approach has been further developed in many investigations, including
[53]–[57], where ways of refining the constant c in (20.5) were also studied. As we
mentioned above in our discussion of Pinelis’ alternative approach [43], [44], this
inequality can also be obtained with the help of Corollary 18.2 with the function

v(t) =
1√
n
f1

(
t√
n

)n−1

f ′′′1

(
t√
n

)
,

which plays the role of the singular (‘bad’) component of the decomposition (18.4)
for the third derivative f ′′′n (t).

We also note that the inequalities (20.4) and (20.5) immediately yield upper
estimates for the distance in the Lp-metric:

∥Fn − Φ∥p 6 c
β3√
n
, p > 1.

In particular, for p = 1 we arrive at Esseen’s inequality for the mean distance,
which can also be derived on the basis of Theorem 8.2 (or Corollary 8.3).

20.2. Lévy–Prokhorov distance. The non-uniform estimate (20.5) does not
suffice for studying the rate of convergence in other metrics on its basis, and thus
other smoothing inequalities are needed. If we use (20.2) with s = 1 in Theorem 6.1
with T =

√
n/β3, then we arrive at a theorem of Yurinskii [16] which strengthens

Theorem 20.1.

Theorem 20.3. The inequality

π(Fn,Φ) 6 c
β3√
n

holds with an absolute constant c > 0.

This also holds for sums of identically distributed random vectors in Rk with
a constant c depending only on the dimension k.

20.3. Zolotarev distances. For convenience we write ζs(X,Y ) instead of
ζs(F,G) if the random variables X and Y have distributions F and G, respectively
(s = 1, 2, . . . ). We mention two simple but important properties of these ideal
metrics:

1) ζs(λX, λY ) = λsζs(X,Y ) for all λ > 0 (homogeneity of order s);
2) ζs(X+X ′, Y +Y ′) 6 ζs(X,Y )+ ζs(X ′, Y ′) if the random variables X and X ′

are independent and Y and Y ′ are also independent (semi-additivity).
Under the assumptions of the central limit theorem with finite third moment,

we immediately obtain the following theorem of Zolotarev.
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Theorem 20.4.

ζ3(Fn,Φ) 6
1√
n
ζ3(F1,Φ).

Rather interestingly, the desired rate of order 1/
√
n is ensured by the above

properties 1) and 2) of the metric ζ3. In a more general case the inequality

ζs(Fn,Φ) 6
1

n(s−2)/2
ζs(F1,Φ)

holds, though for s > 4 it makes sense only under the additional assumptions that
E|X1|s <∞ and EXp

1 = EZp (p = 3, . . . , s− 1), where Z is a random variable with
standard normal distribution. In particular, if β4 = EX4

1 < ∞ and EX3
1 = 0 (for

example, if the initial distribution F1 is symmetric with respect to the origin), then

ζ4(Fn,Φ) = O

(
1
n

)
.

However, this result can be significantly strengthened in terms of the metric ζ2.
Assuming finiteness of the fourth moment, one can expand f1(t) by Taylor’s formula
in powers of t in a neighbourhood of zero, with a remainder of the form β4t

4, and,
as a consequence, obtain an improvement of (20.2), namely,

|f (s)
n (t)− g̃(s)(t)| 6 c

β4

n
|t|4−se−t2/4, |t| 6

√
n

β3
, s = 0, 1, 2, 3, 4. (20.6)

Here

g̃(t) = e−t2/2

(
1 + EX3

1

(it)3

3!
1√
n

)
is the Fourier–Stieltjes transform of the ‘corrected’ Gaussian distribution. In par-
ticular, g̃(t) = g(t) if EX3

1 = 0.
Applying (20.6) with s = 1 in Theorem 9.1, we can prove the following inequality,

which apparently cannot be found in the literature.

Theorem 20.5. If EX3
1 = 0 and β4 = EX4

1 <∞, then the inequality

ζ2(Fn,Φ) 6 c
β4

n

holds with some absolute constant c > 0.

Since ζ2
1 6 c′ζ2, this estimate agrees with the estimate ζ1(Fn,Φ) 6 cβ3/

√
n for

the mean distance (asymptotically with respect to n).

20.4. Kantorovich distances. The best result known in the problem of the rate
of convergence for Kantorovich transport metrics in the central limit theorem is the
following assertion, which was proved by Rio [35] using the relation (10.3). We give
it in the case of identically distributed summands, as in the previous theorems (see
also [58]).
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Theorem 20.6. If βp+2 = E|X1|p+2 <∞ for 1 6 p 6 2, then

Wp(Fn,Φ) 6 cp
β

1/p
p+2√
n
, (20.7)

where cp > 0 is a constant depending only on p.

For p = 1 we return to a known estimate for the mean distance, and for p = 2
we arrive at an estimate for the quadratic Kantorovich distance:

W2(Fn,Φ) 6 c

√
β4√
n
. (20.8)

Interestingly, the finiteness of the fourth moment is essential for attaining the
standard rate 1/

√
n in the metric W2. Another approach (the so-called entropy

approach) to the derivation of (20.8) was proposed in [59]. The inequality (20.8) can
also be obtained using (20.2) if we invoke the smoothing inequality in Theorem 11.1
with gα = g̃ and T =

√
n/β3. As for values p > 2, in this case the inequality (20.7)

also remains valid. Using Edgeworth expansions, the author recently proved such
an inequality in [60].

In conclusion, we note that all the above estimates remain valid for sums of
non-identically distributed summands after corresponding modifications in terms
of Lyapunov fractions. There are also a variety of similar results for ‘strong’
metrics such as the distance in variation, the Kullback–Leibler divergence, and so
on. However, moment conditions alone are not sufficient for convergence of Fn

to Φ with any rate in strong metrics (see [61]).

The author is grateful to Irina Shevtsova and Andrei Zaitsev for valuable remarks
and stimulating discussions.
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