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1. Introduction

The purpose of this note is to review some results about the localization tech-
niques and hyperbolic measures on Rn and to discuss possible extensions to the
setting of abstract (infinite dimensional) locally convex spaces. As a starting
point, let us recall the so-called “Localization Lemma” which is due to Lovász
and Simonovits.

Theorem 1.1 ([L-S]). Let u, v : Rn → R be lower semi-continuous, integrable
functions such that ∫

Rn

u(x) dx > 0,

∫
Rn

v(x) dx > 0. (1.1)

Then, for some points a, b ∈ Rn and a positive affine function l on (0, 1),

∫ 1

0

u((1− t)a+ tb) l(t)n−1 dt > 0,

∫ 1

0

v((1− t)a+ tb) l(t)n−1 dt > 0. (1.2)

There are some other variants of this theorem, for example, when the first
integrals involving the function u are vanishing, cf. [K-L-S]. The approach of
Lovász and Simonovits was based on the concept of a needle coming as result of
a localization (or bisection) procedure. Later Fradelizi and Guédon [F-G1] pro-
posed an alternative geometric argument with involvement of Krein-Milman’s
theorem, cf. also [F-G2].

Theorem 1.1 is a powerful tool towards certain integral relations in Rn; it
allows reduction to related inequalities in dimension n = 1. It is therefore not
surprising that this theorem has found numerous applications in different prob-
lems of multidimensional Analysis and Geometry, such as isoperimetric prob-
lems over convex bodies, log-concave and more general hyperbolic measures,
as well as Khinchine and dilation-type inequalities (cf. [K-L-S, G, B1, B2, B3,
B6, N-S-V, B-N, F, B-M]). In many such applications, one considers integrals
with respect to measures that are different than the Lebesgue measure on Rn,
and therefore a more flexible version of Theorem 1.1 involving other measures
would be desirable. In addition, having in mind dimension free phenomena and
applications to random processes with hyperbolic distributions, it is useful to
avoid reference to the dimension and to obtain similar statements about spaces
and measures of an infinite dimension.

A positive Radon measure μ on a real, locally convex Hausdorff space. space
E is called α-concave (−∞ ≤ α ≤ ∞) if, for all non-empty Borel sets A and B
in E and for all 0 < t < 1,

μ∗
(
(1− t)A+ tB

)
≥

[
(1− t)μ(A)α + tμ(B)α

]1/α
. (1.3)

Here, (1− t)A+ tB = {(1− t)x+ ty : x ∈ A, y ∈ B} stands for the Minkowski
weighted sum, and μ∗ is the inner measure μ∗(U) is defined for any U ⊆ E,
as the sup{μ(V ) : V is a measurable subset of U} (for a possible case when
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(1 − t)A + tB is not Borel measurable). By the Radon property, (1.3) may
equivalently be stated for all non-empty compact subsets of E, and then the
inner measure is not needed. Note that we will take positive in the strict sense,
meaning that both μ(A) ≥ 0 for A measurable, and μ(E) > 0. This will be at
no loss of generality, as our results will holds vacuously when μ = 0.

Any measure supported on a one-point set is ∞-concave. In all other cases,
necessarily α ≤ 1. For example, the Lebesgue measure on R is 1-concave. More
generally, the Lebesgue measure on Rn is 1

n -concave, which is the content of the
Brunn-Minkowski theorem.

Inequality (1.3) strengthens with growing α. In the limit case α = −∞, (1.3)
becomes corresponding to

μ∗
(
(1− t)A+ tB

)
≥ min{μ(A), μ(B)}, (1.4)

which describes the largest class. Such measures μ are called convex or hyper-
bolic (not to be confused with a class of special probability distributions used in
Statistics, see Example (2.2) in Section (2))”. One important case is also α = 0,
for which (1.3) is understood as

μ∗
(
(1− t)A+ tB

)
≥ μ(A)1−tμ(B)t.

Then the measure μ is called logarithmically concave, or just log-concave.
The class of log-concave measures on Rn was first considered by Prékopa

[Pr] and previously in dimension one by other authors (cf. [I, D-K-H]). The
more general classes of α-concave measures (in the setting of an abstract locally
convex space) were introduced by Borell [Bor1]. He studied basic properties of
α-concave measures, including 0− 1 law, integrability of norms, and convexity
properties of measures under convolutions. Borell also gave a characterization
of the α-concavity in terms of densities of finite dimensional projections, cf.
[Bor1, Bor2], and also [B-L].

Hyperbolic measures are known to satisfy many other important properties
that are usually expressed in terms of various relations such as, for example,
Khinchin-type inequalities for polynomials of a bounded degree. What is re-
markable, most of them involve only the convexity parameter α and do not
depend on the dimension of the underlying space E. It is therefore natural to
state these relations without unnecessary restrictions on E where possible. For
our purposes E will always be assumed to be a locally convex Hausdorff space
over R. Additional assumptions will be made where needed.

For example, Theorem 1.1 may be complemented by the following.

Theorem 1.2. Let μ be a finite α-concave measure on the vector space E, and
let u, v : E → R be lower semi-continuous μ-integrable functions such that∫

E

u dμ > 0,

∫
E

v dμ > 0. (1.5)

Then, for some points a, b ∈ E and some finite α-concave measure ν supported
on the segment Δ = [a, b],∫

Δ

u dν > 0,

∫
Δ

v dν > 0. (1.6)



60 S. G. Bobkov and J. Melbourne

Note that lower semicontinuous functions are bounded below on any compact
set. Hence, their integrals over compactly supported finite measures such as (1.2)
and (1.6) always exist. As an example, the indicator functions of open subsets
of E are all lower semicontinuous.

The completeness assumption (meaning that every Cauchy net in E is con-
vergent) is quite natural. It ensures that the closed convex hull of any compact
set in E is also compact. In that case any finite Radon measure μ on E has a
stronger property

sup{μ(K) : K ⊂ E convex compact} = μ(E). (1.7)

This property, known not to hold in general, is crucial in some applications. (In
fact, in the absence of completeness the validity of the above is still open for
non-Radon Gaussian measures, see [L-T].)

One can also give a geometric variant of Theorem 1.1 together with a finer
formulation of Theorem 1.2 in terms of extreme points of the set Pα(u) of all
α-concave probability measures supported on a convex compact set K ⊂ E
and such that

∫
u dμ ≥ 0 (for a continuous function u on K). As we already

mentioned, this interesting approach to localization was developed by Fradelizi
and Guédon [F-G1]. It was shown there that in case E = Rn and α ≤ 1

2 ,

any extreme measure is supported on an interval Δ ⊂ K with density l(1−α)/α

(where l is a non-negative affine function on Δ). Note that we consider Δ to be
an (closed) interval if there exist x, y ∈ E such that Δ = {(1−t)x+ty : t ∈ [0, 1]}.
When x = y, mΔ corresponds to the Dirac measure at x.

As will be explaned in Section 3, this property extends to general locally
convex spaces, and then it easily implies Theorem 1.2.

One interesting application of Theorem 1.2 may be stated in terms of the
following operation proposed in [N-S-V]. Given a Borel subset A in a closed
convex set F ⊂ E and a number δ ∈ [0, 1], define

Aδ =
{
x ∈ A : mΔ(A) ≥ 1− δ for any interval Δ ⊂ F such that x ∈ Δ

}
,

where mΔ denotes the normalized one-dimensional Lebesgue measure on Δ
(understood to be the Dirac measure in the case that the endpoints coincide).

For example, if F = E and A is the complement to a centrally symmetric,
open, convex set B ⊂ E, then Aδ = E \ ( 2δ − 1)B represents the complement to
the corresponding dilation of B.

Theorem 1.3. Let μ be an α-concave probability measure on a complete locally
convex space E supported on a closed convex set F (−∞ < α ≤ 1). For any
Borel set A in F and for all δ ∈ [0, 1] such that μ∗(Aδ) > 0,

μ(A) ≥
[
δμ∗(Aδ)

α + (1− δ)
]1/α

. (1.8)

Here μ∗ denotes the outer measure defined by the formula,μ∗(A) = inf{μ(U) :
A ⊂ U measurable} (which is not needed, when E is a Fréchet space). This
relation resembles very much the definition (1.3).
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In the important particular case α = 0 (i.e., for log-concave measures), (1.8)
becomes

μ(A) ≥ μ∗(Aδ)
δ.

It was discovered in the finite dimensional setting by Nazarov, Sodin and Vol’berg
[N-S-V]. The extension of this result to the class of α-concave measures in the
form (1.8) is settled in [B-N] and [F], still for finite dimensional spaces. All
proofs are essentially based on Theorem 1.1 or its modifications to reduce (1.8)
to dimension one (although the one dimensional case appears to be rather del-
icate). Here we make another step removing the dimensionality of the space
assumption, cf. Section 5.

The organization of this note is as follows. In Section 2 we recall basic gen-
eral facts about α-concave measures, including Borell’s characterization of the
α-concavity in terms of densities, and describe several examples. Sections 3–4 are
devoted to the extension of Fradelizi-Guédon’s theorem and Lovász-Simonovits’
bisection argument. In particular, the existence of needles which we understand
in a somewhat weaker sense is proved for probability measures on Fréchet spaces
that satisfy the zero-one law. This can be used as an approach towards Theo-
rems 1.1–1.2, but potenitally may have a wider range of applications. Finally,
section 5 is devoted to Theorem 1.3, which is then illustrated in the problem
of large and small deviations (Section 6). The requisite material on dilation is
developed in an appendix.

We do not try to describe in detail results and techniques in dimension one,
but mainly focus on their extensions to the setting of infinite dimensional spaces.

2. Support, dimension and characterizations

The support Hμ = supp(μ) of any Radon measure μ on E is defined as the
smallest closed subset of E of full measure, so that μ(E \ Hμ) = 0. If μ is
hyperbolic, then the set Hμ is necessarily convex, as follows from (1.4). This set
has some dimension

k = dim(μ) = dim(Hμ),

finite or not, which is called the dimension of the hyperbolic measure μ. If it
is finite, absolute continuity of μ will always be understood with respect to the
k-dimensional Lebesgue measure on Hμ. When k = 0 this is understood to be
a point mass δx. That is δx(A) = 1, when x ∈ A and is zero otherwise

First, let us recall an important general property of hyperbolic measures
proven by Borell.

Theorem 2.1 ([Bor1]). If μ is a hyperbolic probability measure on a locally
convex space E, then for any additive subgroup H of E, ether μ∗(H) = 0 or
μ∗(H) = 1.

In particular, any μ-measurable affine subspace of E has measure either zero
or one.
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In [Bor1, Bor2], Borell also gave a full description of α-concave measures.
Similarly to 1.3, a non-negative function f defined on a convex subset H of E
is called β-concave, if it satisfies

f
(
(1− t)x+ ty

)
≥

[
(1− t)f(x)β + tf(y)β

]1/β
(2.1)

for all t ∈ (0, 1) and all points x, y ∈ H such that f(x) > 0 and f(y) > 0. The
right-hand side is understood in the usual limit sense for the values β = −∞,
β = 0 and β = ∞.

Theorem 2.2 ([Bor1]). If μ is a finite α-concave measure on Rn of dimension
k = dim(μ), then α ≤ 1

k . Moreover, μ is absolutely continuous with respect
to Lebesgue measure on Hμ and has density f which is positive, finite, and
β-concave on the relative interior of Hμ, where

β =
α

1− αk
.

Conversely, if a measure μ on Rn is supported on a convex set H of dimension k
and has there a positive, β-concave density f with β ≥ − 1

k , then μ is α-concave
with α defined implicitly by the same formula above.

Note that β is continuously increasing in the range [− 1
k ,∞], when α is varying

in [−∞, 1
k ].

In the extremal case α = 1
k , the density f(x) = dμ(x)

dx is ∞-concave and
is therefore constant: Up to a factor, μ must be the k-dimensional Lebesgue
measure on Hμ.

More generally, if α ≤ 1
k , α 	= 0, the density has the form

f(x) = V (x)
1
α−k

for some function V : Ω → (0,∞) on the relative interior Ω of Hμ, which is
concave in case α > 0, and is convex in case α < 0. In particular, the formula

f(x) = V (x)−k

describes all k-dimensional hyperbolic measures (α = −∞). If α = 0, then
necessarily f(x) = e−V (x) for some convex function V : Ω → R.

As for general locally convex spaces, another theorem due to Borell reduces
the question to Theorem 2.2.

Theorem 2.3 ([Bor1]). A Radon probability measure μ on the locally convex
space E is α-concave, if and only if the image of μ under any linear continuous
map T : E → Rn is an α-concave measure on Rn.

For special spaces in this characterization one may consider linear continuous
maps T from a sufficiently rich family. For example, when E = C[0, 1] is the
Banach space of all continuous functions on [0, 1] with the maximum-norm, the
measure μ is α-concave, if and only if the image of μ under any map of the form

Tx = (x(t1), . . . , x(tn)), x ∈ C[0, 1], t1, . . . , tn ∈ [0, 1],
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is an α-concave measure on Rn. Similarly, when E = R∞, the space of all
sequences of real numbers (with the product topology) indexed by N+, it is
sufficient to consider the standard projections

Tnx = (x1, . . . , xn), x = (x1, . . . , xn, . . . ) ∈ R∞. (2.2)

The next general observation is that infinite dimensional α-concave measures
may not have a positive parameter of convexity. Though a result stated by Borell
(see [Bor3]), we include a proof here for emphasis and the convenience of the
reader. More precisely we have the following:

Theorem 2.4. For α > 0, any α-concave finite measure μ on a locally convex
space E has finite dimension and is compactly supported.

Our referee should be credited for the improved clarity of this result, as it is
their proof of the boundedness of μ’s support that we include here.

Proof. As usual, E′ denotes the dual spaces of all linear continuous functionals
on E and suppose to the contrary that μ is infinite dimensional. We may assume
that Hμ = supp(μ) contains the origin. Since Hμ is not contained in any finite
dimensional subspace of E, for each n, one can find linearly independent vectors
v1, . . . , vn ∈ Hμ. Each point x ∈ E has a representation x = c1(x)v1 + · · · +
cn(x)vn + y with some ci ∈ E′, where y = y(x) is linearly independent of all vi
(cf. [R], Lemma 4.21). Consider the linear map T (x) = (c1(x), . . . , cn(x)), which
is continuously acting from E to Rn. Then the image ν = μT−1 of μ is a finite
α-concave measure on Rn.

Let us see that ν is full dimensional. Otherwise, ν is supported on some
hyperplane in Rn described by the equation a1y1 + · · ·+ anyn = a0, where the
coefficients ai ∈ R are not all zero. Moreover, since 0 ∈ Hμ, any neighborhood
of 0 has a positive μ-measure, so

μ{x ∈ E : |T (x)| < ε} > 0,

for any ε > 0. Hence, necessarily a0 = 0. This implies that μ is supported on the
closed linear subspaceH of E described by the equation a1c1(x)+· · ·+ancn(x) =
0. Here, at least one of the coefficient, say ai, is non-zero. Since ci(vi) = 1 	= 0,
we obtain that vi /∈ H. But this would mean that Hμ ∩ H is a proper closed
subset of the support of μ, while Hμ has a full μ-measure, a contradiction.

Hence, dim(ν) = n. By Theorem 2.2, this gives α ≤ 1
n , and since n was

arbitrary, we conclude that α ≤ 0 which contradicts to the hypothesis α > 0.
Thus, μ must be supported on a finite dimensional affine subspace H ⊂ E.

To prove compactness of the support, we may assume that H = E = Rn and
dim(μ) = n. Then, μ is supported on an open convex set Ω ⊂ Rn, where it has
density of the form

f(x) = V (x)γ , γ =
1

α
− n

(
0 < α ≤ 1

n

)
,

for some concave function V : Ω → (0,∞). The case γ = 0 is possible, but then
f(x) = c for some constant c > 0, which implies μ(Rn) = c |Ω|. Since μ is finite,
Ω has to be bounded, and so Hμ = clos(Ω) is compact.
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Now fix a ∈ Ω and choose r > 0 large enough that a ∈ Ω ∩ {|x| < r} =def

Dr. Let g : Dr → [0, 1] be the concave function with g(a) = 1 and level sets
{g > s} = sa+ (1− s)Dr, 0 < s < 1.

Then ∫
Ω

f(x)dx ≥
∫
Dr

(V (a)g(x))γdx

= mRn(Dr)V
γ(a)γ

∫ 1

0

sγ−1(1− s)nds.

As r → ∞ this term tends to infinity, a contradiction. Thus Ω is bounded.

Example 2.1. The normalized Lebesgue measure on every convex body K ⊂
Rn is 1

n -concave.

Example 2.2. In Statistics, up to scaling parameters, by a (one-dimensional)
hyperbolic distribution one often means a probability measure with density of
the form

f(x) =
1

Z
exp

{
−z

(√
(1 + p2)(1 + x)− px

)}
, x ∈ R,

where z > 0, p ∈ R are shape parameters, and Z is a normalizing constant. In
our terminology, this is a log-concave measure. The name hyperbolic was used
as the profile of logf is a hyperbola (cf. e.g. [BN], [P-S] and references therein).

Example 2.3. Any Gaussian Radon measure on a locally convex space E is
log-concave. In particular, the Wiener measure on C[0, 1] is such.

Example 2.4. The standard Cauchy measure μ1 on R with density f(x) =
1

π(1+x2) is α-concave with α = −1 (which is optimal). More generally, the n-

dimensional Cauchy measure μn on Rn with density

fn(x) =
cn

(1 + |x|2)(n+1)/2

is (−1)-concave (cn is a normalizing constant so that μn is probability).

Example 2.5. Although the above density fn essentially depends on the dimen-
sion, the measure μn has a dimension-free essense. All marginals of μn coincide
with μ1 and moreover, there is a unique Borel probability measure μ on R∞

(an infinite dimensional Cauchy measure) which is pushed forward to μn by the
standard projection Tn from (2.2)). This measure can also be introduced as the
distribution of the random sequence

X =
(Z1

ζ
,
Z2

ζ
, . . .

)
,

where the random variables ζ, Z1, Z2, . . . are independent and all have a stan-
dard normal distribution. Thus, μ is (−1)-concave on R∞.
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Example 2.6. This example is mentioned in [Bor1]. Given d > 0 (real), let χd

be a random variable with χ-distribution, that is χd has distribution function

fd(r) = cdr
d−1e−r2/2

with cd = 21−
k
2 /Γ(d/2). When d is integer valued, the distribution corresponds

to that of the norm of a d-dimensional standard Gaussian. If W is a standard
Wiener process, independent of χd viewed as a random function in C[0, 1], then
the random function

X(t) =

√
d

χd
W (t), t ∈ [0, 1],

is α = − 1
d -concave. This is called the Student measure (when d = 1 this Cauchy

similar to the previous example).

Proof. It suffices to prove that for t1 < · · · < tk, (X(t1), . . . , X(tk)) is −1/d-
concave, and for this purpose (since α-concavity is affine invariant) it is enough
to show that Z/χd is −1/d-concave, when Z is a k-dimensional standard normal.
That is Z has distribution

ρk(x) = cke
|x|2/2,

where ck = (2π)
k
2 . Thus by Borell’s characterization, it is enough to show the

density function of Z/χd is −(k + d)−1-concave. When g : Rk → R is smooth
and compactly supported,

Eg(Z/χd) =

∫
Rk

∫ ∞

0

g(z/r)ρk(z)fd(r)drdz

=

∫
Rk

g(x)

(∫ ∞

0

rkρk(rx)fd(r)dr

)
dx.

Thus it suffices to show that∫ ∞

0

rkρk(rx)fd(r)dr = ckcd

∫ ∞

0

rke−|rx|2/2rd−1e−r2/2dr

= ckcd

∫ ∞

0

rk+de−(1+|x|2)r2/2 dr

r
.

is a −(k+ d)−1-concave function. But the substitution u = r(1 + |x|2)1/2 yields

(1 + |x|2)−(k+d)/2ckcd

∫ ∞

0

rk+de−r2/2 dr

r

= C
(
(1 + |x|2)1/2

)−(k+d)

,

and since (1 + |x|2)1/2 is convex, we have our result.
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3. Extreme α-concave measures

Given a convex compact set K in a locally convex space E, denote by Mα(K)
the collection of all α-concave probability measures with support contained in
K, considered as a closed subset of the locally convex space M(K) of all signed
Radon measures on K endowed with the topology of weak convergence (see
[Bor1]). For a continuous function u on K, we consider the subcollection

Pα(u) =

{
μ ∈ Mα(K) :

∫
u dμ ≥ 0

}

together with its closed convex hull P̃α(u), taken in M(K). The latter space is

dual to the space C(K) of all continuous functions on K, and P̃α(u) is compact.

We wish to understand the extreme points of P̃α(u). Using a general theorem
due to D. P. Milman, one can only say that all such points lie in Pα(u) (cf.
[B-S-S], p.124, or [Ph] for a detailed discussion of Krein-Milman’s theorem). A
full answer to this question is given for α ≤ 1

2 in Fradelizi-Guédon’s theorem,
which we formulate below in the setting of abstract locally convex spaces. We
mention in passing that to our knowledge, a description of the extreme points
when α > 1

2 remains open.

Theorem 3.1. Given a continuous function u on K and −∞ ≤ α ≤ 1, any
extreme point μ in P̃α(u) has the dimension dim(μ) ≤ 1. Moreover, in case
α ≤ 1

2 ,

1) μ is either a mass point at x ∈ K such that u(x) ≥ 0; or
2) μ is supported on an interval Δ = [a, b] ⊂ K with density

dμ(x)

dmΔ(x)
= l(x)(1−α)/α (3.1)

with respect to the uniform measure mΔ, where l is a non-negative affine func-

tion on Δ such that
∫ x

a
u dμ > 0 and

∫ b

x
u dμ > 0, for all x ∈ (a, b).

In particular, any α-concave probability measure supported on K, belongs to
the closed convex hull of the family of all one-dimensional α-concave probability
measures supported on K having density of the form (3.1).

We only consider the first assertion of the theorem. The second part is a
purely one dimensional statement, and we refer to [F-G1].

Proof. Suppose that a measure μ ∈ Pα(u) has the dimension dim(μ) ≥ 2. For
simplicity, let the origin belong to the relative interior G of the support Hμ of
μ. Then one may find linearly independent vectors x and y such that ±x and
±y are all in G. On the linear hull L(x, y) of x and y (which is a 2-dimensional
linear subspace of E), define linear functionals λx and λy by putting

λx(x) = λy(y) = 1,

λx(y) = λy(x) = 0.
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They are continuous, so by the Hahn-Banach theorem, these functionals may
be extended from L(x, y) to the whole space E keeping linearity and continuity.

With these extended functionals, we can associate Λθ = θ1λx + θ2λy, where
θ = (θ1, θ2) ∈ S1 (vectors on the unit sphere of R2). Note that these functionals
are uniformly bounded on K, i.e.,

sup
θ

sup
z∈K

|Λθ(z)| ≤ sup
z∈K

|λx(z)|+ sup
z∈K

|λy(z)| < ∞. (3.2)

Now, following in essence an argument of [F-G1], define the map Φ : S1 → R

by

Φ(θ) =

∫
{Λθ≥0}

u dμ.

By the construction, the set {Λθ = 0} ∩ Hμ represents a proper closed affine
subspace of Hμ. So, μ{Λθ = 0} = 0 according to Theorem 3.1 (the zero-one law
for hyperbolic measures). Hence, using (3.2), we may conclude that the map Φ
is continuous.

In addition, we have the identity Φ(θ)+Φ(−θ) =
∫
u dμ. Hence, the interme-

diate value theorem implies that there exists θ such that with H+
θ = {Λθ ≥ 0}

and H−
θ = {Λθ ≤ 0}, we have∫

H+
θ

u dμ =

∫
H−

θ

u dμ =
1

2

∫
E

u dμ.

Necessarily, t = μ(H−
θ ) > 0 and μ(H+

θ ) > 0. Defining α-concave probability
measures

μ0(A) =
μ(A ∩H+

θ )

μ(H+
θ )

, μ1(A) =
μ(A ∩H−

θ )

μ(H−
θ )

,

we arrive at the representation μ = (1 − t)μ0 + tμ1 which means that μ is not
extreme.

One can now return to Theorem 1.2.

Proof of Theorem 1.2. Due to the property (1.7), and by the assumption (1.5),∫
K

min(u, c) dμ > 0,

∫
K

min(v, c) dμ > 0,

for some convex compact set K ⊂ E and a constant c > 0. We assume without
loss of generality that μ(K) = 1. Moreover, since the function min(u, c) is lower
semicontinuous and bounded, while μ is Radon,∫

K

min(u, c) dμ = sup
g

∫
g dμ,

where the sup is taken over all continuous functions onK such that g ≤ min(u, c)
(cf. e.g. [M], Chapter 2, or [Bog], Chapter 7). A similar identity also holds for
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min(v, c). This allows us to reduce the statement of the theorem to the case
where both u and v are continuous on K.

In the latter case, let u0 = u −
∫
K
u dμ. Consider the functional T (η) =∫

K
v dη. It is linear and continuous on M(K), and therefore being restricted

to Pα(u0) it attains maximum at one of the extreme points of P̃, say ν. Since
μ ∈ Pα(u0), we conclude that∫

K

u0 dν ≥ 0, T (ν) ≥ T (μ),

so,
∫
K
u dν > 0 and

∫
K
v dν > 0 which is (1.6). It remains to apply Theorem 3.1.

A similar argument, based also on the second part of Theorem 3.1, yields
Theorem 1.1. Indeed, the n-dimensional integrals (1.1) can be restricted to a
sufficently large closed ball K ⊂ Rn. The normalized Lebesgue measure on K
is α-concave with α = 1

n . Hence, the extreme points in P̃α(u) are at most one
dimensional and have densities of the form ln−1 (if they are not Dirac measures).

4. Bisection and needles on Fréchet spaces

The notion of a needle was proposed by Lovász and Simonovits for the proof of
Theorem 1.1 (Localization Lemma, cf. also [K-L-S]). Previously, it appeared im-
plicitly in [P-W] and may be viewed as development of the Hadwiger-Ohmann
bisection approach to the Brunn-Minkowski inequality ([H-O, B-Z], cf. also
[G-M] for closely related ideas).

As shown in [L-S], starting from (1.1), one can construct a decreasing se-
quence of compact convex bodies Kl in Rn that are shrinking to some segment
Δ = [a, b] and are such that, for each l,∫

Kl

u(x) dx > 0,

∫
Kl

v(x) dx > 0.

Moreover, choosing a further subsequence (if necessary) and applying the Brunn-
Minkowski inequality in Rn, one gets in the limit

lim
l→∞

1

|Kl|

∫
Kl

u(x) dx =

∫
Δ

ψn−1(x)u(x) dx,

lim
l→∞

1

|Kl|

∫
Kl

v(x) dx =

∫
Δ

ψn−1(x) v(x) dx,

for some non-negative concave function ψ on Δ. Here |Kl| denotes the n-
dimensional volume, while the integration on the right-hand side is with respect
to the linear Lebesgue measure on the segment. In this way, one may obtain
a slightly weaker variant of (1.2) with ψ in place of l, and with non-strict in-
equalities. An additional argument of a similar flavour was then developed in
[L-S] to make ψ affine (while the strict inequalities in (1.2) are easily achieved
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by applying the conclusion to functions u − εw and v − εw, where w > 0 is
integrable, continuous, and ε > 0 is small enough). The last step shows that for
Kl one may take infinitesimal truncated cylinders with main axis Δ; it is in this
sense the limit one dimensional measure ln−1(x) dx on Δ may be considered a
needle.

The aim of this section is to extend this construction to the setting of separa-
ble Fréchet, i.e., complete metrizable locally convex spaces. For example, E may
be a Banach space, but there also other important spaces that are not Banach,
such as the space E = R∞. Note that any finite Borel measure on a Fréchet
space is Radon.

While one cannot speak about the Lebesgue measure when E is infinite di-
mensional, the main hypothesis (1.1) may readily be stated like (1.5) with inte-
gration with respect to a given (finite) Borel measure μ on E.

The space of all finite Borel measures on E is endowed with the topology of
weak convergence. In particular, μl → μ (weakly), if and only if∫

u dμl →
∫

u dμ (as l → ∞)

for any bounded continuous functions u on E. As was noticed in [Bor1], the
class of all α-concave probability measures on E is closed in the weak topology.

Definition 4.1. Let μ be a finite Borel measure on E. A Borel probability
measure ν will be called a needle of μ, if it is supported on a segment [a, b] ⊂ E
and can be obtained as the weak limit of probability measures

μl(A) =
1

μ(Kl)
μ(A ∩Kl), (A is Borel),

where Kl is some decreasing sequence of convex compact sets in E of positive
μ-measure such that ∩lKl = [a, b].

Here, all μl represent normalized restrictions of μ to Kl. In particular, all
needles of a given α-concave measure are α-concave, as well. We do not require
that Kl be asymptotically close to infinitesimal truncated cylinders.

Definition 4.2. One says that a Borel probability measure μ on E satisfies the
zero-one law, if any μ-measurable affine subspace of E has μ-measure either 0
or 1.

For example, this important property holds true for all (Radon) Gaussian
measures. More generally, it is satisfied by any hyperbolic probability measure,
as follows from Borell’s Theorem 2.1.

With these definitions, Theorem 1.2 admits the following refinement.

Theorem 4.1. Suppose that a Borel probability measure μ on a seperable Fréchet
space E satisfies the zero-one law. Let u, v : E → R be lower semi-continuous
μ-integrable functions such that∫

u dμ > 0,

∫
v dμ > 0.
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Then, these inequalities also hold for some needle ν of μ. Moreover, if μ is
supported on a closed convex set F , then ν may be chosen to be supported on F ,
as well.

First assume that E is a separable Banach space with norm ‖ · ‖, and let
E′ denote the dual space (of all linear continuous functionals on E) with norm
‖ · ‖∗. Suppose that any proper closed affine subspace of E has μ-measure zero.
In this case, for the proof of Theorem 4.1 we use the construction similar to the
one from the proof of Theorem 3.1.

Given 3 affinely independent points x, y, z in E, define linear functionals λx

and λy on the linear hull Lz(x, y) of x− z and y − z (which is a 2-dimensional
linear subspace of E), by putting

λx(x− z) = λy(y − z) = 1, (4.1)

λx(y − z) = λy(x− z) = 0. (4.2)

By the Hahn-Banach theorem, these functionals may be extended by linearity to
the whole space E without increasing their norms. This will always be assumed
below.

We will also employ the following notation, define the lines

Lz(x) = {z + r(x− z) : r ∈ R},
Lz(y) = {z + r(y − z) : r ∈ R}.

Then, for w ∈ Lz(x, y), ‖w‖ ≤ 1,

|λx(w)| ≤ dist−1(x, Lz(y)), |λy(w)| ≤ dist−1(y, Lz(x)),

where we use the notation dist(w,A) = inf{‖w − a‖ : a ∈ A} (the shortest
distance from a point to the set). The extended linear functionals should thus
satisfy the above inequalities on the whole space E for all ‖w‖ ≤ 1, i.e.,

‖λx‖∗ ≤ dist−1(x, Lz(y)), ‖λy‖∗ ≤ dist−1(y, Lz(x)). (4.3)

Lemma 4.1. Let {(xn, yn, zn)}n≥1 be affinely independent points in the Banach
space E such that xn → x, yn → y, zn → z, where x, y, z are also affinely inde-
pendent. Then the corresponding linear functionals λxn and λyn have uniformly
bounded norms, i.e.,

sup
n≥1

‖λxn‖∗ < ∞, sup
n≥1

‖λyn‖∗ < ∞.

Proof. By shifting, one may assume that z = 0, in which case x and y are
linearly independent and in particular ‖x‖ > 0 and ‖y‖ > 0. Using (4.3), it is
enough to show that

dist(xn, Lzn(yn)) ≥ c, for all n ≥ n0,
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with some n0 and c > 0. Indeed, take an arbitrary point w = zn + r(yn − zn) in
Lzn(yn), r ∈ R. By the triangle inequality,

‖xn − w‖ ≥ |r| ‖yn − zn‖ − ‖xn − zn‖ ≥ 2‖xn − zn‖,

where the last inequality holds whenever |r| ≥ 3 ‖xn−zn‖
‖yn−zn‖ . Hence, by the conver-

gence assumption,

‖xn − w‖ ≥ ‖x‖, for |r| ≥ r0 = 4
‖x‖
‖y‖ , n ≥ n0.

In case |r| ≤ r0, again by the triangle inequality,

‖xn − w‖ ≥ ‖x− (z + ry)‖ − ‖xn − x‖ − |r| ‖yn − y‖ − r‖zn‖
≥ dist(x, Lz(y))− ‖xn − x‖ − r0 ‖yn − y‖ − r0‖zn‖.

Here, the right-hand side is also separated from zero for sufficiently large n.
By a similar argument, dist(yn, Lzn(xn)) ≥ c, for all n ≥ n0.

Proof of Theorem 4.1.. We begin with a series of reductions, any Fréchet space
with Radon probability measure μ has a subspace E0 such that μ(E0) = 1, and
in addition there exists a norm ‖·‖ on E0 with respect to which E0 is a separable
reflexive Banach space whose closed balls are compact in E (see [Bog], Theorem
7.12.4).

In particular, all Borel subsets of E0 are Borel in E. By the zero-one law
(turning to a smaller subspace if necessary), we may assume that any proper
affine subspace of E0 which is closed for the topology of E0 has measure zero.
That is, for any non-trivial l ∈ E′

0,

μ{l = c} = 0, c ∈ R. (4.4)

Second, it suffices to assume that the support of μ is compact and convex.
Indeed, by Ulam’s theorem, there is an increasing sequence of compact sets
Kn ⊂ E0 such that μ(∪nKn) = 1. The closed convex hull of any compact set in
E0 is compact (which is true in any Banach and more generally complete locally
convex spaces, cf. e.g. [K-A]). Therefore, all Kn may additionally be assumed
to be convex.

By the dominated convergence theorem,

lim
n→∞

∫
Kn

u dμ =

∫
E

u dμ, lim
n→∞

∫
Kn

v dμ =

∫
E

v dμ,

so that
∫
Kn

u dμ > 0 and
∫
Kn

v dμ > 0 for large n. Hence, an application of the
theorem to μ restricted and normalized to Kn would provide the desired one
dimensional measure ν, a needle of μn and therefore of μ itself.

Thus, from now on, we may assume that E is a separable Banach space, and
μ is a Borel probability measure on E which is supported on a convex compact
set K ⊂ E and is such that (4.4) holds true for all non-trivial l ∈ E′.
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We need only to prove the existence of ν such that
∫
u dν ≥ 0 and

∫
v dν ≥ 0.

Since in this case we may apply the superficially weaker result to u−ε and v−ε
for an ε > 0 chosen small enough to preserve the hypothesis.

In addition, it suffices to prove the result when u and v are both continu-
ous. To see this, take un and vn to be sequences continous functions increasing
to lower semicontinuous u and v respectively. By the monotone convergence,
limn→∞

∫
un dμ =

∫
u dμ > 0 and limn→∞

∫
vn dμ =

∫
v dμ > 0, so we can

take the approximating functions un and vn to be such that
∫
un dμ > 0 and∫

vn dμ > 0. The theorem produces needles νn of μ supported on F and such
that ∫

un dνn > 0,

∫
vn dνn > 0.

Since u ≥ un and v ≥ vn, every such measure νn will be the required needle.
Let us now turn to the construction procedure.
Given 3 affinely independent points x, y, z in E, consider the linear continuous

functionals λx and λy on E introduced before Lemma 4.1 via the relations (4.1)–
(4.2) and the Hahn-Banach theorem. To each point θ ∈ S1 = {(t, s) : t2+s2 = 1}
we can associate a linear functional Λθ = tλx + sλy and define the function

Ψ : S1 → R, θ = (t, s) �→
∫
{Λθ(ξ−z)≥0}

u(ξ) dμ(ξ).

Since μ{ξ : Λθ(ξ − z) = 0} = 0 (cf. (4.4)), this function is continuous on S1. In
addition, we have the identity

Ψ(−θ) + Ψ(θ) =

∫
E

u dμ.

Hence, by the intermediate value theorem, there exists θ ∈ S1 such that∫
{Λθ(ξ−z)≥0}

u(ξ) dμ(ξ) =

∫
{Λθ(ξ−z)≤0}

u(ξ) dμ(ξ) =
1

2

∫
E

u dμ.

Also, ∫
E

v dμ =

∫
{Λθ(ξ−z)≥0}

v(ξ) dμ(ξ) +

∫
{Λθ(ξ−z)≤0}

v(ξ) dμ(ξ) > 0,

so that at least one the last two integrals is positive. Let H+ denote one of
the hyperspaces {Λθ(ξ − z) ≥ 0} or {Λθ(ξ − z) ≤ 0} such that

∫
H+ v dμ > 0.

Necessarily, μ(H+) > 0, and we may consider the normalized restriction μ+ of
μ to H+ and will have the property that∫

H+

u dμ+ > 0,

∫
H+

v dμ+ > 0. (4.5)

This procedure can be performed step by step along a sequence
{(xn, yn, zn)}n≥1 of affinely independent points, chosen to be dense inK×K×K.
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Let ν1 = μ+ be constructed according to the above procedure for (x1, y1, z1)
and with an associated point θ1 = (t1, s1) ∈ S1. Similarly, on the n-th step,
given νn, let νn+1 = ν+n be constructed for the triple (xn, yn, zn) and with the
associated linear functional

Λθn = Λ(tn,sn) = tnλxn + snλyn .

Since the space of all Borel probability measures on K is compact and metriz-
able for the weak topology, the sequence νn has a sub-sequential weak limit ν.
In particular, from (4.5) we derive the desired property∫

E

u dν ≥ 0,

∫
E

v dν ≥ 0.

It remains to show that dim(Hν) ≤ 1. Suppose not, in this case there exists
affinely independent x, y, z in the relative interior of Hν that also contains the
points 2z − x and 2z − y. Without loss of generality, let z = 0, so that ±x and
±y belong to the relative interior of Hν . By the density property, there exists a
subsequence, say (xk, yk, zk) such that (xk, yk, zk) → (x, y, z).

By the construction, the measure ν+k is supported on the half-space H+
k ,

which is either {ξ : Λ(tk,sk)(ξ − zk) ≥ 0} or {ξ : Λ(tk,sk)(ξ − zk) ≤ 0}. For
definiteness, let it be the first half-space. Since all H+

k contain x and −x, we
then have

Λ(tk,sk)(x− zk) ≥ 0, Λ(tk,sk)(−x− zk) ≥ 0, (4.6)

and similarly for the point y.
Recall that by Lemma 4.1, we can obtain a uniform bound M such that

‖Λ(tk,sk)‖∗ ≤ ‖λxk
‖∗ + ‖λyk

‖∗ ≤ M for all k.

Hence, Λ(tk,sk)(zk) → 0 and Λ(tk,sk)(xk − x) → 0 as k → ∞. But then by (4.6),
necessarily Λ(tk,sk)(xk) → 0, as well. By the same argument, Λ(tk,sk)(yk) → 0.

On the other hand, according to the definition of Λ(tk,sk) via (4.1)–(4.2), for
each k,

Λ(tk,sk)(xk − zk) = tk, Λ(tk,sk)(yk − zk) = sk,

thus implying that limk→∞ tk = limk→∞ sk = 0. But this is impossible since
t2k + s2k = 1. This proves that dim(Hν) ≤ 1.

5. The dual form and proof of Theorem 1.3

Following [B-N], let us reformulate Theorem 1.3 in terms of dilated sets. For
α ≤ 1 (Recall, that for α-concave measures this excludes only Dirac measures),
δ ∈ (0, 1), and p ∈ [0, 1] define

R
(α)
δ (p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1−

[
(1−p)α−(1−δ)

δ

]1/α
α < 0 or α > 0, p ≤ 1− (1− δ)1/α

1− (1− p)1/δ, α = 0.

1 α > 0, p > 1− (1− δ)1/α.

(5.1)
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This definition is motivated by considering B = F \A where F is a closed convex
set containing the support of μ and using Lemma A.2, with the inequality

μ(A) ≥
[
δμ∗(Aδ)

α + (1− δ)
]1/α

(0 < δ < 1) (5.2)

which is solved as μ∗(B
δ) ≥ R

(α)
δ (μ(B)).

In the case α ≤ 0, R
(α)
δ is a strictly concave, increasing function in p ∈ [0, 1].

The case α = 0 can be derived in the limit. When 0 < α ≤ 1, R(α)(p) is
found from the formula above on the interval 0 ≤ p ≤ 1− (1− δ)1/α (when the
expression makes sense) and we put R(α)(p) = 1 on the remaining subinterval
of [0, 1].

In all cases, R
(α)
δ : [0, 1] → [0, 1] represents a concave, continuous, non-

decreasing function such that R
(α)
δ (0) = 0 and R

(α)
δ (1) = 1. Put R

(α)
0 (p) =

limδ↓0 R
(α)
δ (p) = 1 for 0 < p ≤ 1 and R

(α)
0 (0) = 0.

Theorem 5.1. Let μ be an α-concave probability measure on a complete sepa-
rable locally convex space E supported on a convex closed set F (−∞ < α ≤ 1).
For any Borel subset B of F and for all δ ∈ [0, 1),

μ∗(B
δ) ≥ R

(α)
δ (μ(B)). (5.3)

For example, on the real line E = R for the Lebesgue measure μ on the unit
interval F = [0, 1], we have α = 1, and (5.3) becomes

μ(Bδ) ≥ min

{
1

δ
μ(B), 1

}
.

For the Cauchy measures μ on Rn and R∞ (cf. Examples 2.1), we have α = −1,
and then (5.1)–(5.3) with F = E yield

μ(Bδ) ≥ μ(B)

1− (1− δ)(1− μ(B))
.

Note that when E is a separable Fréchet space and B is Borel, Bδ is univer-
sally measurable, so there is no need to use the inner masure.

Let us comment on the extreme values of δ in (5.2) and (5.3). Since the sets
Bδ increase for decreasing δ, (5.3) will hold for δ = 0 by continuity, as long as
this inequality holds for all 0 < δ < 1. In this case, (5.3) with δ = 0 tells as that
μ(B) > 0 ⇒ μ(B0) = 1. Equivalently, after the substitution A = F \ B and
using Lemma A.2, we get μ(A0) = 0, that is,

μ
{
x ∈ F : mΔ(A) = 1, for any interval Δ ⊂ F such that x ∈ Δ

}
= 0,

as long as μ(A) < 1. This case is however excluded from the formulation of
Theorem 1.3 by the assumption μ∗(Aδ) > 0. Note also that in case δ = 1, (5.2)
holds automatically, since then A1 = A.
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Thus, both Theorem 1.3 and Theorem 5.1 do not loose generality by assuming
that 0 < δ < 1 (and we do this below in this section).

Equivalence of Theorem 1.3 and Theorem 5.1. It is straightforward
for α ≤ 0. This case also includes the values μ∗(Aδ) = 0 in (5.2), since then
μ∗(B

δ) = 1 for B = F \A and thus both (5.2) and (5.3) are immediate.
Consider the case 0 < α ≤ 1. For the implication (5.2) ⇒ (5.3), let p = μ(B),

0 < p < 1. If δ ≥ δp = 1 − (1 − p)α, the formula (5.1) should be applied and
then (5.3) becomes

μ∗(B
δ) ≥ 1−

[
(1− μ(B))α − (1− δ)

δ

]1/α
. (5.4)

Here the right-hand side tends to 1 as δ ↓ δp, so necessarily μ∗(B
δp) = 1 and

hence μ∗(B
δ) = 1 for all 0 ≤ δ < δp. Thus, without loss of generality, (5.3) may

be stated as (5.4) for the range δ ≥ δp. If μ∗(B
δ) = 1 there is nothing to prove.

If μ∗(B
δ) < 1, then μ∗(Aδ) > 0 for the set A = F \ B. In that case, (5.2) is

exactly the same as (5.4).
For the implication (5.3) ⇒ (5.2), assume that μ∗(Aδ) > 0. Then μ∗(B

δ) < 1
for B = F \ A which implies that μ(B) < p0 = 1− (1− δ)1/α according to the

definition of R
(α)
δ (μ(B)). Moreover, again the formula (5.1) should be applied

to rewrite the hypothesis (5.3) in the form (5.4), which can in turn be rewritten
as (5.2).

Proof of Theorem 5.1. First observe that the theorem holds immediately for
zero-dimensional measures. Now using Theorem 1.2, let us show how to reduce
the desired statement (5.3) to dimension one. Since the sets Bδ may only become
larger, when F is getting larger, one may assume that F = Hμ, i.e., the support
of μ. Fix 0 < δ < 1.

Step 1: First suppose that B is an open set in F such that the boundary ∂Bδ

of Bδ in F has μ-measure zero. Fix an arbitrary p ∈ (0, 1). Using the continuity

of the functions R
(α)
δ , it is sufficient to show that μ(B) > p ⇒ μ(D) ≥ R

(α)
δ (p),

where D is the closure of Bδ. If this were not true, we would have∫
(1B − p) dμ > 0,

∫
(R

(α)
δ (p)− 1D) dμ > 0,

which is exactly the condition (1.5) for u = 1B − p and v = R
(α)
δ (p) − 1D

(where 1A denotes the indicator function of a set A). These functions are lower-
semicontinuous, so we may apply Theorem 1.2: There exists an α-concave prob-
ability measure ν supported on an interval Δ ⊂ F , such that (1.6) holds, i.e.,

ν(B) > p, ν(D) < R
(α)
δ (ν(B)).

But

ν(D) ≥ ν
(
Bδ

)
≥ ν

(
(B ∩Δ)δ

)
,
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where (B∩Δ)δ is the result of the one dimensional dilation operation applied to
B∩Δ with respect to Δ. Hence, we obtain ν((B∩Δ)δ) < ν(B) which contradicts
the relation (5.3) in dimension one.

Step 2: Here we describe one class of open sets to which the previous step
may be applied. Let B be a set of the form T−1(C) ∩ F , where T : E → Rn is
a continuous linear map and C ⊂ Rn is an open polytope (n ≥ 1 is arbitrary).
Then (T−1(Cδ)) represents an intersection of finitely many open half-spaces
(Lemma A.3). If μ(B) > 0, then, by the zero-one law, the boundaries of these
half-spaces have μ-measure zero and hence μ(∂Bδ) = 0, as well.

More generally, let B = T−1(C) ∩ F , where C is a finite union of open poly-
topes in Rn. Then Cδ is also a finite union of open polytopes. Using Lemma A.3,
we obtain that clos(Bδ) ⊂ T−1(clos(Cδ)), so ∂Bδ ⊂ T−1(∂Cδ). Again ∂Cδ is
contained in finitely many hyperplanes of Rn and thus μ(∂Bδ) = 0.

Step 3: B is an arbitrary open set in F , assuming that F is a convex, compact
set. Denote by G the collection of all cylindrical sets in F described on the last
step. Such sets constitute a base in the original topology on F , since the two
coincides by the compactness assumption. Hence B = ∪G, where the union is
over all G ∈ G such that G ⊂ B. Since G is closed under finite unions, one may
apply the Radon property which gives

μ(B) = sup{μ(G) : G ∈ G, G ⊂ B}.

For any G as above, we have μ(Gδ) ≥ R
(α)
δ (μ(G)), by the previous steps. Hence,

we obtain (5.3) for B, as well.

Step 4: B is an arbitrary Borel set in F . By the strengthened Radon property
(1.7), it is sufficient to consider the case of a non-empty compact set B, and we
may additionally assume that F is compact.

Any open set in F containing x ∈ B contains this point together with B(x)∩
F , where B(x) = T−1

x (C(x)). Here Tx : E → Rn is a continuous linear map and
C(x) is a Euclidean ball in Rn (with some n depending on x). Using compactness
of B, one can compose its finite covering by the sets of the form

G =
(
B(x1) ∪ · · · ∪B(xN )

)
∩ F, xj ∈ B,

with full intersection being B. Let {Ui}i∈I be a decreasing net indexed by a semi-
ordered directed set I such that each Ui represents the intersection of finitely
many sets G as above. The latter guarantees that μ(Ui) ↓ μ(B) along the net.

Now, let δ < δ′ < 1. Given x ∈ F , the property x /∈ Bδ means that
m[x,y](B) = infi∈I m[x,y](Ui) ≤ δ for any y ∈ F . In that case, there is i ∈ I such
that m[x,y](Ui) < δ′, and hence the increasing sets

Vi(x) =
{
y ∈ F : m[x,y](Ui) < δ′

}
, i ∈ I,

cover F . By the construction, for each i, the function ϕ(x, y) = m[x,y](Ui) is of
the type

ϕ(y) = mes
{
t ∈ (0, 1) : ∀ k ≤ l ∃j ≤ Nk (1− t)Txkj

(x) + tTxkj
(y) ∈ C(xkj)

}
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for some continuous linear maps Txkj
: E → Rn(xkj) and some Euclidean balls

C(xkj) in Rn(xkj). As the boundaries of Euclidean balls do not contain non-
degenerate intervals, any such function ϕ must be continuous on F . Therefore,
all the sets Vi(x) are open in F , so that by compactness, Vi(x) = F for some
i = i(x). Thus, given x ∈ F \Bδ, we have m[x,y](Ui(x)) < δ′ for any y ∈ F , and

hence F \Bδ is contained in⋃
i

{
x ∈ F : m[x,y](Ui) < δ′ for all y ∈ F

}
.

It follows that Bδ contains the intersection of the open sets

U δ′

i =
{
x ∈ F : m[x,y](Ui) > δ′ for some y ∈ F

}
and thus, by the Radon property,

μ∗(B
δ) ≥ μ

(
∩i U

δ′

i

)
= lim

i
μ
(
U δ′

i

)
.

On the other hand, by Step 3, μ(U δ′

i ) ≥ R
(α)
δ′ (μ(Ui)), and taking the limit

along the net we get μ∗(B
δ) ≥ R

(α)
δ′ (μ(B)). It remains to let δ′ ↓ δ and use the

contunuity of R
(α)
δ with respect to δ.

6. Large and small deviations

As is known, the dilation-type inequality (1.8) of Theorem 1.3 may equivalently
be stated on functions (which is often more convenient in applications). Namely,
with every Borel measurable function u on E with values in the extended line
[−∞,∞], one associates its “modulus of regularity”

δu(ε) = sup mes
{
t ∈ (0, 1) : |u((1− t)x+ ty) | ≤ ε |u(x)|

}
, 0 ≤ ε ≤ 1,

where the supremum is running over all points x, y ∈ E such that u(x) is finite.
The behavior of δu near zero is used to control the probabilities of large and

small deviations of u under hyperbolic measures by involving the parameter α,
only (cf. [B4, B-N, F]). In particular, there is the following recursive functional
inequality, which is stated below, in the setting of an abstract complete locally
convex space E.

We assume that μ is an α-concave probability measure onE with−∞ < α ≤ 1
and that u is a Borel measurable, μ-a.e. finite function on E.

Theorem 6.1. Given 0 < λ < ess sup |u| such that μ{|u| ≥ λ}, for all ε ∈
(0, 1),

μ{|u| > λε} ≥
[
δ μ{|u| ≥ λ}α + (1− δ)

]1/α
, (6.1)

where δ = δu(ε).
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In case α = 0, this relation turns into

μ{|u| > λε} ≥
(
μ{|u| ≥ λ}

)δ
. (6.2)

Note that for α ≤ 0, the assumption λ < ess sup |u| may be removed.
If μ is supported on a convex closed set F in E, the inequalities (6.1)–(6.2)

continue to hold when u is defined on F (rather than on the whole space). In
that case, in the definition of δu the supremum should be taken over all points
x, y ∈ F .

Proof of Theorem 6.1. Let us recall a simple argument based on Theorem 1.3.
The latter is applied with F = E to the set

A = {x ∈ E : λε < |u(x)| < ∞}.

By the definiton,

Aδ = {x ∈ E : m[x,y](A) ≥ 1− δ ∀y ∈ E}
=

{
x ∈ E : mes{t ∈ (0, 1) : λε < |u((1− t)x+ ty)| < ∞} ≥ 1− δ ∀y ∈ E

}
.

Suppose that λ ≤ |u(x)| < ∞. Then, for any y ∈ E, we have |u((1− t)x+ ty)| ≤
λε ⇒ |u((1− t)x+ ty)| ≤ ε|u(x)|, so that

mes
{
t ∈ (0, 1) : |u((1− t)x+ ty)| ≤ λε

}
≤

mes
{
t ∈ (0, 1) : |u((1− t)x+ ty)| ≤ ε|u(x)|

}
≤ δu(ε).

Hence,

mes
{
t ∈ (0, 1) : λε < |u((1− t)x+ ty)| < ∞

}
≥ 1− δu(ε)

which implies that x ∈ Aδ with δ = δu(ε). This gives the inclusion

{x ∈ E : λ ≤ |u(x)| < ∞} ⊂ Aδ

and also that μ∗(Aδ) > 0 (due to the assumption on λ). It remains to apply
(1.8)).

In the next two corrolaries we follow [B-N], cf. also [F]. Denote by m, a
median of |u| under μ, i.e., a real number such that

μ{|u| > m} ≤ 1

2
, μ{|u| < m} ≤ 1

2
.

Corollary 6.1. Assuming that m > 0, for all r > 1,

μ{|u| ≥ mr} ≤
[
1 +

2−α − 1

δu(
1
r )

]1/α
. (6.3)
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When α = 0, the right-hand side is understood as the limit at zero, that is,

μ{|u| ≥ mr} ≤ 2−1/δu(
1
r ). (6.4)

If α < 0, the inequality (6.3) may be simplified as

μ{|u| ≥ mr} ≤ Cα δu(1/r)
−1/α (6.5)

with constant Cα = (2−α − 1)1/α. Note Cα → 1
2 , as α → −∞. As is easy to

see, we also have a uniform bound, such as, for example, Cα ≤ 1 in the region
α ≤ −1.

Proof. To derive (6.3) in case α 	= 0, apply (6.1) with λ = mr and ε = 1/r. Then
μ{|u| > λε} ≤ 1

2 , and letting p = μ{|u| ≥ λ}, we get 1
2 ≥ (δpα + (1− δ))1/α. It

remains to solve this inequality in terms of p. Note that when α > 0, necessarily
1
2 ≥ (1− δ)1/α or 2−α−1

δ ≥ −1, so the right-hand side of (6.3) makes sense. By
a similar argument, (6.4) follows from (6.2) in the log-concave case.

Now, let us turn to the problem of small deviations.

Corollary 6.2. If m > 0, for all 0 < ε < 1,

μ{|u| ≤ mε} ≤ Cα δu(ε) (6.6)

with constant Cα = 2−α−1
−α .

Proof. One may assume that α 	= 0 andm = 1. From (6.1) with λ = 1, we obtain
that μ{|u| ≤ ε} ≤ ϕ(x), where ϕ(x) = 1 − (1 + x)1/α and x = (2−α − 1) δu(ε).
Since this function is concave in x > −1, we have ϕ(x) ≤ ϕ(0) + ϕ′(0)x =
2−α−1
−α δu(ε). When α = 0, (6.6) holds with C0 = limα→0 Cα = log 2.

Finally, let us illustrate Corollaries 6.1–6.2 on the example of the semi-norms.

Lemma 6.1. If u is a Borel measurable semi-norm on E (not identically zero),
then

δu(ε) =
2ε

1 + ε
, 0 < ε ≤ 1.

Proof. One may assume that both u(x) and u(y) are finite in the definition of
δu. Moreover, it is a matter of normalization alone, to assume that c = u(y) ≤
u(x) = 1. Then, by the triangle inequality,

u((1− t)x+ ty) ≥ |(1− t)u(x)− tu(y)| = |(1 + c)t− 1|,

so

mes
{
t ∈ (0, 1) : u((1− t)x+ ty) ≤ ε u(x)

}
≤ mes

{
t ∈ (0, 1) : |(1 + c)t− 1| ≤ ε

}
= min{t1, 1} − t0,

where t1 = 1+ε
1+c , t0 = 1−ε

1+c . In case c ≥ ε, we have t1 − t0 = 2ε
1+c ≤ 2ε

1+ε . In case

c ≤ ε, similarly 1− t0 = c+ε
1+c ≤ 2ε

1+ε . Thus, δu(ε) ≤
2ε
1+ε in both cases. Here, the

equality is attained by taking y = −x with 0 < u(x) < ∞.
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Any non-trivial Borel measurable semi-norm u on E is generated by a cen-
trally symmetric, Borel measurable, convex set B in E, so that

B = {x ∈ E : u(x) ≤ 1}.

Let us first assume μ(B) > 0, we are then in position to apply Corollary 6.1.
More conveniently, starting from (6.1) with λ = r and ε = 1

r (r > 1), Lemma 6.1
gives

1− μ(B) = μ{u(x) > 1}
≥

[
δ μ{u(x) ≥ r}α + (1− δ)

]1/α
≥

[
δ (1− μ(rB))α + (1− δ)

]1/α
, δ =

2

r + 1
.

At this step, the assumption μ(B) > 0 may be removed. Recalling also Corol-
lary 6.2, we arrive at:

Corollary 6.3. Given a symmetric, Borel measurable, convex set B ⊂ E, for
all r > 1 with μ(rB) < 1,

1− μ(B) ≥
[

2

r + 1

(
1− μ(rB)

)α
+

r − 1

r + 1

]1/α
. (6.7)

In the limit case α = 0, the above is the same as

1− μ(rB) ≤
(
1− μ(B)

)(r+1)/2
.

This inequality is due to Lovász and Simonovits [L-S] in case of Euclidean balls
B in Rn. Guédon [G] extended it to general symmetric convex sets in Rn and
also found a precise relation in the case α > 0. Namely, (6.7) is solved in terms
of 1− μ(rB) as

1− μ(rB) ≤ max1/α
{
r + 1

2

(
1− μ(B)

)α − r − 1

2
, 0

}
.

As for the range α < 0, (6.7) may be then rewritten as

1− μ(rB) ≤
[
r + 1

2

(
1− μ(B)

)α − r − 1

2

]1/α
.

These large deviations bounds provide a sharp form of Borell’s Lemma 3.1
in [Bor1].

Let us also mention an immediate consequence from Corollary 6.2 and Lemma 6.1
concerning measures of small balls.

Corollary 6.4. Given a symmetric, Borel measurable, convex set B � E such
that μ(B) ≤ 1

2 , we have

μ(εB) ≤ Cα ε (0 ≤ ε ≤ 1)

with constant Cα = 2(2−α−1)
−α .
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Appendix A: Dilation and its properties

We will discuss the elementary properties of dilation as an operation on Borel
sets, A → Aδ, where δ ∈ [0, 1] is viewed as parameter. To help acquaint the
reader unfamiliar with dilation, we include proofs of the operation’s elemen-
tary properties on polytopes, and allows the proof of Theorem 5.1 to be self-
contained.

Let F be a closed convex subset of a locally convex space E with respect to
which this operation is defined:

Aδ =
{
x ∈ A : mΔ(A) ≥ 1− δ, for any interval Δ ⊂ F such that x ∈ Δ

}
.

As before, mΔ denotes a uniform distribution on Δ (again understood as the
Dirac measure when the endpoints coincide). In this definition, by the intervals
Δ we mean closed intervals [a, b] connecting arbitrary points a, b in F . Moreover,
the requirement x ∈ Δ may equivalently be replaced by the condition that x is
one of the endpoints of Δ.

Note that A1 = A. If 0 ≤ δ < 1, as an equivalent definition one could put

Aδ =
{
x ∈ F : mΔ(A) ≥ 1− δ, for any interval Δ ⊂ F such that x ∈ Δ

}
.

Indeed, in this case, if x ∈ F \ A, then m[x,x](A) = 0 < 1 − δ meaning that
x /∈ Aδ according to the second definition. Thus, for δ ∈ [0, 1), both definitions
lead to the same set and we have the property Aδ ⊂ A.

Lemma A.1. a) If A ⊂ F is closed, then every set Aδ is closed as well.
b) If E is a separable Fréchet space and A is Borel measurable in F , then

every set Aδ is universally measurable.

Let us recall that a set in a Hausdorff topological space E is called universally
measurable, if it belongs to the Lebesgue completion of the Borel σ-algebra with
respect to an arbitrary Borel probability measure on E. In that case one may
freely speak about the measures of these sets.

Proof. For a Borel set A in F , consider the function

ψ(x, y) =

∫
1A dm[x,y] =

∫ 1

0

1A((1− t)x+ ty) dt, x, y ∈ F.

First assume that A is closed. Then, given a net xi → x, yi → y in F indexed
by a semi-ordered set I, we have

lim sup
i∈I

1A((1− t)xi + tyi) ≤ 1A((1− t)x+ ty).

After integration this implies

lim sup
i∈I

ψ(xi, yi) ≤ ψ(x, y).
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Indeed, the space L1[0, 1] is separable, so the above relation is only to be checked
for increasing sequences i = in in I. But in that case one may apply the Lebesgue
dominated convergence theorem. This means that ψ is upper semicontinuous on
F × F , and thus Aδ represents the intersection over all y ∈ F of the closed sets
{x ∈ A : ψ(x, y) ≥ 1− δ}.

In part b), assume that E is a Fréchet space. If A is Borel, then the function
ψ is Borel measurable on F × F , so the complement of Aδ in A,

A \Aδ = {x ∈ A : ψ(x, y) < 1− δ, for some y ∈ A},

represents the x-projection of a Borel set in E×E. But every Borel set in a Polish
space is Souslin, and therefore both A \ Aδ and Aδ are universally measurable
(cf. [Bog], Corollary 6.6.7 and Theorem 7.4.1).

There is an opposite operation representing a certain dilation or enlargement
of sets. Given a Borel measurable set B ⊂ F and δ ∈ [0, 1), define

Bδ =
⋃

mΔ(B)>δ

Δ =
{
x ∈ F : m[x,y](B) > δ for some y ∈ F

}
. (A.8)

Here the union is running over all intervals Δ ⊂ F such that mΔ(B) > δ.
Note that Bδ contains B (since all singletons in B participate in the above

union via m[x, x] the Dirac measure at the point x). Also, although we will be
most interested in the case that F is closed and convex, there will be occasion
to dilate with respect to more general sets, notice that operation above is well
defined as soon as B is Borel.

Lemma A.2. For any δ ∈ [0, 1) and any Borel set B ⊂ F , the complement
A = F \B satisfies the dual relations

F \Aδ = (F \A)δ and F \Bδ = (F \B)δ.

In particular, Bδ is open in F , once B is open in F .

Proof. Given x ∈ F , the property x /∈ Aδ means that, for some interval Δ ⊂ F
containing x, we have mΔ(A) < 1 − δ, that is, mΔ(B) > δ meaning that
Δ ⊂ Bδ. Therefore, x /∈ Aδ ⇔ x ∈ Bδ. For the last assertion, it remains to
recall Lemma A.1.

A.1. Dilation of Polytopes

Though some of the results here may apply in more general settings, we will
consider only the case that that F = E = Rn.

Theorem A.1. When C is convex,

Cδ ⊆ (1− 1

δ
)C +

1

δ
C (A.9)

= {x : ∃c1, c2 ∈ C, x = c1 +
1

δ
(c2 − c1)}. (A.10)

When C is also open, we have equality of the three sets.
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Proof. Given x ∈ Cδ, by definition there exists an [a, b] with m[a,b](C) > δ,
by comparing to [a, x] and [x, b] we may assume without loss of generality that
b = x. Defining T = sup{λ : (1−λ)aλx ∈ C} and t = inf{λ : (1−λ)a+λx ∈ C},
it follows that m[a,x](C) = T − t > δ. It is a straight forward computation that

m[(1−t)a+tx,x](C) = (T − t)/(1− t) > δ,

so we may assume without loss of generality that t = 0.
With this the case, for small ε > 0, (1− ε)a+ εx ∈ C, and (1− (T − ε))a+

(T − ε)x ∈ C. Taking ε small enough will provide the existence of ci ∈ C such
that c2 = c1 + σ(x− c1) for some σ > δ. Setting c = c1 + δ(x− c1) we have an
element of C, which after unpacking the definitions x = c1 +

1
δ (c− c1).

Now for the reverse inclusion when C is open. For x = (1 − 1
δ )c1 + 1

δ c2,
ci ∈ C, rearranging and using convexity, c2 = (1 − δ)c1 + δx are such that
the 1C((1 − t)c1 + tx) = 1 for t ∈ [0, δ]. Now by the continuity of vector space
operations and the fact that C is open, it must actually hold for some ε > 0,that
1C((1− t)c1 + tx) = 1 for t ∈ [0, δ + ε]. Thus x ∈ Cδ.

Notice that C convex (resp. open) implies that (1− 1
δ )C+ 1

δC is convex (resp.
open) and as well. Combining this observation with the identity above we have
the following;

Corollary A.1. For C convex and open, Cδ is convex and open as well.

Define P ⊂ E to be a polytope when P is the convex hull of finitely points.
Equivalently in a finite dimensional space, when P is a bounded set realized as
the intersection of finitely many closed half spaces.

Theorem A.2. P a polytope implies that P is compact and convex.

Proof. Let {pk}n1 be an enumeration of the extreme points of P . Define Δn =
{x ∈ [0, 1]n : xi ≥ 0,

∑
j xj = 1} and T : Δn → E, x �→

∑
i xipi. Then

P = T (Δn)

A.2. Stability of Euclidean Polytopes Under Dilation

We will call A an open polytope when it is the relative interior of a polytope
(with respect to the affine hull of the polytope), or equivalently when it is a
bounded set, realized as the intersection of finitely many open halfspaces.

Theorem A.3. If A is an open polytope, Aδ is as well.

We will first prove an analogous result for (closed) polytopes, that will be
helpful in our proof.

Theorem A.4. If P is a polytope then the closure of P δ is as well.

Proof. First we will prove

P δ = P δ := {x : ∃p ∈ P s.t. m[p,x](P ) ≥ δ}
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We start with ⊇, take x ∈ P δ, if x ∈ P then x ∈ P δ immediately, so assume
x ∈ P c and a be p ∈ P such that m[p,x](P ) ≥ δ. Since x /∈ P a closed set there

is a neighborhood of x disjoint from P . Thus p− (n−1
n )(p− x) is a sequence in

P δ and clearly it converges to x.

In the opposite direction, for x ∈ P δ take xn ∈ P δ converging to x, and
pn ∈ P such that m[pn,xn](P ) > δ. Restricting to a subsequence, we may assume
that pn is convergent to some p ∈ P . By convexity pn + t(xn − pn) ∈ P for
t ∈ [0, δ]. Since P is closed, taking the limit for t ∈ [0, δ] implies p+t(x−p) ∈ P ,
and hence m[p,x](P ) ≥ δ. Thus the reverse inclusion holds, and we have our
claim.

Now, observing that P δ = P δ is also bounded and convex, to show that
P δ is in fact a polytope, what remains to prove is that it possess only a finite

number of extreme points. Notice that compactness of P for any x ∈ P δ there
exists p, q ∈ P such that the normalized measure of the interval m[p,x](P ) ≥ δ

is maximal, and q = p+m[p,x](P )(x− p). We claim that x ∈ E(P δ) implies that

the p and q described above are elements of E(P ). Notice, x ∈ E(P δ) implies
m[p,x] = δ, and that x = p+ 1

δ (q−p). Now take pi ∈ P such that p1/2+p2/2 = p

then there exists pi ∈ P such that 1
2p1 +

1
2p2 = p. Defining

xi = pi +
1

δ
(q − pi),

the xi are elements of P δ such that x1/2+x2/2 = x, hence xi = x, from which it
follows that pi = p and p is an extreme point of P . Now consider the possibility
of qi ∈ P such that q1+q2

2 = q. and define

xi = p+
1

δ
(qi − p)

Similarly to the previous, x1/2 + x2/2 = x so that by x extreme, xi = x from

which it follows qi = q and that q is extreme in E(P δ). Thus, if {ρi} is an

enumeration of the extreme points of P then E(P δ) ⊆ {ρi + 1
δ (ρj − ρi)}, in

particular P δ is a polytope.

We are now in position to verify theorem A.3.

Proof. If A is an open polytope, then A = P ◦ for some polytope P . By the-

orem A.4, we will prove our result if we can show Aδ = P δ
◦
. Since Aδ is an

open subset of P δ, ⊆ is immediate. Now given x ∈ P δ, there exists p, q ∈ P
such that x = p + (1 − 1

δ )(q − p). Since P is convex, A = P ◦ is dense in P ,
so take pn and qn sequences in A converging to p and q respectively. Then
xn = pn + (1− 1

δ )(qn − pn) ∈ Aδ and xn → x.

This actually completes the proof since this shows(Aδ)◦ ⊇ (P δ)◦, but by Aδ

convex and open, Aδ
◦
= (Aδ)◦ = Aδ.
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Theorem A.5. When E = F and A is complement of a centrally symmetric
open, convex set B ⊆ E, then Aδ = E \ ( 2δ − 1)B represents the complement to
the corresponding dilation of B. That is

(Bδ)c = E \ (2
δ
− 1)B

Proof. For x ∈ (Bδ)c, every Δ containing x, mΔ(B) < δ

We can now prove the following lemma used in the proof of Theorem 5.1,

Lemma A.3. Let F be a convex closed set in E, and let T be a linear continuous
map from E to another locally convex space E1. For any Borel set C ⊂ T (F ),

(
T−1(C) ∩ F

)δ
= T−1

(
Cδ

)
∩ F,

where the operation C → Cδ is understood with respect to the image T (F ).

Proof. For all a, b ∈ F , the map T pushes forward the unform measure m[a,b]

to m[Ta,Tb]. Therefore, the pre-image B = T−1(C) has measure m[a,b](B) =
m[Ta,Tb](C), so

(
B∩F

)δ
=

⋃
m[Ta,Tb](C)>δ

[a, b] =
⋃

m[x,y](C)>δ

T−1([x, y])∩F = T−1
(
Cδ

)
∩F.

When E1 = Rn and C is a polytope, the dilated set Cδ is a polytope, as well.
Hence, by Lemma A.3, (T−1(C))δ represents the intersection of finitely many
half-spaces.
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