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1 Introduction

Let μ be a log-concave probability measure on Rn with density f , thus satisfying

f ((1 − t)x + t y) ≥ f (x)1−t f (y)t , for all x, y ∈ Rn, t ∈ (0, 1). (1.1)

We consider an optimal value h = h(μ), called an isoperimetric constant of μ, in the
isoperimetric-type inequality

μ+(A) ≥ h min{μ(A), 1 − μ(A)}. (1.2)

Here, A is an arbitrary Borel subset of Rn of measure μ(A) with μ-perimeter

μ+(A) = lim inf
ε↓0

μ(Aε) − μ(A)

ε
,

where Aε = {x ∈ Rn : |x − a| < ε, for some a ∈ A} denotes an open ε-neighborhood of
A with respect to the Euclidean distance.
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The geometric characteristic h is related to a number of interesting analytic inequalities
such as the Poincaré-type inequality∫

|∇u|2 dμ ≥ λ1

∫
|u|2 dμ

(which is required to hold for all smooth bounded functions u on Rn with
∫
u dμ = 0). In

general, the optimal valueλ1, also called the spectral gap, satisfiesλ1 ≥ h2
4 . This relation goes

back to the work by J. Cheeger in the framework of Riemannian manifolds [10] and to earlier
works by V. G. Maz’ya (cf. [13,18,19]). The problem on bounding these two quantities from
below has a long story. Here, we specialize to the class of log-concave probability measures,
in which case λ1 and h are equivalent (λ1 ≤ 36 h2, cf. [16,20]).

As an important particular case, one may consider a uniform distribution μ = μK in a
given convex body K in Rn (i.e., the normalized Lebesgue measure on K ). In this situation,
Kannan,Lovász andSimonovits proposed the followinggeometric boundon the isoperimetric
constant. With K , they associate the function

χK (x) = max {|h| : x + h ∈ K and x − h ∈ K } , x ∈ Rn, (1.3)

which expresses one half of the length of the longest interval inside K with center at x (Note
that χK = 0 outside K ). Equivalently, in terms of the diameter,

χK (x) = 1

2
diam((K − x) ∩ (x − K )).

It is shown in [15] that any convex body K admits an isoperimetric inequality

μ+(A) ≥ 1∫
χK dμK

μ(A)(1 − μ(A))

which thus provides the bound

h(μK )−1 ≤ 2
∫

χK dμK . (1.4)

Some sharpening of this result were considered in [8], where it is shown that

μ+(A) ≥ c∫
χK dμK

(μ(A)(1 − μ(A))(n−1)/n

where c > 0 is an absolute constant.
The purpose of the present note is to extend the KLS bound (1.4) to general log-concave

probability measures. If μ on Rn has density f satisfying (1.1), define χ f,δ(x) with a para-
meter 0 < δ < 1 to be the supremum over all |h| such that√

f (x + h) f (x − h) > δ f (x). (1.5)

Note that, by the hypothesis (1.1), we have an opposite inequality with δ = 1, i.e.,√
f (x + h) f (x − h) ≤ f (x). (1.6)

Hence, in some sense, χ f,δ(x) measures the strength of log-concavity of f at a given point
x .

Further comments on the definition of χ f,δ(x) will be given in the next section. Note
however that in the convex body case, when μ = μK with density f (x) = 1

voln(K )
1K (x),

we recover the original quantity above, namely,

χ f,δ(x) = χK (x), for all 0 < δ < 1.
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Our main observation about the new geometric characteristic is the following:

Theorem 1.1 For any probability measure μ on Rn with a log-concave density f , and for
any 0 < δ < 1, we have

h(μ)−1 ≤ C

1 − δ

∫
χ f,δ dμ (1.7)

where C is an absolute constant. One may take C = 64.

We will comment on examples and applications later on (cf. Sect. 5). Here, let us only
mention that in certain cases (1.7) provides a sharp estimate with respect to the dimension n.
For example, for the standard Gaussian and other rotationally invariant measures, normalized
by the condition

∫ |x |2 dμ(x) = n, both sides of (1.7) are of order 1 (with a fixed value of δ).
One may also consider the class of uniformly convex log-concave measures, in which case
the functions χ f,δ are necessarily bounded on the whole space.

In fact, the bound (1.7) admits a further self-improvement by reducing the integration on
the right-hand side to a smaller region whose measure is however not small. On this step,
one may apply recent stability results due to E. Milman. In particular, it is shown in [21] that,
if a log-concave probability measure ν is absolutely continuous with respect to the given
log-concave probability measure μ on Rn , and if these measures are close in total variation
so that

‖ν − μ‖TV = sup
A

|ν(A) − μ(A)| ≤ α < 1,

then h(μ)−1 ≤ Cαh(ν)−1 up to some constant depending on α, only. As we will see, the
above condition with a universal value of α is always fulfilled for the normalized restriction
ν of μ to the Euclidean ball BR with center at the origin and of radius

R =
∫

|x | dμ(x).

As a result, this leads, to:

Corollary 1.2 For any probability measure μ on Rn with a log-concave density f , and for
any 0 < δ < 1, we have

h(μ)−1 ≤ Cδ

∫
|x |≤R

χ f ·1BR ,δ dμ (1.8)

where the constant depends on δ, only.

In particular, since χ f ·1BR ,δ(x) ≤ χBR (x) = √
R2 − |x |2 (cf. Lemma 2.3 below), the

estimate (1.8) implies

h(μ)−1 ≤ Cδ

∫
|x |≤R

√
R2 − |x |2 dμ(x) ≤ Cδ

(∫
|x |≤R

(R2 − |x |2) dμ(x)

)1/2

.

By another application of Cauchy’s inequality (and taking, e.g., δ = 1
2 ), we get with some

universal constant C
h(μ)−1 ≤ C Var(|X |2)1/4 (1.9)

where X is a random vector in Rn distributed according to μ. This bound was obtained in
[5] as a possible sharpening of another estimate by Kannan, Lovász and Simonovits,

h(μ)−1 ≤ C E |X | = CR (1.10)
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(cf. also [2]). It is interesting that the two alternative bounds, (1.4) and (1.10), are characterized
in [15] as non-comparable. Now, we see that the χ-estimate given in Corollary 1.2 unites
and refines all these results including (1.9), as well.

2 Reduction to dimension one

The proof of Theorem 1.1 and Corollary 1.2 uses the localization lemma of Lovász and
Simonovits [17], see also [11,12] for further developments.We state it below in an equivalent
form.

Lemma 2.1 ([17]) Suppose that u1 and u2 are continuous integrable functions defined on
an open convex set E ⊂ Rn and such that, for any compact segment � ⊂ E and for any
positive affine function l on �,∫

�

u1 l
n−1 ≤ 0,

∫
�

u2 l
n−1 ≤ 0. (2.1)

Then, ∫
E
u1 ≤ 0,

∫
E
u2 ≤ 0. (2.2)

The one-dimensional integrals in (2.1) are taken with respect to the Lebesgue measure on
�, while the integrals in (2.2) are n-dimensional.

This lemma allows one to reduce various multidimensional integral relations to the cor-
responding one-dimensional relations with additional weights of the type ln−1. In some
reductions, the next lemma, which appears in a more general form as Corollary 2.2 in [15],
is more convenient.

Lemma 2.2 ([15]) Suppose that ui , i = 1, 2, 3, 4 are nonnegative continuous functions
defined on an open convex set E ⊂ Rn and such that, for any compact segment � ⊂ E and
for any positive affine function l on �,∫

�

u1 l
n−1

∫
�

u2 l
n−1≤

∫
�

u3 l
n−1

∫
�

u4 l
n−1. (2.3)

Then, ∫
E
u1

∫
E
u2≤

∫
E
u3

∫
E
u4. (2.4)

Lemmas 2.1 and 2.2 remain to hold for many discontinuous functions ui , as well, like the
indicator functions of open or closed sets in the space.

If a log-concave function f is defined on a convex set E ⊂ Rn , we always extend it to be
zero outside E . The definition (1.5) is applied with the convention that χ f,δ = 0 outside the
supporting set E f = { f > 0}. More precisely, for x ∈ E f ,

χ f,δ(x) = sup
{
|h| : x ± h ∈ E f ,

√
f (x + h) f (x − h) > δ f (x)

}
.

One may always assume that E f is relatively open (i.e., open in the minimal affine subspace
of Rn containing E f ). In that case, the function

ρ(x, h) =
√

f (x + h) f (x − h)

f (x)
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is continuous on the relatively open set {(x, h) ∈ Rn ×Rn : x ± h ∈ E f }, so that any set of
the form {

x ∈ E f : χ f,δ(x) > r
} =

⋃
|h|>r

{
x ∈ E f : x ± h ∈ E f , ρ(x, h) > δ

}

is open in E f . Thismeans that the functionχ f,δ is lower semi-continuous on E f and therefore
Borel measurable on Rn .

We will need two basic properties of the functions χ f,δ which are collected in the next
lemma.

Lemma 2.3 Let f be a log-concave function defined on a convex set E ⊂ Rn, and let
0 < δ < 1.

(a) If F is a convex subset of E, then χ f |F ,δ ≤ χ f,δ on F.
(b) If g is a positive log-concave function defined on a convex subset F of E, then
χ f g,δ ≤ χ f,δ on F.

In fact, the first property follows from the second one with the particular log-concave
function g = 1F . To prove b), let x ∈ F be fixed. Applying the definition and the inequality
(1.6) with g, we get

χ f g,δ(x) = sup
{
|h| : x ± h ∈ F,

√
f (x + h) f (x − h)g(x + h)g(x − h) > δ f (x)g(x)

}

≤ sup
{
|h| : x ± h ∈ F,

√
f (x + h) f (x − h) > δ f (x)

}

≤ χ f,δ(x).

It is also worthwile to emphasize the homogeneity property of the functional X →∫
χ f,δ dμ with respect to X , where μ is the distribution of X .

Lemma 2.4 Let a random vector X inRn have the distributionμwith a log-concave density
f . For λ > 0, let μλ denotes the distribution and

fλ(x) = λ−n f (x/λ), x ∈ Rn,

the density of λX. Then χ fλ,δ(λx) = λχ f,δ(x/λ), for all x ∈ Rn. In particular,∫
χ fλ,δ dμλ = λ

∫
χ f,δ dμ.

The statement is straightforward and does not need a separate proof. It is not used in the
proof of Theorem 1.1, but just shows that the inequality (1.7) is homogeneous with respect
to dilations of μ.

Following [15], let us now describe how to reduce Theorem 1.1 to a similar assertion in
dimension one (with an additional factor of 2). Let E ⊂ Rn be an open convex supporting
set for the log-concave density f of μ. We are going to apply Lemma 2.2 to the functions of
the form

u1 = 1A, u2 = 1B , u3 = 1C , u4(x) = c

ε
χ f,δ(x),

where A is an arbitrary closed subset ofRn , B = Rn \ Aε, and C = Rn \ (A∪ B), with fixed
constants c > 0 and ε > 0. Then, (2.4) turns into

μ(A)μ(B) ≤ μ(C)
c

ε

∫
χ f,δ dμ, (2.5)
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and letting ε → 0, we arrive at the isoperimetric inequality of the form

μ(A)(1 − μ(A)) ≤ cμ+(A)

∫
χ f,δ dμ. (2.6)

Actually, (2.5) also follows from (2.6), cf. [8], Proposition10.1, and consequently, the inequal-
ities (2.5) and (2.6) are equivalent. It should be mentioned as well that, once (2.6) holds true
in the class of all closed subsests of the space, it extends to all Borel sets in Rn .

Now, for the chosen functions ui , the one-dimensional inequality (2.3) is the same as (2.5),

μl(A)μl(B) ≤ μl(C)
c

ε

∫
χ f,δ dμl , (2.7)

but written for the probability measure μl on � with density

fl(x) = dμl

dx
= 1

Z
f (x)l(x)n−1, x ∈ �.

Here Z = ∫
�

f (x)ln−1(x) dx is a normalizing constant, and dx denotes the Lebesgue mea-
sure on �. Likewise (2.6), it is equivalent to the isoperimetric inequality

μl(A)(1 − μl(A)) ≤ cμ+
l (A)

∫
χ f,δ dμl . (2.8)

The density of μl is log-concave and has the form fl = f g, where g is log-concave on
F = �. Hence, by Lemma 2.3, (2.8) will only be strengthened, if we replace χ f,δ by χ fl ,δ .
But the resulting stronger inequality

μl(A)(1 − μl(A)) ≤ cμ+
l (A)

∫
χ fl ,δ dμl (2.9)

is again equivalent to

μl(A)μl(B) ≤ μl(C)
c

ε

∫
χ fl ,δ dμl . (2.10)

Thus, by Lemma 2.2, (2.5)–(2.6) will hold for μ with density f , as soon as the one-
dimensional inequalities (2.9)–(2.10) hold true forμl with density fl . In particular, (2.5)–(2.6)
with a constant c will be true in the entire class of full-dimensional log-concave probability
measures, as soon as they hold with the same constant in dimension one (since the assertion
on the intervals � ⊂ E may be stated for intervals on the real line).

The inequalities (2.6) and (2.9) are not of the Cheeger-type (1.2), but are equivalent to it
within the universal factor of 2, in viewof the relations p(1−p) ≤ min{p, 1−p} ≤ 2p(1−p)
(0 ≤ p ≤ 1). Hence, we may summarize this reduction in the following:

Corollary 2.5 Given numbers C > 0 and 0 < δ < 1, assume that, for any probability
measure μ on R with a log-concave density f ,

h(μ)−1 ≤ C
∫

χ f,δ dμ.

Then, the same inequality with constant 2C in place of C holds true for any probability
measure μ on Rn with a log-concave density f .
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3 Dimension one

Next, we consider the one-dimensional case in Theorem 1.1. Let μ be a probability measure
on the real line with a log-concave density f supported on the interval (a, b), finite or not.
In particular, f is bounded and continuous on that interval.

As a first step, we will bound from below the function χ f,δ near the median m of μ in
terms of the maximum value M = supa<x<b f (x). Without the loss of generality, assume
that m = 0, that is,

μ(−∞, 0] = μ[0,∞) = 1

2
.

Let F(x) = μ(a, x), a < x < b, denote the distribution function associated to μ, and let
F−1 : (0, 1) → (a, b) be its inverse. The function I (t) = f (F−1(t)) is concave on (0, 1),
so, for each fixed t ∈ (0, 1), it admits linear bounds

I (s) − I (t) ≥ −I (t)
t − s

t
, 0 < s ≤ t,

I (s) − I (t) ≥ −I (t)
s − t

1 − t
, t ≤ s < 1.

Equivalently, after the change t = F(x), s = F(y), we have

f (y) − f (x) ≥ − f (x)
F(x) − F(y)

F(x)
, a < y ≤ x < b,

f (y) − f (x) ≥ − f (x)
F(y) − F(x)

1 − F(x)
, a < x ≤ y < b.

On the other hand, F(y) − F(x) ≤ M(y − x) and |F(x) − 1
2 | ≤ M |x |, so that

F(x) ≥ 1

2
− M |x |, 1 − F(x) ≥ 1

2
− M |x |.

This yields

f (y) − f (x) ≥ −M f (x)
x − y

1
2 − M |x | , a < y ≤ x < b,

f (y) − f (x) ≥ −M f (x)
y − x

1
2 − M |x | , a < x ≤ y < b.

In particular, if |x | ≤ 1
4M , in both cases we get

f (y) − f (x) ≥ −4M f (x) |y − x |, a < y < b. (3.1)

For y = x ± h, rewrite the above as f (x ± h) ≥ f (x)(1 − 4M |h|). Hence, for any h > 0,
such that x ± h ∈ (a, b),√

f (x + h) f (x − h) ≥ f (x)(1 − 4Mh).

If 4M |h| < 1, the condition x ± h ∈ (a, b) will be fulfilled automatically, since then
|x ± h| < 1

2M and therefore
∫ |x |+h
0 f (y) dy < 1

2 and
∫ 0
−|x |−h f (y) dy < 1

2 . (Alternatively,
in order to avoid the verification that x ± h ∈ (a, b), one could assume that f is positive on
the whole real line.)

In order to estimate χ f,δ(x), it remains to solve 1− 4Mh = δ, giving h = 1−δ
4M . Thus, we

arrive at:
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Lemma 3.1 Letμ be a probability measure on the real line with median at the origin, having
a log-concave density f , and let M = sup f . Then, for any 0 < δ < 1,

χ f,δ(x) ≥ 1 − δ

4M
, f or all |x | ≤ 1

4M
.

Next, we need to integrate this inequality over the measure μ. This leads to

∫
χ f,δ dμ ≥ 1 − δ

4M

∫ 1
4M

− 1
4M

f (x) dx .

By (3.1), applied to x = 0 and with x replacing y, we have f (x) ≥ f (0)(1 − 4M |x |), so,
∫ 1

4M

− 1
4M

f (x) dx ≥ f (0)
∫ 1

4M

− 1
4M

(1 − 4M |x |) dx = f (0)

4M
.

Hence,
∫

χ f,δ dμ ≥ f (0)

16M2 (1 − δ).

But, by the concavity of I ,

M = sup
0<t<1

I (t) ≤ 2I

(
1

2

)
= 2 f (0).

Thus, we obtain an integral bound
∫

χ f,δ dμ ≥ 1

64 f (0)
(1 − δ).

Finally, it is known that h(μ) = 2 f (0), cf. [2]. Hence, dropping the median assumption, we
may conclude:

Lemma 3.2 Let μ be a probability measure on the real line with a log-concave density f .
Then, for any 0 < δ < 1,

h(μ)−1 ≤ 32

1 − δ

∫
χ f,δ dμ.

Proof of Theorem 1.1 Combine Lemma 3.2 with Corollary 2.5. ��

4 Concentration in the ball

In order to turn to Corollary 1.2, we need the following assertion which might be of an
independent interest.

Proposition 4.1 If a random vector X in Rn has a log-concave distribution, then

P{|X | ≤ E |X |} ≥ 1

24 e2
. (4.1)

Here, the numerical constant is apparently not optimal (but it is dimension-free).
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Proof The localization lemma (Lemma 2.1) allows us to reduce the statement to the case
where the distribution of X is supported on some line of the Euclidean space. Indeed, (4.1)
may be rewritten as the property that, for all a > 0,

E |X | ≤ a ⇒ P{|X | ≤ a} ≥ 1

24 e2
.

In terms of the log-concave density of X , say f , this assertion is the same as∫
(|x | − a) f (x) dx ≤ 0 ⇒

∫ (
1{|x |≤a} − 1

24 e2

)
f (x) dx ≥ 0.

If this was not true (with a fixed value of a), then we would have∫
(|x | − a) f (x) dx ≤ 0,

∫ (
1{|x |≤a} − 1

24 e2

)
f (x) dx < 0.

Hence, by Lemma 2.1, for some compact segment� ⊂ E f and some positive affine function
l on �,∫

�

(|x | − a) f (x) l(x)n−1 dx ≤ 0,
∫

�

(
1{|x |≤a} − 1

24 e2

)
f (x) l(x)n−1 dx < 0.

But this would contradict to the validity of (4.1) for a random vector X which takes values in
� and has a density proportional to f (x) l(x)n−1 with respect to the uniform measure on �.
Since f ln−1 is log-concave and defines a one-dimensional log-concave measure, the desired
reduction has been achieved.

In the one-dimensional case, we may write

X = a + ξθ

where the vectors a, θ ∈ Rn are orthogonal, |θ | = 1, and where ξ is a random variable
having a log-concave distribution on the real line. Then, (4.1) turns into the bound

P
{√

ξ2 + |a|2 ≤ E
√

ξ2 + |a|2
}

≥ c (4.2)

with the indicated constant c.
To further simplify,wefirst notice that the inequality

√
ξ2 + |a|2 ≤ E

√
ξ2 + |a|2 is getting

weaker, as |a| grows, and hence, the case a = 0 is the worst one. Indeed, this inequality may
be rewritten as

ξ2 ≤ ψ(t) ≡
(
E

√
ξ2 + t

)2 − t, t = |a|2.
We have ψ(0) = E |ξ |, while for t > 0,

ψ ′(t) = E
√

ξ2 + t E
1√

ξ2 + t
− 1 ≥ 0,

due to Jensen’s inequality. Hence, ψ(t) is non-decreasing, proving the assertion.
Now, when a = 0, (4.2) becomes

P{|ξ | ≤ E |ξ |} ≥ c, (4.3)

which is exactly (4.1) in dimension one.
If, for example, ξ ≥ 0, this statement is known, since we always have

P{ξ ≤ E ξ} ≥ 1

e
, (4.4)
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cf. [2]. However, (4.3) is more delicate and requires some analysis similar to the one of the
previous section.

Denote by μ the distribution of ξ . We use the same notations, such as f , F , I , m, and M ,
as in the proof of Lemma 2.3. To prove (4.3), we may assume that Eξ ≤ 0. By the concavity
of I ,

I (t) ≥ 2I (1/2) min{t, 1 − t}, 0 < t < 1.

Hence, after the change t = F(x), we have

f (x) ≥ 2 f (m) min{F(x), 1 − F(x)}, a < x < b,

and after integration,

μ(x0, x1) ≥ 2 f (m)

∫ x1

x0
min{F(x), 1 − F(x)} dx, a ≤ x0 ≤ x1 ≤ b.

Note that the function u(x) = min{F(x), 1−F(x)} has the Lipschitz semi-norm ‖u‖Lip ≤
M , so

u(x) ≥ u(x0) − M |x − x0| a < x < b.

Hence,

P{x0 ≤ ξ ≤ x1} = μ(x0, x1)

≥ 2 f (m)

∫ x1

x0
(u(x0) − M(x − x0)) dx

= 2 f (m)(x1 − x0)

(
u(x0) − M

2
(x1 − x0)

)
.

Here, we choose x0 = Eξ . Recall that, by (4.4), F(x0) ≥ 1
e . An application of (4.4) to the

random variable −ξ gives a similar bound 1 − F(x0) ≥ 1
e , so that u(x0) ≥ 1

e and thus

P {Eξ ≤ ξ ≤ x1} ≥ 2 f (m)(x1 − Eξ)

(
1

e
− M

2
(x1 − Eξ)

)
.

Here we put

x1 = Eξ + α E |ξ − Eξ |
with a parameter 0 < α ≤ 1

2 . Since Eξ ≤ 0 is assumed, it follows that x1 ≤ E |ξ |. Thus,
using x1 − x0 = α E |ξ − Eξ |, we get

P{Eξ ≤ ξ ≤ E |ξ |} ≥ 2α f (m)E |ξ − Eξ |
(
1

e
− Mα

2
E |ξ − Eξ |

)
. (4.5)

To simplify, let η be an independent copy of ξ . We have, again by the concavity of I ,

E |ξ − Eξ | ≤ E |ξ − η| =
∫ 1

0

∫ 1

0
|F−1(t) − F−1(s)| dtds

=
∫ 1

0

∫ 1

0

∣∣∣∣
∫ s

t

du

I (u)

∣∣∣∣ dtds
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≤
∫ 1

0

∫ 1

0

∣∣∣∣∣
∫ s

t

du

2I ( 12 ) min{u, 1 − u}

∣∣∣∣∣ dtds

= 1

2I ( 12 )
E |ξ ′ − η′| = 1

2 f (m)
E |ξ ′ − η′|,

where ξ ′ and η′ are independent and have a two-sided exponential distribution, with density
1
2 e

−|x |. To further bound, just use

E |ξ ′ − η′| ≤
√
E (ξ ′ − η′)2 = √

2Var(ξ ′) = 2.

Hence,E |ξ−Eξ | ≤ 1
f (m)

. In addition, aswe have alreadymentioned,M ≤ 2 f (m), implying
M E |ξ − Eξ | ≤ 2. Hence, from (4.5)

P {Eξ ≤ ξ ≤ E |ξ |} ≥ 2α f (m)E |ξ − Eξ |
(
1

e
− α

)
.

The expression on the right-hand side is maximized at α = 1
2e , which gives

P {Eξ ≤ ξ ≤ E |ξ |} ≥ 1

2e2
f (m)E |ξ − Eξ |. (4.6)

Now, E |ξ − η| ≤ 2E |ξ − Eξ |, while, since I (t) ≤ M ≤ 2 f (m),

E |ξ − η| = 2
∫ b

a
F(x)(1 − F(x)) dx

= 2
∫ 1

0

t (1 − t)

I (t)
dt

≥ 2

M

∫ 1

0
t (1 − t) dt = 1

3M
≥ 1

6 f (m)
.

Hence, E |ξ − Eξ | ≥ 1
12 f (m)

, so the right-hand side expression in (4.6) is greater than or

equal to 1
2e2

1
12 = 1

24e2
. Proposition 4.1 is proved. ��

Proof of Corollary 1.2. Let X be a random vector in Rn with distribution μ, and let ν be the
normalized restriction of μ to the Euclidean ball centered at the origin and with radius

R = E |X | =
∫

|x | dμ(x).

In terms of the density f of μ, the density of ν is just the function 1
p f (x) 1{|x |≤R}, where

p = P{|X | ≤ R}. Hence,

‖ν − μ‖TV = 1

2

∫ ∣∣∣∣ 1p f (x) 1{|x |≤R} − f (x)

∣∣∣∣ dx = 1 − p ≤ α,

where one may take α = 1 − 1
24 e2

, according to Proposition 4.1. Applying the perturbation
result of E. Milman (mentioned in Sect. 1), we thus get that

h(μ)−1 ≤ C h(ν)−1

with some absolute constant C . It remains to apply Theorem 1.1 to ν, cf. (1.7), and then we
arrive at (1.8). Corollary 1.2 is proved. ��
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5 Examples

Let us describe how the χ-function may behave in a few basic examples.

1. (Convex body case). As we have already mentioned, whenμ is the normalized Lebesgue
measure in a convex body K ⊂ Rn with density f = 1

voln(K )
1K , we have χ f,δ = χK

for all 0 < δ < 1. In particular, if K = BR is the ball with center at the origin and of
radius R,

χ f,δ(x) =
√
R2 − |x |2.

Hence, ∫
χ f,δ dμ ≤ CR√

n

with some universal constant C . This leads in Theorem 1.1 to a correct bound on the
isoperimetric constant, as emphasized in [15].

2. If μ is the one-sided exponential distribution on the real line with density f (x) = e−x

(x > 0), then χ f,δ(x) = x for x > 0, thus independent of δ.
3. Ifμ is the two-sided exponential distribution on the real line with density f (x) = 1

2 e
−|x |,

then

χ f,δ(x) = log(1/δ) + |x |.
4. If μ = γn is the standard Gaussian measure on Rn , that is, with density ϕn(x) =

(2π)−n/2e−|x |2/2, we have

χϕn ,δ(x) = √
log(1/δ)

which is independent of x .
5. Let μ be a probability measure on Rn having a log-concave density with respect to γn .

That is, with respect to the Lebesgue measure,μ has density of the form f = ϕng, where
g is a log-concave function. By Lemma 2.3, χ f,δ ≤ χϕn ,δ , so by the previous example,

χ f,δ(x) ≤ √
log(1/δ).

By Theorem 1.1, this gives h(μ)−1 ≤ C with some universal constant C . Such a
dimension-free result in a sharper form of the Gaussian isoperimetric inequality was
first obtained by Bakry and Ledoux [1]. As was later shown by Caffarelli [9], the mea-
sures μ in this example can be treated as contractions of γn . This property allows one to
extend many Sobolev-type inequalities about γn to μ. Localization arguments together
with some extensions are discussed in [3] and [6].

6. More generally, letμ be a uniformly log-concave probabilitymeasure onRn (with respect
to the Euclidean norm). This means that μ has a log-concave density f = e−V where
the convex function V satisfies

V (x) + V (y)

2
− V

(
x + y

2

)
≥ α

(∣∣∣∣ x − y

2

∣∣∣∣
)

, for all x, y ∈ Rn,

with some α = α(t), increasing and positive for t > 0. The optimal function α is

sometimes called the modulus of convexity of V . Note that, the case α(t) = t2
2 returns

us to the family described in Example 5. As for the general uniformly log-concave case,
various isoperimetric inequalities of the form μ+(A) ≥ I (μ(A)) in which the behavior
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of I near zero is determined by the modulus of convexity have been studied by Milman
and Sodin [22].
To see how to apply Theorem 1.1 for obtaining a Cheeger-type isoperimetric inequality
like in (1.2), let us rewrite the definition of the uniform log-concavity directly in terms
of the density as √

f (x + h) f (x − h) ≤ e−α(|h|) f (x).

Hence, once we know that α(t) > α(t0) > 0, for all t > t0 with some t0 > 0, it follows
that

χ f,δ(x) ≤ t0, for all x ∈ Rn with δ = e−α(t0).

Thus, like in Examples 4 and 5, the χ-function is uniformly bounded on the whole space,
implying that

h(μ)−1 ≤ Ct0
1 − e−α(t0)

with some universal constantC . This example also shows that the uniform log-concavity
is the property of a global character, while χ f,δ reflects more a local behavior of the
density.

7. As an example of a measure which is not uniformly log-concave, letμ be the rotationally
invariant probability measure on Rn with density f (x) = 1

Zn
e−√

n |x | where Zn is a

normalizing constant. Note that,
∫ |x |2 dμ(x) is of order n. In order to find χ f,δ(x), we

need to solve the inequality

1

2

√
n |x + h| + 1

2

√
n |x − h| ≤ log(1/δ) + √

n |x |
and determine the maximal possible value for |h|. Rewrite it as

1

2

√
|x |2 + 2 〈x, h〉 + |h|2 + 1

2

√
|x |2 − 2 〈x, h〉 + |h|2 ≤ 1√

n
log(1/δ) + |x |.

If |h| = r is fixed, the inner product t = 〈x, h〉 can vary from −r |x | to r |x |. Moreover,
the left-hand side represents an even convex function in t which thus attains minimum
at t = 0. In other words, if we want to prescribe to |h| as maximal value, as possible
(to meet the inequality), we need to require that t = 0. In this case, the inequality is
simplified to

√
|x |2 + |h|2 ≤ 1√

n
log(1/δ) + |x |

which is equivalent to

|h|2 ≤ 1

n
log2(1/δ) + 2|x |√

n
log(1/δ).

Hence,

χ2
f,δ(x) = 1

n
log2(1/δ) + 2|x |√

n
log(1/δ).

Integrating this inequality over μ and choosing, for example, δ = 1/e, we get∫
χ2
f,δ dμ ≤ C
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with some universal constant C . Therefore, by Theorem 1.1, h(μ)−1 ≤ C (with some
other constant). Note that, χ f,δ is bounded by a δ-dependent constant on the ball of radius
of order

√
n. Hence, one may also apply Corollary 1.2 without any integration.

Apparently, this example may further be extended to general spherically invariant log-
concave probability measures μ on Rn , in which case it is already known that h(μ)−1 is
bounded by an absolute constant (under the normalization condition

∫ |x |2 dμ(x) = n).
Using a different argument, this class was previously considered in [4] and recently in
[14], where results of such type are obtained even for more general log-concave densities
f (x) = ρ(‖x‖) involving norms on Rn .

8. Finally, as a somewhat “negative” example, let μ = νn be the product of the two-sided
exponential distribution ν from example 2, thus, with density f (x) = e−(x1+···+xn),
x = (x1, . . . , xn), xi > 0. As easy to see,

χ f,δ(x) = |x |, x ∈ Rn+,

which by Theorem 1.1, only gives h(μ)−1 ≤ C
√
n. Corollary 1.2 allows to improve this

estimate to h(μ)−1 ≤ Cn1/4 which may also be seen from (1.9). However, we cannot
obtain the correct bound h(μ)−1 ≤ C derived in [7] using the induction argument.
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