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Entropy power inequality for the Rényi entropy
Sergey G. Bobkov and Gennadiy P. Chistyakov

Abstract—The classical entropy power inequality is extended
to the Rényi entropy. We also discuss the question of the existence
of the entropy for sums of independent random variables.

Index Terms—Renyi entropy; entropy power inequality.

I. INTRODUCTION

G iven a random vector X in the Euclidean space Rd with
density p, the (differential) Rényi entropy of order α > 1

is defined by

hα(X) = − 1

α− 1
log

∫
Rd
p(x)α dx.

Introduce the corresponding Rényi entropy power

Nα(X) = exp
[ 2

d
hα(X)

]
=

(∫
Rd
p(x)α dx

)− 2
d

1
α−1

.

Here the ratio 2
d in the exponent makes this functional to

be homogeneous of order 2 (although sometimes a different
constant is used, cf. e.g. [16], or it is just omitted).

Both quantities are well-defined and may take the values
−∞ ≤ hα(X) <∞ and 0 ≤ Nα(X) <∞. If the distribution
of X is not absolutely continuous with respect to Lebesgue
measure on Rd, put hα(X) = −∞ and Nα(X) = 0.

As α increases, the entropies α→ hα(X) do not increase,
so the limits

h1(X) = lim
α→1

hα(X), N1(X) = lim
α→1

Nα(X)

exist. Moreover, if
∫
Rd p(x)α dx < ∞, for some α > 1, we

arrive at the usual Shannon entropy h1 = h and the entropy
power N1 = N , where

h(X) = −
∫
Rd
p(x) log p(x) dx, N(X) = exp

[ 2

d
h(X)

]
.

On the other side, as α → ∞, we deal with the functions of
the maximum of the density,

h∞(X) = lim
α→∞

hα(X) = log
1

M(X)
,

N∞(X) = lim
α→∞

Nα(X) = M−
2
d (X),

where
M(X) = ess supx p(x).
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These functionals contain an important information about
the distributions and possess a number of remarkable proper-
ties. For example, all Nα are affine invariant, i.e.,

Nα(TX) = Nα(X),

where T : Rd → Rd is an arbitrary linear operator preserving
the Lebesgue measure (|det(T )| = 1). In addition, they are
translation invariant and, as was mentioned, homogeneous of
order 2, i.e., for all h ∈ Rd, λ ∈ R,

Nα(X + h) = Nα(X), Nα(λX) = λ2Nα(X).

These two identities resemble a similar property of the vari-
ance functional.

As another general property, one should mention mono-
tonicity under convolutions ([5]): We have

Nα(X + Y ) ≥ Nα(X),

whenever X and Y are independent. (Since we assume that
α > 1, this property follows from the convexity of the power
function t→ tα). In other words, the Rényi entropy may only
increase when adding an independent summand.

If one restricts to the usual case α = 1, the monotonicity
property may considerably be sharpened. Namely, the classical
entropy power inequality indicates that

N(X + Y ) ≥ N(X) +N(Y ), (1)

cf. [17], [6], [10], [11], [14]. More generally, if X1, . . . , Xn

are independent random vectors in Rd,

N(X1 + · · ·+Xn) ≥
n∑
k=1

N(Xk). (2)

One may therefore wonder how to extend this inequality to
other values of α. The point is that with the current definition
of Nα, the last two relations do not hold in general for the
Rényi powers.

Example. Let d = 1 and let X and Y be independent random
variables uniformly distributed in the interval (0, 1). They have
density p(x) = 1{0<x<1}, so

Nα(X) = 1, for all α ≥ 1.

The sum X + Y has the triangle distribution with density
1− |1− x| (0 < x < 2), so,

Nα(X + Y ) =

(∫ 2

0

(1− |1− x|)α dx
)− 2

α−1

=
(α+ 1

2

) 2
α−1

.
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In particular, N3(X + Y ) = 2. Since α → Nα(X + Y ) is
decreasing, we conclude that

Nα(X+Y ) ≥ Nα(X) +Nα(Y ), if and only if 1 ≤ α ≤ 3.

A similar conclusion can be made, when X and Y are
independent random vectors uniformly distributed in the cube
(0, 1)d.

Nevertheless, one can show that, at the expense of a
universal factor in front of the sum, the inequality (2) does
hold for all Nα regardless of the number of the summands.
More precisely, we prove:

Theorem I.1. If X1, . . . , Xn are independent random vectors
in Rd, then

Nα(X1 + · · ·+Xn) ≥ cα
n∑
k=1

Nα(Xk), (3)

where cα > 0 depends on α, only. Moreover, one may take

cα =
1

e
α

1
α−1 (α > 1).

Hence, we have an effect which is similar to the usual
entropy power: The Rényi entropy power increases at least
linearly with respect to the summands. Note, however, that
in contrast with (1)-(2), the inequality (3) cannot be reduced
to the case of two summands, since an application of the
induction argument would lead to a logarithmically decaying
constant (with respect to n).

As a function of α, the constants cα decrease from 1 to 1
e .

This can already be seen from the identity

1

2π
Nα(Z) = α

1
α−1 ,

where Z is a standard normal random variable. Hence, in the
limit as α→ 1, (3) contains the entropy power inequality (2).
In the other limit, as α→∞, we get a similar inequality for
the maximum of the density,

M−
2
d (X1 + · · ·+Xn) ≥ 1

e

n∑
k=1

M−
2
d (Xk).

This particular case has recently been considered in [7].
Moreover, combining some delicate results due to Rogozin
[15] and Ball [1], in dimension d = 1 one may replace 1

e with
constant 1

2 . It is best possible and is attained for n = 2 in
the above mentioned example of the uniform distribution on
(0, 1).

Anyhow, in all cases,

Nα(X1 + · · ·+Xn) ≥ 1

e

n∑
k=1

Nα(Xk).

Let us also state another immediate consequence of Theorem
I.1, which makes use of the homogeneity of the Rényi power.

Corollary I.2. If the independent random vectors X1, . . . , Xn

satisfy Nα(Xk) ≥ N , for all k ≤ n, then

Nα(θ1X1 + · · ·+ θnXn) ≥ 1

e
N,

whenever θ21 + · · ·+ θ2n = 1.

Note that the Rényi entropy and the corresponding entropy
power are also defined and treated for the parameter values
0 < α < 1 (with the same formula). However, we do not know,
whether or not an analog of Theorem I.1 remains to hold in
this case. Theorem I.1 can be proved with the argument which
is similar to the one of Lieb [12], who applied the Young
inequality with sharp constants when deriving the entropy
power inequality (1). The general case α > 1 is however a
bit more delicate and requires to work with convolutions of
an increasing number of densities.

In the next section we remind a basic general result, and
then specialize it to convolutions of probability densities (Sec-
tion III). Final steps of the proof of Theorem I.1 are made in
Section IV. Then we turn to the classical case α = 1 (Sections
V-VI) to address the following question which seems to be
ignored in the literature: Under what most general assumptions
should one formulate the entropy power inequality (1)?

II. SHARP YOUNG’S INEQUALITY

For 1 ≤ ν ≤ ∞, we denote by Lν the space of all measurable
functions u on Rd with finite norm

‖u‖ν =

(∫
Rd
|u(x)|ν dx

)1/ν

.

In particular, ‖u‖∞ = ess supx |u(x)|.
Define the conjugate power

ν′ =
ν

ν − 1
,

so that 1
ν + 1

ν′ = 1.
The Young inequality with sharp constants was discovered

by Beckner [4], cf. also [8], [2]; it is stated below for several
functions following [4], Theorem 4. Put

Aν = ν1/ν (ν′)−1/ν
′
, A1 = A∞ = 1,

and
A =

(Aν1 . . . Aνn
Aν

)d/2
for given numbers 1 ≤ νk ≤ ∞ (1 ≤ k ≤ n) and 1 ≤ ν ≤ ∞.

Theorem II.1. Assume that uk ∈ Lνk (k = 1, . . . , n), and
let
∑n
k=1

1
ν′k

= 1
ν′ . If νk, ν ≥ 1, then the convolution u =

u1 ∗ · · · ∗ un belongs to Lν and has the norm

‖u‖ν ≤ A ‖u1‖ν1 . . . ‖un‖νn .

For example, when ν = ν′ = 2, the basic condition on the
parameters becomes

n∑
k=1

1

ν′k
=

1

2
.

If ν1 = 2, then all remaining values must be νk = 1, so that
ν′k =∞ (k = 2, . . . , n). Hence, in general, the L2-norm of u
cannot be estimated from above in terms of the L2-norms of
uk. Nevertheless, this is possible, if we additionally know the
L1-norms of uk. Such a conclusion can be made, in particular,
when dealing with probability densities on Rd.
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III. THE CASE OF DENSITIES

Here we develop one application of Theorem II.1 involving
(probability) densities on Rd.

First note that, given a measurable function u ≥ 0 on a
measure space (Ω, µ), by Hölder’s inequality, there is a family
of relations∫

u(1−θ)p+θq dµ ≤
(∫

up dµ

)1−θ(∫
uq dµ

)θ
,

holding whenever p, q ≥ 0, 0 ≤ θ ≤ 1. In particular, taking
p = 1 and assuming that

∫
u dµ = 1, we have∫

u(1−θ)+θq dµ ≤
(∫

uq dµ

)θ
, q ≥ 0, 0 ≤ θ ≤ 1. (4)

Let q = α > 1 and ν ≥ 1. Then (1− θ) + θα = ν ⇐⇒ θ =
ν−1
α−1 . Hence, if 1 ≤ ν ≤ α,∫

uν dµ ≤
(∫

uα dµ

) ν−1
α−1

.

Let us state this particular case of (4) separately by raising the
above inequality to the power 1/ν and assuming that µ is the
Lebesgue measure on Ω = Rd. As before, ν′ = ν

ν−1 .

Lemma III.1. For any density p on Rd,

‖p‖ν ≤
[(∫

Rd
p(x)α dx

) 1
α−1

]1/ν′
(1 ≤ ν ≤ α, α > 1).

Next, given densities pk on Rd (k = 1, . . . , n), consider the
convolution p = p1 ∗ · · · ∗ pn. By Theorem II.1, for 1 ≤ νk ≤
∞, α > 1, we have

‖p‖α ≤ A ‖p1‖ν1 . . . ‖pn‖νn (5)

as long as
n∑
k=1

1

ν′k
=

1

α′
= 1− 1

α
, (6)

and with constant

A =
(Aν1 . . . Aνn

Aα

)d/2
. (7)

The condition (6) requires that 1
ν′k

= 1 − 1
νk
≤ 1 − 1

α which
is equivalent to 1 ≤ νk ≤ α. Hence, one may apply Lemma
III.1 to pk, νk and α, and get

‖pk‖νk ≤
[(∫

Rd
p(x)α dx

) 1
α−1

]1/ν′k
. (8)

Combining (5) with (8), we obtain that

‖p‖α ≤ A

n∏
k=1

[(∫
Rd
pk(x)α dx

) 1
α−1

]1/ν′k
= A

n∏
k=1

‖pk‖
α′/ν′k
α (9)

with constant described in (7).
Now we see that in contrast with Theorem II.1, for any

α > 1, the Lα-norm of p can indeed be estimated in terms

of the Lα-norms of pk. Moreover, the equality (6) provides
some freedom in choosing νk which may be used to make (9)
as sharp, as possible.

But, first let us restate the inequality (9) in terms of the
Rényi power. If a random vector X in Rd has density p,

‖p‖α =

[(∫
Rd
p(x)α dx

) 1
α−1

]1/α′
= Nα(X)−

d
2α′ .

Hence, raising (9) to the power − 2α′

d , we arrive at the
inequality with a constant which does not depend on d.

Corollary III.2. If X1, . . . , Xn are independent random vec-
tors in Rd, then for the sum Sn = X1 + · · ·+Xn we have

Nα(Sn) ≥ B
n∏
k=1

(
Nα(Xk)

) α′
ν′
k , (10)

whenever (6) holds with νk ≥ 1, α > 1, and with constant

B = (Aν1 . . . AνnAα′)
−α′ . (11)

Strictly speaking, the application of Lemma III.1 still re-
quires that Xk have densities. This assumption may, however,
be removed. Indeed, in the case when the distribution of any
of Xk is not absolutely continuous, then Nα(Xk) = 0, and
(10) is fulfilled automatically.

IV. PROOF OF THEOREM I.1

One can try to optimize the inequality (10) over νk, but an
appropriate (in general non-optimal) choice may considerably
simplify this inequality. Put tk = α′

ν′k
, so that, by Corollary

III.2,

Nα(Sn) ≥ B
n∏
k=1

N tk
α (Xk), (12)

or equivalently,

logNα(Sn) ≥
n∑
k=1

tk logNα(Xk) + logB. (13)

Here, according to the condition (6), tk’s may be arbitrary
positive numbers such that t1 + · · ·+ tn = 1.

To work with (12)-(13), in view of the homogeneity of the
functional Nα, we may and do assume that

n∑
k=1

Nα(Xk) = 1. (14)

To further specify (13), write down the coefficients Aν for
ν = νk as

Aνk =
( 1
ν′k

)
1
ν′
k

( 1
νk

)
1
νk

,

so that
log
(
Aα
′

νk

)
=
α′

ν′k
log

1

ν′k
− α′

νk
log

1

νk
.

Using α′

ν′k
= tk, one may also write

− log
(
Aα
′

νk

)
=
α′

νk
log

1

νk
− tk log tk + tk logα′,
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which gives

−
n∑
k=1

log
(
Aα
′

νk

)
= α′

n∑
k=1

1

νk
log

1

νk
−

n∑
k=1

tk log tk + logα′.

To simplify the sum on the right-hand side, first note that

1

νk
= 1− 1

ν′k
= 1− tk

α′
.

Hence,

logB = − log
(
Aα
′

α′
)
−

n∑
k=1

log
(
Aα
′

νk

)
= − log

(
Aα
′

α′
)

+ logα′ −
n∑
k=1

tk log tk

+ α′
n∑
k=1

(
1− tk

α′

)
log
(

1− tk
α′

)
.

Choosing in (12) tk = Nα(Xk), we thus get

logNα(Sn) ≥ − log
(
Aα
′

α′
)

+ logα′

+ α′
n∑
k=1

(
1− tk

α′

)
log
(

1− tk
α′

)
.

To bound further the right-hand side, one may apply the
elementary inequality (1 − ε) log(1 − ε) ≥ −ε (0 ≤ ε ≤ 1),
to get

n∑
k=1

(
1− 1

α′
tk

)
log
(

1− tk
α′

)
≥ −

n∑
k=1

tk
α′

= − 1

α′
,

thus,
logNα(Sn) ≥ − log

(
Aα
′

α′
)

+ logα′ − 1.

Finally,

− log
(
Aα
′

α′
)

+ logα′ = α′
[

1

α′
log

1

α′
− 1

α
log

1

α

]
+ logα′

= −α
′

α
log

1

α
=

1

α− 1
logα,

so that
logNα(Sn) ≥ 1

α− 1
logα− 1.

Equivalently,

Nα(Sn) ≥ cα =
1

e
α

1
α−1 .

In view of (14), Theorem I.1 is proved.

V. THE CASE OF THE SHANNON ENTROPY

Let X and Y be independent random vectors in Rd with abso-
lutely continuous distributions. The following natural question
has to be still clarified: Under what assumptions does the
entropy power inequality

N(X + Y ) ≥ N(X) +N(Y ) (15)

hold true? In general, the entropy

h(X) = h(p) = −
∫
Rd
p(x) log p(x) dx,

where p is density of X , may or may not exist as the Lebesgue
integral, and so is the entropy power

N(X) = exp
[ 2

d
h(X)

]
.

Hence, at least the existence of h(X) and h(Y ) has to be
postulated in (15), as is done e.g. in [10]. In that case, what
can one say about h(X + Y )?

Proposition V.1. For some i.i.d. random vectors X and Y in
Rd the entropy exists, while the entropy of X + Y does not
exist.

Some examples illustrating such a ”bad” behaviour with
necessarily N(X) = N(Y ) = 0 are described in the next
section.

Let us however make the convention that N(X) = 0,
whenever the entropy of X does not exist, including the cases
when the distribution of X is not absolutely continuous with
respect to Lebesgue measure. Then N(X) is always defined,
and the entropy power inequality may indeed be formulated
as a universal principle:

Proposition V.2. With this convention, the inequality (15) is
true for all independent random vectors X and Y in Rd.

For the proof, one can start with Theorem I.1 in the limit
case α = 1, when it becomes

N1(X + Y ) ≥ N1(X) +N1(Y ), (16)

where N1 = limα→1+ Nα. To obtain this inequality for N in
place of N1, first we recall an elementary lemma whose proof
we include for completeness.

Lemma V.3. Let X be a random vector in Rd with density
p. If ∫

Rd
pα(x) dx <∞, for some α > 1, (17)

then the entropy of X exists, and N1(X) = N(X).

Proof. The lemma is a particular case of the following more
general assertion. If a random variable ξ ≥ 0 satisfies ‖ξ‖r =
(Eξr)1/r < ∞, for some r > 0, then E log ξ exists as the
Lebesgue integral, and

‖ξ‖0+ = lim
r→0+

‖ξ‖r = exp{E log ξ}. (18)

To prove the latter, one may assume that ξ > 0 a.s. First note
that the log-moment function u(r) = logEξr is continuously
differentiable and convex in some interval 0 < r < r0. In
particular, the derivative u′(r) is non-decreasing. Since also
limr→0+ u(r) = 0, we have

lim
r→0+

u(r)

r
= lim
r→0+

∫ 1

0

u′(rs) ds = lim
r→0+

u′(r),

which is exactly the relation (18). It remains to apply it to
ξ = p(X) in which case Nα(X) = ‖ξ‖−2/dα−1 (α > 1). �
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If both random vectors X and Y satisfy the integrability
condition (17) on their densities, then so does X + Y (by
Young’s inequality). Hence, by Lemma V.3, h(X +Y ) exists,
as well, and N1(X + Y ) = N(X + Y ). As a result, we
obtain from (16) the entropy power inequality (15) under the
condition (17) posed on the summands X and Y (as was stated
by Lieb [12]).

It is however desirable to remove the requirement (17),
and to this aim a truncation-of-density argument can be used.
Given a density p and n ≥ 1 large enough, define

pn(x) =
1

cn
p(x) 1{p(x)≤n}, x ∈ Rd,

where

cn =

∫
{p(x)≤n}

p(x) dx

is a normalizing constant (assuming that cn > 0). If a random
vector Xn has density pn, let us say that Xn has density p,
truncated at level n. By the construction, pn is bounded, so
h(Xn) exists regardless of whether h(X) exists, and we have
−∞ < h(Xn) ≤ ∞.

Lemma V.4. Given a random vector X in Rd with density p,
let Xn have density p, truncated at level n. Then, the limit
limn→∞ h(Xn) always exists and is equal to h(X), when
h(X) exists.

Introduce the positive and negative parts of the entropy of
X ,

h+(X) =

∫
p(x)≤1

p(x) log
1

p(x)
dx

and

h−(X) =

∫
p(x)≥1

p(x) log p(x) dx.

Both integrals are well-defined and non-negative. Moreover,
h(X) exists, if and only if h+(X) < ∞ or h−(X) < ∞, in
which case

h(X) = h+(X)− h−(X).

An application of the monotone convergence theorem to-
gether with the Lebesgue dominated convergence theorem
(like in the proof of the next lemma) easily yields

lim
n→∞

h+(Xn) = h+(X), lim
n→∞

h−(Xn) = h−(X).

To prove Lemma V.4, first note that cn ↑ 1. Hence, by the
very definition,

h(Xn) =
log cn
cn

∫
p(x)≤n

p(x) dx

− 1

cn

∫
p(x)≤n

p(x) log p(x) dx

= o(1)− (1 + o(1))

∫
p(x)≤n

p(x) log p(x) dx.

The last integral is finite, if and only if h+(X) is finite. In case
h+(X) =∞, we have h(Xn) =∞, for all n. If h+(X) <∞,

then h(Xn) <∞, and moreover,

lim
n→∞

h(Xn) = h+(X)− lim
n→∞

∫
1≤p(x)≤n

p(x) log p(x) dx

= h+(X)− h−(X)

= h(X).

This proves the lemma.

Lemma V.5. Given two independent random vectors X and Y
in Rd with densities p and q, let Xn and Yn be independent
random vectors in Rd with densities p and q, truncated at
levels n, respectively. If h(X + Y ) exists, then

lim
n→∞

h(Xn + Yn) = h(X + Y ).

Proof. Denote by pn and qn the corresponding truncated
densities for X and Y with normalizing constants

cn =

∫
p(x)≤n

p(x) dx, c′n =

∫
q(x)≤n

q(x) dx.

Then Xn + Yn has a bounded density

rn(x) = (pn ∗ qn)(x) =

∫
Rd
pn(x− y)qn(y) dy.

In particular, the entropy h(Xn + Yn) exists.
Since cnpn(x) ↑ p(x) and c′nqn(x) ↑ q(x), as n → ∞, we

get

rn(x)→ r(x) = (p ∗ q)(x) =

∫
Rd
p(x− y)q(y) dy,

which is the density of Z = X +Y . Moreover, cnc′n · rn(x) ↑
r(x), so, by the monotone convergence theorem,∫

r(x)≥1
cnc
′
n · rn(x) log

(
cnc
′
n · rn(x)

)
dx ↑∫

r(x)≥1
r(x) log r(x) dx = h−(Z).

But cnc′n log(cnc
′
n)
∫
r(x)≥1 rn(x) dx→ 0, and we obtain that∫

r(x)≥1
rn(x) log rn(x) dx → h−(Z).

By a similar argument, using the property that the function
t log 1

t is increasing in 0 < t ≤ 1/e, we get that∫
r(x)≤1/e

rn(x) log
1

rn(x)
dx →

∫
r(x)≤1/e

r(x) log
1

r(x)
dx.

Finally, to cover the region A = {1/e < r(x) < 1}, first
note that mes(A) ≤ e, in view of

∫
r(x) dx = 1. Since the

sequence r̃n = cnc
′
n rn is non-decreasing, we have 0 ≤ r̃n ≤

r ≤ 1 on the set A, and hence,

0 ≤ r̃n(x) log
1

r̃n(x)
≤ 1

e
.

Consequently, we are in position to apply on A (which has a
finite measure) the Lebesgue dominated convergence theorem,
which gives∫

A

r̃n(x) log
1

r̃n(x)
dx →

∫
A

r(x) log
1

r(x)
dx.
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But the integrals on the left-hand side (as a function of n) are
convergent or divergent together with

∫
A
rn(x) log 1

rn(x)
dx,

while the integral on the right-hand side is finite.
As a result,∫

r(x)<1

rn(x) log
1

rn(x)
dx →∫

r(x)<1

r(x) log
1

r(x)
dx = h+(Z).

The convergences over the two regions {r(x) ≥ 1} and
{r(x) < 1} imply that h(Xn +Yn)→ h(Z), as long as h(Z)
exists. Lemma V.5 is proved. �

Applying (15) to Xn and Yn and using the two lemmas,
we arrive at the entropy power inequality, where the condition
(17) does not appear anymore.

Corollary V.6. The entropy power inequality (15) holds true,
whenever the entropies of X , Y , and X + Y exist.

Note that the existence of the entropies is guaranteed, for
example, when both X and Y have finite second moments.
This is a very popular condition, under which the entropy
power inequality is stated. Moreover, it sufficies to require
that E log(1 + |X|) <∞ and E log(1 + |Y |) <∞.

Now, to make the last step towards the more general
Proposition V.2, it remains to combine Corollary V.6 with
the monotonicity property of the entropy, which we state
separately as the following proposition.

Proposition V.7. Let X and Y be independent random vectors
in Rd. If the entropy of X exists and N(X) > 0, then the
entropy of X + Y exists as well, and N(X + Y ) ≥ N(X).

This statement is easily obtained by applying Jensen’s
inequality, and we omit the details. Here, it does not matter
whether Y has density or not. However, the assumption that
N(X) > 0 is important, since otherwise the entropy of
X+Y may not exist (even if Y has density with well-defined
entropy).

What also seems interesting, the monotonicity property does
not exclude the cases of a strong ”discontinuity” of the entropy
under convolutions.

Proposition V.8. There exists a random vector X in Rd with
a finite entropy, such that h(X + Y ) = ∞ for every random
vector Y in Rd, which is independent of X and which has a
finite entropy.

VI. EXAMPLES

To illustarte a possible behaviour of the entropy on convolu-
tions, let us start with two examples. For simplicity, we only
consider the one-dimensional case.

Example 1. For ε > 0, consider probability distributions
supported on the interval (0, 1e ) with densities

pε(x) =
ε

x log1+ε(1/x)
, 0 < x <

1

e
.

The entropy for each of these densities exists, since all pε are
lower-bounded. Moreover, h(pε) > −∞, if and only if ε > 1.
The convolution pε ∗ pε behaves near zero like p2ε, so,

h(pε ∗ pε) > −∞, if and only if ε >
1

2

(cf. e.g. [3]).

Example 2. Let a random variable X be uniformly distributed
in the set A of Lebesgue measure 1, namely, of the form

A =

∞⋃
n=1

(2n, 2n + an),

where an ≥ 0,
∑∞
n=1 an = 1. Then h(X) = 0, while, as easy

to check,

h(X + U) =
1

2

∞∑
n=1

a2n +

∞∑
n=1

an log
1

an
,

where the random variable U is independent of X and has a
uniform distribution in (0, 1). Here, both X and X + U have
densities bounded by 1, so there is no need to speak about the
existence of the entropies.

This example already shows that in general h(X+Y ) cannot
be bounded from above in terms of h(X) and h(Y ). This is so
also in the i.i.d. case, as the next example shows. Moreover,
it may occur that h(X + Y ) = ∞, while the entropy of the
summands is finite.

Example 3. Let the random variables X and X ′ be inde-
pendent with the same uniform density q = 1A as in the
previous example, based on a decreasing sequence an. Write
q =

∑∞
n=1 anqn, where qn is the density of a random variable

uniformly distributed in (2n, 2n + an). Hence,

q ∗ q =
∑

k>n≥1

2 akan qk ∗ qn +
∑
n≥1

a2n qn ∗ qn.

The entropy of this convolution exists and is non-negative,
since q ∗ q ≤ 1. To compute it, first note that all densities
qk ∗ qn (k ≥ n) are supported on non-overlapping intervals.
On the other hand, if U1, U2 are independent and uniformly
distributed in the intervals of lengths c1 ≥ c2 > 0, then

h(U1 + U2) = log c1 +
c2
2c1

.

Using this formula, we find that

h(q ∗ q) = −2 log 2 + 2 log 2

∞∑
n=1

snan +

∞∑
n=1

(
n− 1

2

)
a2n

+

∞∑
n=1

a2n log
1

an
+ 2

∞∑
n=2

sn−1 an log
1

an
,

where sn = a1 + · · · + an. Here, since an is decreasing
and summing to 1, it readily follows that

∑∞
n=1 na

2
n ≤ 1.

Indeed, necessarily an ≤ 1
n , since otherwise, by the mono-

tonicity, we would have ak > 1
n for all k ≤ n, and then∑∞

k=1 ak > 1 which contradicts to the assumption. Hence,∑∞
n=1 (nan) an ≤

∑∞
n=1 an = 1. Next, using t log 1

t ≤
1
e
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for 0 ≤ t ≤ 1, we also have the bound
∑∞
n=1 a

2
n log 1

an
≤ 1

e .
Therefore,

h(q ∗ q) <∞, if and only if

∞∑
n=1

an log
1

an
<∞. (19)

Obviously, in this characterization the assumption on the
monotonicity of an may be removed.

The cases where
∑
n an log 1

an
= ∞ provide examples

proving Proposition V.8. Indeed, using the submodularity
property of the entropy (due to Madiman, cf. [13]), for any
random variable Y , which is independent of X and has finite
entropy,

h(X +X ′ + Y ) + h(Y ) ≤ h(X + Y ) + h(X ′ + Y )

= 2h(X + Y ).

But h(X + X ′ + Y ) ≥ h(X + X ′) = ∞, according to (19)
and Proposition V.7. So it is necessary that h(X + Y ) = ∞
as well.

Example 4. Given 0 < ε ≤ 1
4 , let X have the density

p =
1

2
pε +

1

2
q,

where q = 1A is the uniform density from Examples 2-3 with∑
n an log 1

an
=∞.

Obviously, the entropy of X exists. More precisely, since
pε and q are supported on disjoint sets, and since h(q) = 0,

h(X) =
( log 2

2
+

1

2
h(pε)

)
+
( log 2

2
+

1

2
h(q)

)
= log 2 +

1

2
h(pε) = −∞.

Now, let Y be an independent copy of X , and write the
density of X + Y in the form

p ∗ p =
1

4
pε ∗ pε +

3

4
r, where r =

2

3
pε ∗ q +

1

3
q ∗ q.

Here, pε ∗ pε is supported on (0, 2e ), while the density r is
supported on (2,∞). Let us show that h(r) = ∞, which
together with h(pε ∗ pε) = −∞ (as in Example 1) would
imply that h(X + Y ) is not defined, thus proving Proposition
V.1.

Note that pε ∗ q ≤ 1, which implies h(pε ∗ q) ≥ 0. Using
the concavity of the function t → t log 1

t , Jensen’s inequality
yields

h(r) ≥ 2

3
h(pε ∗ q) +

1

3
h(q ∗ q) ≥ 1

3
h(q ∗ q) = ∞,

according to (19). One may take ε = 1
4 , for example.

Example 5. One can also show that h(pε ∗ q) =∞, provided
that

∞∑
n=1

an log
1

an
=∞,

∞∑
n=1

an log1−ε 1

an
<∞,

where 0 < ε ≤ 1
4 . For instance, the choice an ∼ const· 1

n log2 n
for large n meets these reqirements.

Hence, taking independent random variables X and Y with
densities p and pε as above, we obtain that h(X) = h(Y ) =
−∞, but h(X + Y ) is not defined. In this example, the

random variables are not identically distributed, but one of
the distributions is compactly supported.

The argument is based on the following estimate: If a
random variable Y has the density pε (0 < ε ≤ 1), and U
is independent of Y and has a uniform distribution in (0, 1),
then for each 0 < a ≤ 1/(2e),

h(Y + aU) ≥ −C log1−ε(1/a),

where C is an absolute constant. We leave it for the reader as
an excercise.
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