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Abstract Concentration functions are considered for sums of independent random
variables. Two-sided bounds are given for concentration functions in the case of log-
concave distributions.
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1 Introduction

The concentration function for a random variable, say X , is defined by

Q(X; λ) = sup
x

P{x ≤ X ≤ x + λ}, λ ≥ 0. (1.1)

For a long time, probabilists have investigated the asymptotic behavior of this function
for sums

Sn = X1 + · · · + Xn
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of independent random variables Xk with respect to their concentration functions or
with respect to n in the i.i.d. case. Let us start with an estimate, which involves the
normalized truncated second moment at level λ

D(X; λ) = 1

λ2
E

(
min{|X |, λ})2,

a quantity playing a crucial role in the study of distributions of sums, cf. [14,21,22].
It was shown by Miroshnikov and Rogozin [19] that given λk > 0, k = 1, . . . , n, if

λ ≥ max
1≤k≤n

λk, (1.2)

one then has

Q(Sn; λ) ≤ Cλ

( n∑

k=1

λ2k D(X̃k; λk) Q
−2(Xk; λk)

)−1/2

(1.3)

up to some absolute constant C , where X̃k = Xk − X ′
k with X ′

k being an independent
copy of Xk (cf. also [20] and [21], Theorem 2.16). This inequality generalizes and
sharpens some previous results going back to Kolmogorov [18], see [9,10,16,17,23,
24]. A large number of works is devoted to the i.i.d. case and the problem of rates of
Q(Sn; λ), cf. [8,12,13,26] and references therein.

One natural question in connection with the inequality (1.3) is to determine con-
ditions when its right-hand side may be simplified and sharpened by removing the
term D(X̃k; λk). In general, it may not be removed, which can already be seen in the
example where all Xk are normal. To clarify the picture, we will examine the behavior
of the concentration function for the broader class of log-concave distributions.

A random variable X is said to have a log-concave distribution, if it has a density
of the form p(x) = e−V (x), where V : R → (−∞,∞] is a convex function (in the
generalized sense). Many standard probability distributions on the real line belong
to this class, which is of a large interest especially in convex geometry. This class
includes, for example, all marginals of random vectors uniformly distributed over
arbitrary convex bodies in Rn . Specializing to log-concave distributions, it turns out
to be possible to give a simple two-sided bound for the concentration function.

Theorem 1.1 If (Xk)1≤k≤n are independent and have log-concave distributions, then
for all λ ≥ 0,

1√
12

λ
√
Var(Sn) + λ2

12

≤ Q(Sn; λ) ≤ λ
√
Var(Sn) + λ2

12

. (1.4)

Moreover, the left inequality continues to hold without the log-concavity assumption.

Here, the left-hand side is vanishing in case Var(Sn) = ∞. Note, however, that
random variables with log-concave distribution have finite moments of any order.
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Now, let us look at the possible desired sharpening of (1.3), namely for positive
λ1, . . . λn and suitable λ > 0,

Q(Sn; λ) ≤ Cλ

( n∑

k=1

λ2k Q
−2(Xk; λk)

)−1/2

. (1.5)

Suppose that the Xk are independent and each has a log-concave distribution, in which
case the distribution of the sum Sn is log-concave, as well. For ε > 0, we may apply
(1.4) to εSn so as to derive a lower bound and to εXk to obtain an upper bound
(in place of Sn). Then, we would get from (1.5)

ε2 Var(Sn) + 1

12
λ2 ≥ 1

12C2

(
ε2 Var(Sn) + 1

12

n∑

k=1

λ2k

)
.

Letting ε → 0, the above inequality yields

λ2 ≥ 1

12C2

n∑

k=1

λ2k . (1.6)

Hence, this restriction is necessary for (1.5) to hold in the class of all log-concave
distributions. The appearance of the D-functional in (1.3) is therefore quite natural
and may partly be explained by the broader range (1.2) of admissible values of λk and
λ. Nevertheless, for smaller regions such as (1.6), the refining inequality (1.5) does
hold in general. We prove:

Theorem 1.2 Let (Xk)1≤k≤n be independent random variables. For all λk > 0, k =
1, . . . , n, and all

λ ≥
( n∑

k=1

λ2k

)1/2
, (1.7)

we have that with some universal constant C

Q(Sn; λ) ≤ Cλ

( n∑

k=1

λ2k Q
−2(Xk; λk)

)−1/2

. (1.8)

This bound relies upon certain properties of another important functional—
maximum of the density, which we consider in the next three sections.

2 Maximum of density

Given a random variable X , put

M(X) = ess supx p(x),
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provided that X has an absolutely continuous distribution on the real line with density
p(x), and put M(X) = ∞, otherwise.

We write U ∼ U(a, b), when a random variable U is uniformly distributed in the
finite interval (a, b). A number of interesting relations for the concentration function
can be obtained using the obvious general identity

Q(X; λ) = λM(X + λU ), λ > 0, (2.1)

where U ∼ U(0, 1) is independent of X . For example, Theorem 1.1 follows from:

Proposition 2.1 If a random variable X has a log-concave distribution, then

1

12
≤ Var(X)M2(X) ≤ 1. (2.2)

Moreover, the left inequality holds without the log-concavity assumption.

One should note that the quantity Var(X)M2(X) is affine invariant (so it depends
neither on the mean nor the variance of X ). The equality on the left-hand side of (2.2)
is attained for the uniform distribution in any finite interval, while on the right-hand
side, there is equality when X has a one-sided exponential distribution with density
p(x) = e−x (x > 0).

The lower bound Var(X)M2(X) ≥ 1
12 is elementary; multidimensional extensions

of this inequality were considered in [15], cf. also [3].
If X has a symmetric log-concave distribution, its density, say p, attains its max-

imum at the origin, so M(X) = p(0). In this case, the upper bound in (2.2) can be
sharpened to

Var(X) p2(0) ≤ 1

2
, (2.3)

where the two-sided exponential distribution with density p(x) = 1
2 e

−|x | plays an
extremal role. This result was obtained by Hensley [15]; in [5], the symmetry assump-
tion was relaxed to the property that X has median at zero.

However, if we want to replace p(0) with M(X) in the general log-concave case,
the constant 1

2 in (2.3) should be increased. The sharp bound as in (2.2) is due to
Fradelizi [11], who stated it for marginals of convex bodies in isotropic position (i.e.,
for the special family of log-concave distributions, sufficient to approximate general
log-concave distributions on the line). For reader’s convenience, we include below an
alternative short proof.

Proof of Proposition 2.1 We may assume that M(X) = 1.
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For the lower bound, put H(x) = P{|X − EX | ≥ x}, x ≥ 0. Then, H(0) =
1, H ′(x) ≥ −2 a.e., which gives H(x) ≥ 1 − 2x , so

Var(X) = 2

∞∫

0

xH(x) dx ≥ 2

1/2∫

0

xH(x) dx

≥ 2

1/2∫

0

x(1 − 2x) dx = 1

12
.

For the upper bound, suppose that the distribution of X is supported on the interval
(a, b), where it has a positive log-concave density p. The distribution function F(x) =
P{X ≤ x} is continuous and strictly increasing on (a, b), so it has an inverse function
F−1 : (0, 1) → (a, b). Moreover, by the log-concavity of p, the function I (t) =
p(F−1(t)) is positive and concave on (0, 1) (cf. [4], Proposition A.1). We extend it
to [0, 1] by continuity; then, I attains its maximum at some point α ∈ [0, 1], so that
I (α) = M(X) = 1.

By the concavity of I , it admits a lower pointwise bound

I (t) ≥ Iα(t) ≡ min
{ t

α
,
1 − t

1 − α

}
, 0 < t < 1. (2.4)

Since F−1 has the distribution function F under the Lebesgue measure on (0, 1), we
get from (2.4) that

Var(X) = 1

2

1∫

0

1∫

0

(F−1(t) − F−1(s))2 dt ds

= 1

2

1∫

0

1∫

0

⎛

⎝
s∫

t

du

I (u)

⎞

⎠

2

dt ds ≤ 1

2

1∫

0

1∫

0

⎛

⎝
s∫

t

du

Iα(u)

⎞

⎠

2

dt ds.

It is now a simple exercise to check that the latter expression is minimized for α = 0
and α = 1, in which case it is equal to 1. ��

Let us now apply Proposition 2.1 to random variables of the form X + λU with
U ∼ U(0, 1) being independent of X . Then (2.2) becomes

1

12
≤

(
Var(X) + λ2

12

)
M2(X + λU ) ≤ 1,

where for the right inequality, we should assume that X has a log-concave distribution.
In view of the identity (2.1), we arrive at:
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Corollary 2.2 If a random variable X has a log-concave distribution, then for all
λ ≥ 0,

λ
√
12

(
Var(X) + λ2

12

) ≤ Q(X; λ) ≤ λ
√
Var(X) + λ2

12

. (2.5)

Moreover, the left inequality holds without the log-concavity assumption.

Finally, as we have alreadymentioned, the convolution of log-concave distributions
is always log-concave (cf. [7]). This important result allows us to get Theorem 1.1 as
a direct consequence of Corollary 2.2.

3 Slices of the cube

For i.i.d. random variables (Uk)1≤k≤n , consider the weighted sums

X = λ1U1 + · · · + λnUn (λ21 + · · · + λ2n = 1). (3.1)

Proposition 2.1 allows one to bound the maximum of the density of X in terms of the
variance of U1 (regardless of the coefficients λk). Applying (2.2), we obtain

1√
12Var(U1)

≤ M(X) ≤ 1√
Var(U1)

,

where in the right inequality, we assume thatU1 has a log-concave distribution. More-
over, ifU1 has a symmetric distribution (about its median), by (2.3), one may sharpen
the above to

1√
12Var(U1)

≤ M(X) ≤ 1√
2Var(U1)

.

For instance, when U1 ∼ U
( − 1

2 ,
1
2

)
, we have 1 ≤ M(X) ≤ √

6. In this important
particular example, M(X) represents the (n − 1)-dimensional volume of the corre-
sponding slice of the unit cube

[ − 1
2 ,

1
2

]n ⊂ Rn obtained by intersecting it with the
hyperplane λ1x1 + · · · + λnxn = 0. In fact, in this case, the general upper bound

√
6

for M(X) is not optimal. A remarkable observation in this respect was made by Ball,
who proved the following:

Proposition 3.1 [1] If U1 ∼ U
( − 1

2 ,
1
2

)
, then for any weighted sum X in (3.1),

1 ≤ M(X) ≤ √
2. (3.2)

The equality on the right-hand side is attained for X = 1√
2
U1 + 1√

2
U2. This result

was used in [2] to construct a simple counterexample in the famous Busemann–Petty
problem.
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For our purposes, we will need to control non-central sections of the cube, as well.
More precisely, we need to bound from below the density of X in a neighborhood of
the origin.

Proposition 3.2 Any weighted sum X in (3.1), with U1 ∼ U
( − 1

2 ,
1
2

)
, has a density

p such that with some universal constant c > 0

inf
|x |< 1

2

p(x) ≥ c. (3.3)

The example X = U1 shows that the interval |x | < 1
2 cannot be enlarged in (3.3).

To get an idea about the best possible universal constant c, let us look at what will
happen in the limit case for λk = 1√

n
, when the density p of X will approximate the

normal density

ϕσ (x) = 1

σ
ϕ(x/σ) = 1√

2πσ 2
e−x2/2σ 2

with mean zero and variance σ 2 = 1
12 . We then have c ≤ ϕσ (1/2) =

√
6
π
e−3/2 =

0.308...

Proof of Proposition 3.2 The randomvariable X has a symmetric log-concave density
p on the interval (−b, b), where b = 1

2 (λ1 + · · · + λn) ≥ 1
2 . In particular, p is non-

increasing in 0 ≤ x < b. We use the same notations as in the proof of Proposition 2.1.
In particular, I (t) = p(F−1(t)) for 0 < t < 1, where F−1 : (0, 1) → (−b, b) is the
inverse of the distribution function F(x) = P{X ≤ x}.

Since the function I is concave and symmetric about 1
2 , the inequality (2.4) reads

as

I (t) ≥ 2I (1/2) min{t, 1 − t}, 0 < t < 1. (3.4)

Here, I (1/2) = p(0) = M(X) ≥ 1, where we applied (3.2). Hence, after the substi-
tution t = F(x), we get from (3.4)

p(x) ≥ 2 min{F(x), 1 − F(x)}, |x | < b. (3.5)

The right-hand side of (3.5) may further be bounded from below by virtue of the upper
bound in (3.2). Consider a random variable

Y = tUn+1 + sX, t, s > 0, t2 + s2 = 1, (3.6)

where Un+1 ∼ U
( − 1

2 ,
1
2

)
is independent of X . It has density

q(x) = 1

t
P
{
x − t

2

s
≤ X ≤ x + t

2

s

}
,
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which is also symmetric and log-concave. In particular,

M(Y ) = q(0) = 1

t
P
{
|X | ≤ t

2s

}
= 1

t

(
2F

( t

2s

)
− 1

)
.

Since Proposition 3.1 is applicable to Y , we have M(Y ) ≤ √
2, that is,

2F
( t

2s

)
− 1 ≤ t

√
2.

Equivalently, after the substitution x = t
2s , we get 2F(x) − 1 ≤ 2x√

1+4x2

√
2, so

1 − F(x) ≥ 1

2
− x

√
2√

1 + 4x2
≥ 1

2

(1
2

− x
)
, x ≥ 0. (3.7)

To prove the last inequality, rewrite it as

ψ(x) ≡ x
√
2√

1 + 4x2
≤ 1

4
+ 1

2
x ≡ ξ(x). (3.8)

The function ψ has a decreasing derivative ψ ′(x) =
√
2

(1+4x2)3/2
, so it is concave, while

the function ξ is linear. Since also ψ( 12 ) = ξ( 12 ) = 1
2 and ψ ′( 12 ) = ξ ′( 12 ) = 1

2 ,
(3.7)–(3.8) immediately follow.

By the symmetry of the distribution of X about the origin, together with (3.7), we
also have a similar bound on the negative half-axis and one can unite them by

min{F(x), 1 − F(x)} ≥ 1

2

(1
2

− |x |
)
.

Note that this inequality is of interest for |x | ≤ 1
2 , only. Combining it with (3.5), we

thus obtain a lower bound on the density p(x), namely

p(x) ≥ 1

2
− |x |, |x | ≤ 1

2
. (3.9)

This inequality is good, when x is separated from the end points ± 1
2 , so an additional

argument should be used to get a uniform lower bound. Nevertheless, let us proceed
and integrate (3.9) over the interval (x, 1

2 ), to get

P
{
x ≤ X ≤ 1

2

}
≥ 1

2

(1
2

− x
)2

, 0 ≤ x ≤ 1

2
. (3.10)

Next, write X = λ1U1 + · · · + λnUn , where we may assume that 1 > λ1 ≥ · · · ≥
λn ≥ 0, and as before, λ21 + · · · + λ2n = 1. In particular, b > 1

2 , so that the density p
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is continuous in |x | ≤ 1
2 . Recall that the distribution of X is symmetric and unimodal

(as any other log-concave distribution), so we only need to estimate p at the point 1
2 .

If λ1 is small enough, the distribution function F of X is close to the normal
distribution function 
σ with mean zero and variance σ 2 = 1

12 . In particular, we have
a Berry–Esseen bound

sup
x

|F(x) − 
σ (x)| ≤ CL3, (3.11)

where C is a universal constant and L3 is the Lyapunov ratio, which in our case is
given by

L3 =
∑n

k=1 E |λkUk |3
( ∑n

k=1 E |λkUk |2
)3/2 = E |U1|3

(
EU 2

1

)3/2

n∑

k=1

E λ3k = 3
√
3

4

n∑

k=1

E λ3k .

Since λk ≤ λ1, we have an estimate

L3 ≤ 3
√
3

4
λ1 < 1.3 λ1.

The inequality (3.11) holds, for example, with C = 0.91 (cf. [26], although better
constants are known), which thus gives

sup
x

|F(x) − 
σ (x)| < 1.3 λ1.

Applying (3.5), we therefore get, for x > 0,

p(x) ≥ 2(1 − F(x)) ≥ 2
(
1 − 
σ (x) − 1.3 λ1

)
.

For x = 1
2 , we have 
σ (x) = 
(x/σ) = 
(

√
3) < 0.96, so,

p(1/2) ≥ 0.08 − 2.6 λ1. (3.12)

This bound is sufficient for the assertion of Proposition 3.2, if λ1 is small enough.

If not, put t = λ1, s =
√
1 − λ21, and write X = tU1 + sY . From this representation,

p(x) = 1

t
P
{ x − t

2

s
≤ Y ≤ x + t

2

s

}
,

implying

p(1/2) ≥ 1

t
P
{1 − t

2s
≤ Y ≤ 1

2

}
.
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But since Y is of the same type as X , the right probability may be estimated from
below by virtue of the general inequality (3.10) with x = 1−t

2s . It gives

p(1/2) ≥ (s − (1 − t))2

8ts2
.

To simplify, first write

s − (1 − t) =
√
1 − t2 − (1 − t) = 1 − t2 − (1 − t)2√

1 − t2 + (1 − t)
= 2t (1 − t)

s + (1 − t)
.

Since

1 − t = 1 −
√
1 − s2 = s2

1 + √
1 − s2

≥ s2

2
,

s + (1 − t) = s + s2

1 + √
1 − s2

≤ s + s2 ≤ 2s,

we get

s − (1 − t) = 2t (1 − t)

s + (1 − t)
≥ ts

2
,

and we see that

p(1/2) ≥ (s − (1 − t))2

8ts2
≥ t

32
= λ1

32
.

Together with (3.12), this gives

p(1/2) ≥ max
{
0.08 − 2.6 λ1,

λ1

32

}
= 0.00095 . . .

��

4 Proof of Theorem 1.2

Proof ofTheorem1.2 is based upon the followinggeneral property of theM-functional.

Proposition 4.1 If random variables (Xk)1≤k≤n are independent, then for the sum
Sn = X1 + · · · + Xn, we have

M−2(Sn) ≥ 1

2

n∑

k=1

M−2(Xk). (4.1)
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With constant 1
e (in place of 1

2 ), such an estimate including its multidimensional
extension can be obtained as a consequence of the sharp Young inequality for the
L p-norms of convolutions, cf. [6]. With some existing constant, (4.1) also follows
from the Miroshnikov-Rogozin inequality (1.3) for the concentration functions, by
applying it with λk = λ and letting λ → 0.

As for the current formulation, first let us note that in the particular case, where
Xk = λkUk, Uk ∼ U

( − 1
2 ,

1
2

)
, the inequality (4.1) is equivalent to the upper bound

of Proposition 3.1 (Ball’s result). This also shows that the constant 1
2 is unimprovable.

To derive the general case, we apply the following delicate comparison result due
to Rogozin:

Proposition 4.2 [25] Given independent random variables (Xk)1≤k≤n with bounded
densities, let (Uk)1≤k≤n be independent random variables uniformly distributed in the
intervals (− 1

2M(Xk )
, 1
2M(Xk )

), so that

M(Xk) = M(Uk), k = 1, . . . , n. (4.2)

Then,

M(X1 + · · · + Xn) ≤ M(U1 + · · · +Un). (4.3)

Hence, starting with (4.2)–(4.3) and applying the right inequality in (3.2) to the
normalized sum

X = 1√
12σ 2

(U1 + · · · +Un) with σ 2 = Var(U1 + · · · +Un),

we arrive at the bound (4.1). Indeed, in this case, by (4.2),

σ 2 =
n∑

k=1

Var(Uk) = 1

12

n∑

k=1

M−2(Uk) = 1

12

n∑

k=1

M−2(Xk),

and

M−2(U1 + · · · +Un) = 12σ 2M−2(X)

= M−2(X)

n∑

k=1

M−2(Xk) ≥ 1

2

n∑

k=1

M−2(Xk),

where (3.2) was used on the last step. It remains to apply (4.3), thus leading to (4.1).
Note also that without the loss of generality, one may always restrict (4.1) to the

summands having bounded densities.

Proof of Theorem 1.2 The assertion of Theorem 1.2 is homogeneous with respect to
the sequence (Xk, λk) and the parameter λ. This means that, given c > 0, if we replace
in (1.8) each Xk with cXk, λk with cλk , and λ with cλ, this inequality together with

123



J Theor Probab (2015) 28:976–988 987

the hypothesis (1.7) will be unchanged. Therefore, we may assume without the loss
of generality that

∑n
k=1 λ2k = 1. In this case, the hypothesis (1.7) becomes λ ≥ 1.

Let independent random variables (Uk)1≤k≤n be uniformly distributed in
(− 1

2 ,
1
2

)

and independent of all X j . First, we apply Proposition 4.1 to the random variables
Xk + λkUk , so as to get

M−2(Sn + X) ≥ 1

2

n∑

k=1

M−2(Xk + λkUk),

where X = λ1U1 + · · · + λnUn . One may rewrite this inequality by virtue of the
identity (2.1) as

M−2(Sn + X) ≥ 1

2

n∑

k=1

λ2k Q
−2(Xk; λk). (4.4)

Denote by Fn the distribution function of Sn and by p the density of X . Then, Sn + X
has density

q(x) =
∞∫

−∞
p(x − y) dFn(y).

By Proposition 3.2, on the interval
( − 1

2 ,
1
2

)
, p is uniformly bounded from below by

a universal constant c > 0. Hence, for all x ,

q(x) ≥ c
∫

|y−x |< 1
2

dFn(y) = c P
{
|Sn − x | <

1

2

}
.

Taking here the supremum over all x leads to M(Sn + X) ≥ c Q(Sn; 1), so, by (4.4),

c−2 Q−2(Sn; 1) ≥ 1

2

n∑

k=1

λ2k Q
−2(Xk; λk).

This is exactly the required inequality (1.8) with λ = 1. To cover the values λ ≥ 1, it
remains to apply an elementary general bound Q(Y ; λ) ≤ 2λ Q(Y ; 1), cf., e.g., [14],
p.20. ��
Acknowledgments We thankA. Zaitsev for reading themanuscript.Many thanks to the referee for careful
reading, corrections, and helpful comments.
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